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Many developmental processes in biology utilize Notch-Delta signaling to construct an ordered
pattern of cellular differentiation. This signaling modality is based on nearest-neighbor contact, as
opposed to the more familiar mechanism driven by the release of diffusible ligands. Here, we show
that this “juxtracrine” property allows for an exact treatment of the pattern formation problem via
a system of nine coupled ordinary differential equations. Furthermore, we show that the possible
patterns that are realized can be analyzed by considering a co-dimension 2 pitchfork bifurcation of
this system. This analysis explains the observed prevalence of hexagonal patterns with high Delta
at their center, as opposed to those with central high Notch levels. Also, our theory suggests a
simple strategy for producing defect-free patterns.

Biological cells can exist in a number of distinct pheno-
types, even with a fixed genome. These phenotypes arise
via multi-stability of the underlying dynamical network
controlling cell behavior and allow cells to take on dif-
ferentiated roles in overall organism function. It is clear
that developmental processes must ensure that these phe-
notypes arise in the right place and at the right time, i.e.,
ensure the emergence of functional phenotypic patterns.

A well-studied case of such a system is that of Notch-
Delta signaling [1]. Various cells contain Notch trans-
membrane receptors [2] that couple to Notch ligands such
as Delta or Jagged on both the same cell (cis-coupling)
and neighboring cells (trans-coupling). Because of the
specific manner by which Notch and Delta mutually in-
hibit each other (see below), their interaction typically
leads to an alternating “salt and pepper” structure. This
type of patterning is seen in systems ranging from eyes [3]
and ears [4] to intestines [5] and livers [6]. As a general
rule, the high Delta cells are the most specialized ones
(for example, the photoreceptors [7]) and are surrounded
by less differentiated high Notch supporting cells in the
final structure. Parenthetically, changes in the transcrip-
tional regulation utilizing the Delta-alternative Jagged
ligand may be crucial for the role of Notch in cancer
metastasis [8, 9], but here we focus solely on Delta and
its interplay with Notch.

We study two aspects of the Notch-Delta system on
2d hexagonal arrays of cells. As will be seen below, this
geometry allows for an exact re-writing of the (ordered)
pattern-forming problem as a nine-dimensional dynami-
cal system; analysis of this system indicates that one can
understand central features of this system by expanding
about a co-dimension two pitchfork bifurcation. The sec-
ond aspect to be considered concerns mechanisms for or-
dered patterns to emerge from generic initial conditions.
Here we identify a possible role for an initiating wave,
similar to what has been seen in at least some biological

FIG. 1. Schematic showing Delta, Jagged and Notch-NICD
complexes on the cell membrane (I). Binding of Notch on one
cell to Delta on the other (II) leads to the freeing of the NICD,
(III), which in turns leads to the enhancement of Notch (IV)
and Jagged (V) (which is irrelevant for our current concerns)
and the suppression of Delta (VI).

realizations [10].
The Notch-Delta interaction is an example of jux-

tacrine (i.e., contact-dependent) signaling. As sketched
in Fig 1, Notch ligands such as Delta bind receptors and,
when this occurs between neighboring cells, leads to the
cleavage of the receptor and release of its intracellular do-
main (NICD). This molecule translocates to the nucleus
where it transcriptionally up-regulates Notch and down-
regulates Delta. The ligand-receptor interaction between
molecules on the same cell leads to mutual annihilation
with no NICD release [11]. The combination of this cis-
annihilation and the transcriptional repression is respon-
sible for the observed lateral repression [12]. We will use
a baseline model [13] of this process involving three con-
centrations, N (receptor), D (ligand) and I (NICD),

Ṅx = λNH+(Ix)−Nx

(
kcDx + ktD

ext
x

)
− γNx

Ḋx = λDH−(Ix)−Dx

(
kcNx + ktN

ext
x

)
− γDx

İx = ktNxD
ext
x − γIIx (1)

Here positions x refer to locations on a unit hexagonal
lattice (see Fig 2) and the superscript ”ext” refers the
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average over the six nearest neighbor sites of x. The pro-
duction terms H± corresponding to the aforementioned
transcriptional regulation are taken to be Hill functions,

H+(I) = 1 +
kHI

n+

I
n+ + s

n+

0

H−(I) =
s
n−
0

I
n− + s

n−
0

(2)

such that H±(0) = 1 and H+ is an increasing function
that saturates at 1+kH , whileH− is a decreasing function
that decays to 0 with increasing I. We define a typical
set of parameters taken from the literature: γ = 0.1.
γI = 0.5, n+ = n− = 2, kc = 0.1, kt = 0.04, kH = 1,
s0 = 1, and focus on the role of λN and λD.

