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ABSTRACT8

The high mapping resolution of multiparental populations, combined with technology to measure tens of thousands of pheno-

types, presents a need for quantitative methods to enhance understanding of the genetic architecture of complex traits. When

multiple traits map to a common genomic region, knowledge of the number of distinct loci provides important insight into the

underlying mechanism and can assist planning for subsequent experiments. We extend the method of Jiang and Zeng (1995),

for testing pleiotropy with a pair of traits, to the case of more than two alleles. We also incorporate polygenic random effects to

account for population structure. We use a parametric bootstrap to determine statistical significance. We apply our methods

to a behavioral genetics data set from Diversity Outbred mice, where we find evidence for presence of two distinct loci in a

2.5 cM region. Our methods have been incorporated into the R package qtl2pleio.
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20 Complex trait studies in multiparental populations present new challenges in statistical methods21

and data analysis. Among these is the development of strategies for multivariate trait analysis. The22

joint analysis of two or more traits allows one to address additional questions, such as whether two23

traits share a single pleiotropic locus.24

Previous research addressed the question of pleiotropy vs. separate QTL in two-parent crosses.25

Jiang and Zeng (1995) developed a likelihood ratio test for pleiotropy vs. separate QTL for a pair26

of traits. Their approach assumed that each trait was affected by a single QTL. Under the null27

hypothesis, the two traits were affected by a common QTL, and under the alternative hypothesis the28

two traits were affected by distinct QTL. Knott and Haley (2000) used linear regression to develop29

a fast approximation to the test of Jiang and Zeng (1995), while Tian et al. (2016) used the methods30

from Knott and Haley (2000) to dissect QTL hotspots in a F2 population.31

Multiparental populations, such as the Diversity Outbred (DO)mouse population (Churchill et al.32

2012), enable high-precision mapping of complex traits (de Koning and McIntyre 2014). The DO33

mouse population began with progenitors of the Collaborative Cross (CC) mice (Churchill et al.34

2004) Each DO mouse is a highly heterozygous genetic mosaic of alleles from the eight CC founder35

lines. Random matings among non-siblings have maintained the DO population for more than 2336

generations (Chesler et al. 2016).37

Several limitations of previous pleiotropy vs. separate QTL tests prevent their direct application38

in multiparental populations. First, multiparental populations can have complex patterns of relat-39

edness among subjects, and failure to account for these patterns of relatedness may lead to spurious40

results (Yang et al. 2014). Second, previous tests allowed for only two founder lines (Jiang and Zeng41
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1995). Finally, Jiang and Zeng (1995) assumed that the null distribution of the test statistic follows a42

chi-square distribution.43

We developed a pleiotropy vs. separate QTL test for two traits in multiparental populations. Our44

test builds on research that Jiang and Zeng (1995), Knott and Haley (2000), Tian et al. (2016), and45

Zhou and Stephens (2014) initiated. Our innovations include the accommodation of k founder alle-46

les per locus (compared to the traditional two founder alleles per locus) and the incorporation of47

multivariate polygenic random effects to account for relatedness. Furthermore, we implemented a48

parametric bootstrap test to assess statistical significance (Efron 1979; Tian et al. 2016).49

Below, we describe our likelihood ratio test for pleiotropy vs. separate QTL. In simulation studies,50

we find that it is slightly conservative, and that it has power to detect two separate loci when the51

univariate LOD peaks are strong. We further illustrate our approach with an application to data on52

a pair of behavior traits in a population of 261 DO mice (Logan et al. 2013; Recla et al. 2014). We find53

modest evidence for distinct QTL in a 2.5-cM region on mouse Chromosome 8.54

Methods55

Our strategy involves first identifying two traits that map to a common genomic region. We then per-56

form a two-dimensional, two-QTL scan over the genomic region, with each trait affected by one QTL57

of varying position. We identify the QTL position that maximizes the likelihood under pleiotropy58

(that is, along the diagonal where the two QTL are at a common location), and the ordered pair of59

positions that maximizes the likelihood under the model where the two QTL are allowed to be dis-60

tinct. The logarithm of the ratio of the two likelihoods is our test statistic. We determine statistical61

significance with a parametric bootstrap.62

Data structures63

The data consist of three objects. The first is an n by k by m array of allele probabilities for n subjects64

with k alleles and m marker positions on a single chromosome [derived from the observed SNP65

genotype data by a hidden Markov model; see Broman et al. (2019)]. The second object is an n by 266

matrix of phenotype values. Each column is a phenotype and each row is a subject. The third object67

is an n by c matrix of covariates, where each row is a subject and each column is a covariate.68

