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Abstract

In many fields of biomedical research, it is important to estimate
phylogenetic distances between taxa based on low-coverage sequenc-
ing reads. Major applications are, for example, phylogeny reconstruc-
tion, species identification from small sequencing samples, or bacterial
strain typing in medical diagnostics. Herein, we adapt our previously
developed software program Filtered Spaced-Word Matches (FSWM)
for alignment-free phylogeny reconstruction to work on unassembled
reads; we call this implementation Read-SpaM. Test runs on simulated
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reads from bacterial genomes show that our approach can estimate
phylogenetic distances with high accuracy, even for large evolutionary
distances and for very low sequencing coverage.
Availability: https://github.com/burkhard-morgenstern/Read-SpaM
Contact: bmorgen@gwdg.de

1 Introduction

Phylogeny reconstruction is a basic task in biological sequence analysis [16].
Traditionally, phylogenetic trees of species are calculated from carefully se-
lected sets of marker genes or proteins. With the huge amounts of sequencing
data that are now available, genome-based phylogeny reconstruction or phy-
logenomics has become a standard approach [9, 4]. Here, the usual workflow
is as follows: DNA sequencing produces a large number of reads, these reads
are then assembled to obtain contigs or complete genomes. From the assem-
bled sequences, orthologous genes are identified and multiple alignments of
these genes are calculated. Finally, phylogeny-reconstruction methods such
as Maximum Likelihood [45] are applied to these alignments to obtain a phy-
logenetic tree of the species under study. This procedure is time-consuming
and error-prone, and it requires manual input from highly-specialized ex-
perts.

In recent years, a large number of alignment-free approaches to phy-
logeny reconstruction have been developed and applied, since these methods
are much faster than traditional, alignment-based phylogenetic methods, see
[50, 39, 3, 25] for recent review papers. Most alignment-free approaches are
based on k-mer statistics [21, 44, 7, 48, 17], but there are also approaches
based on the length of common substrings [47, 8, 27, 37, 32, 46], on word or
spaced-word matches [38, 33, 35, 34, 1, 41] or on so-called micro-alignments
[49, 20, 29, 28]. As has been mentioned by various authors, an additional ad-
vantage of many alignment-free methods is that they can be applied not only
to complete genome sequences, but also to unassembled reads. This way, the
time-consuming and unreliable genome-assembly procedure can be skipped.
Assembly-free approaches can be applied, in principle, to low-coverage se-
quencing data. While proper genome assembly requires a coverage of around
30 reads per position, assembly-free approaches have been shown to pro-
duce good results with far lower sequencing coverage. This makes the new
approach of genome skimming [12, 40, 10] possible, where low-coverage se-
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quencing data are used to identify species or bacterial strains, for example
in biodiversity studies [43] or in clinical applications [11, 5].

Alignment-free methods, including Co-phylog [49], Mash [35], Simka [2],
AAF [14] and Skmer [43], have been successfully applied to unassembled
reads. Co-phylog estimates distances using so-called micro alignments. In
benchmark studies, Co-phylog could produce trees of very high quality, pro-
vided the sequencing depth was 6X and higher. Similarly, the programs Mash
and Simka work on complete genomes as well as on unassembled reads. The
required sequencing depth for these programs is comparable to the depth
required by Co-phylog. The program AAF has been especially developed
for working with unassembled data, it filters single copy k-mers to balance
sequencing errors. This program produces accurate results and requires a
sequencing coverage of ≥ 5X.

In this paper, we introduce an alignment-free and assembly-free approach
to estimate evolutionary distances, that is based on our previously introduced
software Filtered Spaced-Word Matches (FSWM) [29]. FSWM is a fast per-
forming program for phylogeny reconstruction. It is based on gap-free local
micro-alignments, so-called spaced-word matches. Originally the program
was developed to estimate distances between genome sequences; there is
also an implementation of this approach called Prot-SpaM that can com-
pare whole-proteome sequences to each other [28]. In this work, we adapted
FSWM to take unassembled sequencing reads as input. Our program can
compare either a set of unassembled reads from one taxon to an assembled
genome of another taxon or two sets of unassembled reads to each other, each
set from one taxon. Using simulated reads, we show that this method can
accurately calculate distances between a complete genome and a set of reads
for coverages down to 2−5X. If two sets of reads are compared, the method
still works for coverages down to to 2−2X.