We first consider ordered patterns; i.e., patterns that
are invariant under translational invariance with vectors
±2x̂, ±x̂ ±

√
3ŷ. From Fig. 2, it is clear that the fields

everywhere are completely determined by their values on
three sub-lattices that we have labeled A, B and C. This
means that the entire problem is reduced to nine cou-
pled ODE’s. This is very different than what occurs for
more traditional pattern formation problems, [14] for ex-
ample for convection rolls [15], where the reduction to
a set of ODE’s is valid only as an approximation near
the bifurcation point. It is easy to show that at fixed
λN , the uniform solution with the fields taking on the
same values on all three sublattices becomes unstable for
λD > λUD(λN ) via a transcritical bifurcation, i.e. an in-
tersection with a different nonuniform solution. On this
branch, the respective values of the fields on two sublat-
tices (say B and C) values are identical, differing from
the values on the remaining (in this case, A) sublattice.
This hexagonally structured solution has a 6-fold hexag-
onal symmetry about any site on the different (here, A)
sublattice. The bifurcation is transcritical because of the
lack of any symmetry between positive and negative de-
viations of the fields from their uniform values.

However, direct numerical solution of the ODE sys-
tem show that there is a critical value of λN = λPF

N =
2.7582488 for which, due to an accidental symmetry, the
hexagonally structured solution, rather than existing on
either side of λUD, instead becomes a pair of solutions ex-
isting only for λD greater than λUD, via a forward pitch-
fork bifurcation. Specifically, for λPF

N , as for general λN ,
only the uniform solution exists for λD < λUD and it is sta-
ble. At λUD = 1.93112, two additional solutions are born,
one a “hexagon” (by definition, a solution where high
D is surrounded by high N) and one an “anti-hexagon”
(high N surrounded by high D). As opposed to general
supercritical pitchforks, the stability of these solutions is
unusual. Specifically, it can directly be shown in the 9-
dimensional reduced system that the uniform state has
2 (degenerate) unstable modes above the critical λD. As
we will discuss below, the emerging hexagon branch is
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FIG. 2. Hexagonal lattice showing the three hexagonal sub-
lattices, where each A cell is surrounded by 3 B and 3 C cells,
each B by 3 A and 3 C, and each C by 3 A and 3 B.
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FIG. 3. Bifurcation diagram for the critical λPF
N = 2.7582488

for which there is a pitchfork bifurcation.

stable, whereas the anti-hexagon has one unstable mode.
The instability is to a mixed mode (defined as a mode
with all three sublattices having different values) which
converts the anti-hexagon to a shifted hexagon.

At all other values of λN , the pitchfork breaks up into
a transcritical bifurcation and a saddle-node. Again by
direct numerical solution, we find that for λN > λPF

N ,
the uniform solution undergoes a transcritical bifurca-
tion with a unstable (to a mixed-mode perturbation)
anti-hexagon on the high λD side and an unstable (pure-
mode) hexagon on the low λD side. The unstable
hexagon then undergoes a saddle-node bifurcation, ren-
dering the hexagon stable; this stable branch then contin-
ues on as λD increases. For λD smaller than the saddle-
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FIG. 4. Imperfect bifurcation for 3.5 = λN > λPF
N .

FIG. 5. A stable hexagon solution for λN = 3.5, λD = 2.3.

node value, no (anti)hexagon exists. Hence, there exists
a range of parameters for which a stable hexagon coexists
with the stable uniform solution, a range which widens
as λN increases; we will return to this point below. For
example, for λN = 3.5, the transcritical bifurcation in
which the uniform state goes unstable is at λD = 2.11356,
whereas the saddle node bifurcation is at λD = 2.1097.
An example of a stable hexagon solution for λN = 3.5,
λD = 2.3 is shown in Fig. .

A similar thing happens for λN < λPF
N , where now

the stable hexagon lies to the right of the transcritical
point and the unstable anti-hexagon lies to the left, and
it is the one that undergoes a saddle-node bifurcation.
The anti-hexagon is born with 1 unstable mode at the
transcritical point and turns stable at the saddle-node
bifurcation. However, unlike what happened in the pre-
vious case, the stable anti-hexagon branch loses stabil-
ity to a mixed-mode perturbation; this instability leads
to a pitchfork bifurcation, which is a result of the B/C
symmetry breaking. The hexagon, on the other hand,
is born with one unstable mode and subsequently be-
comes stable, also as a result of a mixed-mode pitchfork
bifurcation. The mixed-mode solution branch arising
from the hexagon bifurcation is the same solution which
arises from the anti-hexagon bifurcation. For example,
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FIG. 6. Bifurcation diagram for 3.5 = λN < λPF
N .

at λN = 2, the hexagon becomes stable at λD = 2.0477
and the anti-hexagon becomes unstable at λD = 2.056.
Thus, there is a very small coexistence region between the
hexagon and anti-hexagon solutions. Again, the only so-
lution that survives stably to higher values of λD is the
hexagon. This is in accord with the general rule given
above that the high Delta cells are surrounded by high
Notch cells sufficiently far from λPF

N and its associated
λUD.