The paper is organized as follows: In the section 2, we shortly recapitu-
late how the program FSWM works, and we explain the modifications that
we implemented to use unassembled reads as input data. In section 3, the
benchmark setup and evaluation procedure are described. Section 4 describes
our benchmark results as well as details about choice and generation of data.
Finally, section 5 illustrates possible applications and explains how this work
can be continued and improved.
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S1 : T T A T G A C C A C T C
S2 : A C T A C G A T C G A
P : 1 1 0 0 1 0 1

Figure 1: Spaced-word match between two DNA sequences S1 and S2 with
respect to a binary pattern P = 1100101, representing match positions (‘1’)
and don’t-care positions (‘0’). The two segments have matching nucleotides
at all match positions of P but may mismatch a the don’t-care positions.

2 Estimating phylogenetic distances with

FSWM and Read-SpaM

For our approach, we first need to specify a binary pattern P of representing
match positions and don’t-care positions [26, 22]. Let ` be the length of the
pattern P . A spaced-word match between two DNA sequences with respect
to P is a pair of length-` segments, one segment from each of the sequences,
such that these segments have matching nucleotides at the match positions
of P . Mismatches are allowed at the don’t-care positions, see Fig. 1 for an
example. In other words, a spaced-word match is a gap-free local pairwise
alignment the length of P with matching nucleotides at the match positions
of P and possible mismatches elsewhere.

Our previously published program FSWM [29] estimates the Jukes-Cantor
distance [24] between two DNA sequences as follows: first all spaced-word
matches between the sequences are identified with respect to a pre-defined
pattern P . In order to distinguish spaced-word matches representing true
homologies from background spaced-word matches, a score is calculated for
each spaced-word match by summing up nucleotide substitution scores for
the pairs of nucleotides that are aligned at the don’t-care positions of P .
Here we use a substitution matrix that has been proposed by Chiaromonte
et al. [6]. Spaced-word matches with scores below some threshold value T
are discarded. The remaining (‘filtered’) spaced-word matches are then used
to estimate the distance between the sequences: The average number of
mismatches per position is calculated for all don’t-care positions of the non-
discarded spaced-word matches, and the Jukes-Cantor correction is used to
estimate the number of substitutions per position since the sequences have
evolved from their last common ancestor.
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In the present study, we adapted FSWM to compare unassembled reads
to each other or to assembled genomes. We call this implementation Read-
SpaM (for Read-based Spaced-Word Matches). There are two ways in which
Read-SpaM can be used: (1) a set of unassembled sequencing reads from one
taxon can be compared to a partially or fully assembled genome from another
taxon; (2) a set of reads from one taxon can be compared to a set of reads
from a second taxon. In both cases, all spaced-word matches between the
reads and the genomes or between the reads from the first taxon and the reads
from the second taxon are identified and used to estimate the Jukes-Cantor
distance between the two taxa as outlined above. To run on short sequencing
reads, we modified the length of the underlying binary patterns used in the
program. While the original FSWM uses by default a pattern length of 112
and 12 match positions, Read-SpaM uses by default patterns of length 72,
with 12 match positions, i.e. with 60 don’t-care positions. As in the original
FSWM, we are using the nucleotide substitution matrix by Chiaromonte et
al. [6] and a threshold value of T = 0. That is, we discard all spaced-word
matches for which the sum of the scores of the aligned nucleotides at the
60 don’t-care positions is smaller than 0. Read-SpaM takes FASTA-formatted
sequence files as input, one file per input taxon.

If we want to estimate phylogenetic distances from unassembled reads
as described above, we have to take sequencing errors into account. Studies
have shown that Illumina sequencing systems have error rates of 0.24±0.06%
per position [36]. Our software corrects for these errors before it calculates
distances between a set of reads and a genomes, or between two different sets
of reads.

3 Benchmark Setup

To evaluate our approach, we performed test runs on simulated reads, gen-
erated from real-world as well as from semi-artificial genome sequences. The
latter sequences were obtained from real genomes by simulating evolutionary
events. In both cases, the data were handled the same way. We started with
pairs of full genome sequences, either real or semi-artificial. Sets of simu-
lated reads with different coverage were then generated from these genome
sequences – either from one genome or from both of them – using the soft-
ware tool ART [23]. ART simulates next-generation sequencing reads, it can
generate reads from the three main commercial sequencing platforms with
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technology-specific read error models, including Illumina. In our test runs,
we used the Illumina HiSeq 2500 sequencing system, as it is still a widely
used system in the field. Further settings were chosen as follows: The highest
sequencing coverage in our study is 1X, and we reduced the coverage down
to 2−9X, by halving the coverage in each step. This way, we cold identify a
minimum coverage for which one can still obtain accurate distance estimates,
for a given evolutionary distance. The length of a single read is 150 bp, since
this is the standard length of reads produced by Illumina HiSeq 2500. ART
randomly selects positions of the genome sequences from which reads are
simulated. Therefore, the generated sets of reads can vary considerably. For
each pair of genomes and for each level of sequencing depth, we generated
10 sets of simulated reads.

The focus of this study is on bacterial genomes. We selected genomes of
different E. coli strains and generated two sets of test data. First, we gener-
ated pairs of genomes consisting of a single real-world genome and a second,
semi-artificial genome that we obtained by simulating nucleotide-acid sub-
stitutions, as well as insertions and deletions (indels). Indels were generated
randomly with a probability of 1% at every position in the genome; the length
of each indel was chosen randomly between 1 and 100, with a uniform prob-
ability distribution. Various substitution probabilities were used to generate
sequence pairs with simulated evolutionary distances between 0 and around
0.75 substitutions per position. As a second set of test data, we used pairs of
real-world genome sequences from different strains of E. coli. Generally, these
genome pairs were more closely related to each other than the semi-artificial
sequence pairs in the first data set. For the pairs of real-world genomes, the
evolutionary distances range from 0.003 to 0.023 substitutions per position.
For these pairs of real-world sequences, we used the phylogenetic distance
calculated by FSWM from the assembled genomes as a reference, and we
compared the distances obtained with Read-SpaM from simulated sequenc-
ing reads.

4 Test Results

4.1 Semi-artificial pairs of genomes

For the semi-artificial sequence pairs (one real genome, one artificial genome
obtained from the real genome by simulated evolution), we first applied Read-
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SpaM to estimate distances between assembled genomes and unassembled
reads. Here, we generated sets of reads with sequencing coverage between
1 and 10−9. As mentioned above, 10 sets of reads were generated for each
genome pair and level of sequencing coverage. In Fig. 2 and 3, the average
of the estimated distances is plotted against the real distance of the two
genomes for distance values between 0 and > 0.75 substitutions per position.
Standard deviations are represented as error bars.

Next, we used the same semi-artificial genome pairs as above, but we gen-
erated simulated reads for both genome sequences. The results for the com-
parison of unassembled reads from one genome against unassembled reads
from a second genome are shown in Fig. 4. For these test data, it was
not always possible to estimate distances with Read-SpaM, since for large
evolutionary distances and/or for low sequencing coverage, no spaced-word
matches with positive scores could be found. For a sequencing coverage val-
ues ≥ 2−3X, though, distances could be estimated for all data sets, i.e. up
to our maximal distance of around 0.75 substitutions per position.

4.2 Real-world genome pairs

In addition to the above test runs on semi-artificial genome sequences, we
used pairs of real genomes from different strains of E. coli. We compared the
distances obtained with Read-SpaM using unassembled reads to the distances
calculated by FSWM calculated from the corresponding assembled genomes.
Again, we first compared one assembled genome to a set of simulated reads
from a second genome; then we compared a set of reads from one genome
to a set of reads from another genome. The results of the test runs on
real genomes are shown in Fig.5 and 6: for each pair of genomes, distances
calculated between assembled genomes and unassembled reads are shown in
blue, while distances between unassembled reads from two different genomes
are shown in red.