We can use weakly non-linear bifurcation theory to
make sense of these numerical findings. First, we con-
sider parameter values away from the PF. As there are
two zero modes of the uniform state at the bifurcation,
there are two undetermined coefficients of the first order
expansion in ε ≡ λD−λUD, which we take to be N

(1)
B and

N
(1)
C , the first order shifts in NB and NC from the uni-

form solution for the shifted λD. These will be fixed by
higher-order terms, all of whose coefficients can be deter-
mined numerically. Doing the analysis for λN = 2.5, for
example, where λcD = 1.86169, we find to second order
the steady-state equations

0 = 2αN
(1)
B + αN

(1)
C − 2βN

(1)
B N

(1)
C − β(N

(1)
C )2

0 = 2αN
(1)
C + αN

(1)
B − 2βN

(1)
B N

(1)
C − β(N

(1)
B )2 (3)

with α = 0.0720107, β = 0.000531444 and the shift in

NA, N
(1)
A = −N (1)

B −N
(1)
C . This system has four solutions

{0, 0}, {α/β, α/β}, {−2α/β, α/β}, {α/β,−2α/β}

The first of these corresponds, of course, to the uniform
solution, the second to the hexagon centered at A, the
third to the hexagon centered at B and the last to the
hexagon centered at C. The last three solutions are in-
deed hexagons for ε > 0 and antihexagons for ε < 0,
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since the shift in N at the central point is −2α/β < 0,
i.e. a decrease in N , corresponding to an increase in D
at the center, which defines the hexagon. At λN = λPF

N ,
β vanishes, and we have to go to third order, and for
λN > λPF

N , β < 0 and we have hexagons for ε < 0 and
antihexagons for ε > 0. From here, we also can retrieve
the stability of the solutions. The stability matrix is

M =

(
2α− 2βN

(1)
C α− 2β(N

(1)
B +N

(1)
C )

α− 2β(N
(1)
B +N

(1)
C ) 2α− 2βN

(1)
B

)

For the uniform and A-centered hexagon, where N
(1)
B =

N
(1)
C , the growth rates are then

Ω/ε = 2α− 2βN
(1)
B ± (α− 2βN

(1)
B ) = {3α− 4βN

(1)
B , α}

Thus, the uniform solution is twice unstable for ε > 0,
whereas the hexagon has one unstable mode, as we found
in the numerics. To this order, the saddle-node and the
branch emerging from it are not accessible.

To see the complete structure, we consider λN = λPF
N +

δ. Here we have an imperfect bifurcation whose width
in λD around the critical point is of order δ2, so that
λD = λcD + εδ2. The critical point is at

λUD ≈ 1.93112 + 0.262745δ− 0.023616δ2 + 0.000676231δ3

so that λUD increases with λN , as we have already seen.
Expanding to third order in δ, we get the full amplitude
equation

0 = 2αN
(1)
B + αN

(1)
C − β

(
2N

(1)
B N

(1)
C + (N

(1)
C )2

)
−

γ
(

2(N
(1)
B )3 + 3(N

(1)
B )2N

(1)
C + 3N

(1)
B (N

(1)
C )2 + (N

(1)
C )3

)
0 = 2αN

(1)
C + αN

(1)
B − β

(
2N

(1)
B N

(1)
C + (N

(1)
B )2

)
−

γ
(

2(N
(1)
C )3 + 3(N

(1)
C )2N

(1)
B + 3N

(1)
C (N

(1)
B )2 + (N

(1)
B )3

)
with α = 0.064360ε, β = 0.00166348 and γ = 0.00044397.