4.3 Wolbachia Phylogeny

Next, we applied our approach to bacterial phylogeny analysis. Here, a
typical task is to find the position of a newly sequenced strain within a
known tree of strains for which the assembled genome sequences are already
available. As a test case, we used genome sequences of 13 Wolbachia strains
from the lineages (“supergroups”) A - D, In addition, we used 4 strains of

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/550632doi: bioRxiv preprint 

https://doi.org/10.1101/550632
http://creativecommons.org/licenses/by/4.0/


0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Reference distance

A
ve
ra
ge

of
ca
lc
u
la
te
d
d
is
ta
n
ce
s

cov 1 cov 2−1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Reference distance

A
ve
ra
ge

of
ca
lc
u
la
te
d
d
is
ta
n
ce
s

cov 2−2 cov 2−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Reference distance

A
ve
ra
ge

of
ca
lc
u
la
te
d
d
is
ta
n
ce
s

cov 2−4 cov 2−5

Figure 2: Phylogenetic distances, measured as substitutions per position,
between semi-artificial assembled genomes and unassembled reads (see main
text), estimated by Read-SpaM. Estimated distances are plotted against the
real distances for sequence coverage values between 1X and 10−5X.
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Figure 3: Distances between genomes and unassembled reads, plotted against
the real distances as in Fig. 4, for sequencing coverage values between 2−6X
and 2−9X.

closely related Alphaproteobacteria as outgroup. Wolbachia belong to the
Alphaproteobacteria and are intracellular endosymbionts of arthropods and
nematodes, see [19] for classification of Wolbachia. As a reference tree, we
used a tree published by [18].

We generated four sequence data sets, each set consisting of 12 genome
sequences from different Wolbachia strains, 4 genome sequences from the out-
group strains and a set of unassembled reads from a 13th Wolbachia strain
taken from [18]. We then applied Read-SpaM to estimate phylogenetic dis-
tances within each data set, and calculated trees from these distance matrices
with Neighbor-Joining [42] implementation from the PHYLIP package [15].

4.4 Runtime

As shown in Table 1. the runtime of Read-SpaM for comparing two strains
of E. coli is between 0.8 s and 3.4 s, depending on the level of sequencing
coverage. As a comparison, a run of FSWM on a data set of this size takes
around 6 s. As expected, read-read comparison is faster than genome-read
comparison, for each level of sequencing coverage. For both methods, the
runtime decreases heavily in the beginning but only small differences can be
found for a coverage below 2−4X.
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Figure 4: Distances estimated by Read-SpaM between sets of unassembled
reads from two semi-artificial genomes each, plotted against the real dis-
tances, for sequencing coverage values between 1X and 2−7X.

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/550632doi: bioRxiv preprint 

https://doi.org/10.1101/550632
http://creativecommons.org/licenses/by/4.0/


1 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9
0.000

0.010

0.020

0.030

Coverage

C
a
lc
u
la
te
d
d
is
ta
n
ce

Genome-Read Read-Read Reference distance

1 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9
0.000

0.020

0.040

0.060

Coverage

C
al
cu
la
te
d
d
is
ta
n
ce

Genome-Read Read-Read Reference distance

Figure 5: Test runs with E. coli strains B4Sb227 vs. BW2952 (top) and IAI1
vs. F2a2457T (bottom). As reference distances, we used the distances cal-
culated by FSWM based on the assembled genomes (horizontal black lines).
Distances estimated by Read-SpaM using unassembled simulated reads from
one strain and the assembled genome from a second strain are shown in blue;
distances estimated using unassembled reads from both strains are shown in
red. Reads were simulated with sequencing-coverage levels from 1X down to
2−9X.
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Figure 6: Test runs with E. coli ATCC8739 vs. ED1a (top) and SMS35 vs.
SE11 (bottom). Blue, red and black lines as in Fig. 5
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Figure 7: Phylogenetic trees for a set of 13 Wolbachia strains from super
groups A − D and 4 strains from the closely related alphaprotobacterial
genera Anaplasma and Ehrlichia as outgroup. For each tree, we used the full
genome sequences from 12 Wolbachia strains and the outgroup strains. For
the 13th Wolbachia strain, we used sets of unassembled sequencing reads.
The strain with the unassembled reads was wNFa (top) and wNFe (bottom).
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Figure 8: Phylogenetic trees for 17 bacterial strains, see Fig.7. Here, we
used unassembled reads from strains wNLeu (top) and wNPa (bottom) as
input sequences, for the respective other strains we used their full genome
sequences.
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Table 1: Runtime of Read-SpaM (in seconds) to estimate the distance bet wen
two strains of E. coli, by comparing an assembled genome to unassembled
reads and by comparing unassembled reads from both strains to each other,
for varying levels of sequencing coverage.