To find the solutions of this system, we write N
(1)
C =

pN
(1)
B = px. Then, the system reads

0 = (2 + p)x(α− βpx− γx2(1 + p+ p2))

0 = (2p+ 1)x(α− βx− γx2(1 + p+ p2)) (4)

Thus, one of the factors must vanish in each of the equa-
tions. The first possible solution is clearly x = 0. The
second solution is obtained when the last factors of both
equations vanish. In this case, subtracting the two factors
gives p = 1, in which case both equations are identical,
and

x =
−β ±

√
β2 + 12αγ

6γ
(5)

These two solutions correspond to the hexagon and an-
tihexagon centered at A, emerging from the saddle-node

at α = −(12γ)−1. Another solution is given by p = −2,
so that the first factor of the first equation vanishes, and
the setting the last factor of the second equation to zero
yields again

x =
−β ±

√
β2 + 12αγ

6γ
(6)

These are the hexagon and antihexagon centered at C.
The last possibility is to choose p = −1/2 and set the last
factor of the first equation to zero, so that once again

x =
β ±

√
β2 + 12αγ

3γ
, (7)

corresponding to the hexagon and antihexagon centered
at B. We can now check the stabilities in an analogous
manner and reproduce all aspects of the figures given
above aside from the aforementioned mixed-mode insta-
bility. This latter structure is only visible perturbatively
extremely close to λPF

N , and requires a yet higher-order
calculation.

The existence of stable ordered hexagon patterns leaves
open the question of how these patterns can be generated
in the inevitably noisy biological system with plausible
initial conditions [16, 17]. In particular, it is easy to
check numerically that, starting with no pattern for a set
of parameters for which the uniform state is linearly un-
stable, the presence of noise, either in the initial data or
in the time evolution, will lead to disordered states with
many domain boundaries between hexagon patterns cen-
tered on different sublattices. One way out is based on
the fact we have shown above that there could exist a
parameter range for which there is a subcritical bifurca-
tion to stable hexagons in which case a local perturba-
tion which nucleates the pattern can spread in an ordered
manner; this is, of course, a standard scenario in many
non-living systems [14]. Intuitively, we believe that most
biological systems exhibit insufficient parameter control
and too high a level of stochasticity for this to be a robust
strategy. There of course could be more exotic biological
mechanisms that for example would provide downstream
checks that prevent neighboring cells from both develop-
ing the same phenotype even if there is some initial defect
in the Notch-Delta structure [18].

A more physics-based possibility is that the system
is not all at once put into the unstable state. Rather,
the system is initially in a regime of parameter space for
which the uniform state is stable. Then some external
mechanism induces a propagating wave, behind which
the parameters are in the unstable region. To exhibit
this possibility, we assume that only λD is affected by
this wave, and λD = 2 ahead of the wave and λD = 3.5
behind the wave. We do not concern ourselves here with
the origins or dynamics of this initiation wave, and rather
choose a standard tanh waveform, and vary the wave
speed v. In this regard, our suggestion differs from that of
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Ref. [[19, 20]], who start with a bistable system with two
uniform states - in our proposal, the bistable dynamics
is not intrinsically related to the Notch-Delta dynamics.
In Fig. 7, we show a pair of simulations of our model
augmented by quenched noise. At large v, the parameter
shift is essentially instantaneous over a large spatial re-
gion and the noise nucleates incommensurate patterns in
different parts of the lattice, leading to obvious defects.
If the parameter wave is slowed down, the leading edge
of the pattern has sufficient time to align itself with the
preceding row before having to itself act as a template for
the next row. In some sense, of course, all we have done
is transfer the problem to one of creating a bistable sys-
tem responsible for the parameter dependence. But, we
assert that this is relatively easy to accomplish and that
decoupling the patterning aspect from the bistable aspect
(i.e., the Notch system is not bistable at the physiologi-
cal parameters) is a robust approach to the elimination
of defects.

In conclusion, we have shown how the presence of a
pitchfork bifurcation value λPF

N organizes the high-Delta
centered hexagon pattern as well as the high-Notch cen-
tered antihexagon pattern and guarantees that the for-
mer is the generic stable structure. Futhermore, we have
seen that creating a perfect pattern is a significant chal-
lenge in the vast majority of parameter space where the
transition from the uniform state to the patterned state
is second order. Lastly, we demonstrated that coupling
a parameter to an initiation wave could provide a way to
meet this challenge.
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FIG. 7. The pattern (of D, the patterns of N and I are similar) created by an initiation wave raising λD from its initial value
of 2 to a final value of 3.5. Left panel: The system before the arrival of the wave. Note the perturbation at the edges due to
the absence of cells beyond the shown region. The bulk variation in D is caused by a quenched 1 percent Gaussian variation in
kt from cell to cell. Middle panel: The ordered pattern resulting from a slow (v = 0.015 cells/s) initiation wave arriving from
the bottom of the system. Right panel: The multi-domain structure resulting from a fast (v = 0.075 cells/s) initiation wave
arriving from the bottom of the system. Notice the different colormap for D than in Fig. 5, to better highlight the defects.
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