Coverage Genome vs. Read Read vs. Read
1 3.404 2.836

2−1 2.426 1.551
2−2 2.024 1.161
2−3 1.857 0.997
2−4 1.737 0.927
2−5 1.755 0.887
2−6 1.641 0.870
2−7 1.637 0.864
2−8 1.662 0.867
2−9 1.628 0.853

5 Discussion

In this paper, we introduced Read-SpaM, an adaption of our previously pub-
lished software Filtered Spaced Word Matches (FSWM) to estimate phylo-
genetic distances between sets of unassembled reads. We evaluated this ap-
proach on real and semi-artificial bacterial genomes with varying phylogenetic
distances and for varying levels of sequencing coverage.

Fig. 2 and 3 show that, if an assembled genome from one bacterial strain
is compared to unassembled reads from another strain, distances predicted
by Read-SpaM are fairly accurate, even for very low levels of sequencing cov-
erage and for large phylogenetic distances. For a sequencing coverage down
to 2−3X, phylogenetic distances predicted by Read-SpaM are accurate and
statistically stable for the whole range of distances that we tested, i.e. for up
to around 0.8 substitutions per position. For lower levels of sequencing cov-
erage, though, our results became less accurate and less stable for simulated
strains with large evolutionary distances. But even for a coverage of 2−9X
– the lowest coverage that we tested –, evolutionary distances predicted by
Read-SpaM were quite accurate and statistically stable for distances up to
around 0.5 substitutions per position.
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The distance estimates between sets of unassembled reads from two taxa
each are shown in Fig. 4. As can be expected, these results were not quite
as accurate as estimates between reads and assembled genomes. But still,
we obtained reasonably accurate and stable results for fairly large distances
and low levels of sequencing coverage. For a coverage of 2−3X, Read-SpaM
still produced accurate results for distances as large as 0.5 substitutions per
position, while for a coverage of 2−5X, the results were still accurate for
distances up to around 0.3 substitutions per position.

Our program evaluation shows that read-based estimation of phylogenetic
distances with Read-SpaM has a high potential. Our approach should be
particularly useful for phylogenetic distances below 0.6 substitutions per po-
sition, and if unassembled reads are to be compared to assembled genomes.
An important application is, for example, to search for the position of a
previously unknown species in an existing phylogenetic tree, the so-called
phylogenetic placement [31]. In this situation, low-pass sequencing can be
an attractive alternative to phylogenetic barcoding based on selected marker
genes [30, 13] to identify the phylogenetic position of an unknown species.
As read-to-read comparison with Read-Spam still produces reliable results for
sequencing coverage down to 2−3X, it is possible to estimate phylogenetic
distances between strains or species for which assembled genomes are not
available. We will continue to evaluate and apply our approach to further
explore its potential.
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nomics and the reconstruction of the tree of life. Nature Reviews Genet-
ics, 6:361–375, 2005.

[10] Dee R. Denver, Amanda M. V. Brown, Dana K. Howe, Amy B. Peetz,
and Inga A. Zasada. Genome Skimming: A rapid approach to gaining
diverse biological insights into multicellular pathogens. PLoS Pathogens,
12(8):e1005713, 2016.

[11] Ruud H. Deurenberg, Erik Bathoorn, Monika A. Chlebowicz, Natacha
Couto, Mithila Ferdous, Silvia Garćıa-Cobos, Anna M.D. Kooistra-
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