One additional object is the genotype-derived kinship matrix, which is used in the linear mixed69

model to account for population structure. We are focusing on a defined genomic interval, and70

we prefer to use a kinship matrix derived by the “leave one chromosome out” (LOCO) method71

(Yang et al. 2014), in which the kinship matrix is derived from the genotypes for all chromosomes72

except the chromosome under test.73

Statistical Models74

Focusing on a pair of traits and a particular genomic region of interest, the next step is a two-75

dimensional, two-QTL scan (Jiang and Zeng 1995). We consider two QTL with each affecting a76

different trait, and consider all possible pairs of locations for the two QTL. For each pair of posi-77

tions, we fit the multivariate linear mixed effects model defined in Equation 1. Note that we have78

assumed an additive genetic model throughout our analyses, but extensions to design matrices that79

include dominance are straightforward.80

vec(Y) = Xvec(B) + vec(G) + vec(E) (1)

where Y is the n by 2 matrix of phenotypes values; X is a 2n by 2(k + c) matrix that contains the k81

allele probabilities for the two QTL positions and the c covariates in diagonal blocks; B is a (k + c)82
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by 2 matrix of allele effects and covariate effects; G is a n by 2 matrix of random effects; and E is a83

n by 2 matrix of random errors. n is the number of mice. The ‘vec’ operator stacks columns from84

a matrix into a single vector. For example, a 2 by 2 matrix inputted to ‘vec’ results in a vector with85

length 4. Its first two entries are the matrix’s first column, while the third and fourth entries are the86

matrix’s second column.87

We also impose distributional assumptions on G and E:88

G ∼ MNnx2(0, K, Vg) (2)

and89

E ∼ MNnx2(0, I, Ve) (3)

where MNnx2(0, Vr, Vc) denotes the matrix-variate (n by 2) normal distribution with mean being the90

n by 2 matrix with all zero entries and row covariance Vr and column covariance Vc. We assume91

that G and E are independent.92

Parameter inference and log likelihood calculation93

Inference for parameters in multivariate linear mixed effects models is notoriously difficult and94

can be computationally intense (Meyer 1989, 1991). Thus, we estimate Vg and Ve under the null95

hypothesis of no QTL, and then take them as fixed and known in our two-dimensional, two-QTL96

genome scan. We use restricted maximum likelihood methods to fit the model:97

vec(Y) = X0vec(B) + vec(G) + vec(E) (4)

where X0 is a 2n by 2(c + 1) matrix whose first column of each diagonal block in X0 has all entries98

equal to one (for an intercept); the remaining columns are the covariates.99

We draw on our R implementation (Boehm 2018) of the GEMMA algorithm for fitting a multivari-100

ate linear mixed effects model with expectation-maximization (Zhou and Stephens 2014). We use101

restricted maximum likelihood fits for the variance components Vg and Ve in subsequent calcula-102

tions of the generalized least squares solution B̂.103

B̂ = (XT
Σ̂
−1X)−1XT

Σ̂
−1vec(Y) (5)

where104

Σ̂ = V̂g ⊗ K + V̂e ⊗ In (6)

where ⊗ denotes the Kronecker product, K is the kinship matrix, and In is a n by n identity matrix.105

We then calculate the log likelihood for a normal distribution with mean Xvec(B̂) and covariance Σ̂106

that depends on our estimates of Vg and Ve (Equation 6).107

Pleiotropy vs. separate QTL hypothesis testing framework108

Our test applies to two traits considered simultaneously. Below, λ1 and λ2 denote putative locus109

positions for traits one and two. We quantitatively state the competing hypotheses for our test as:110

H0 : λ1 = λ2

HA : λ1 6= λ2 (7)
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Our likelihood ratio test statistic is:111

LOD = log10

[

maxλ1,λ2
L(B, Σ, λ1, λ2)

maxλ L(B, Σ, λ, λ)

]

(8)

where L is the likelihood for fixed QTL positions, maximized over all other parameters.112

Visualizing profile LOD traces113

The output of the above analysis is a two-dimensional log10 likelihood surface. To visualize these114

results, we followed an innovation of Zeng et al. (2000) and Tian et al. (2016), and plot three traces:115

the results along the diagonal (corresponding to the null hypothesis of pleiotropy), and then the116

profiles derived by fixing one QTL’s position and maximizing over the other QTL’s position.117

We define the LOD score for our test:118

LOD(λ1, λ2) = ll10(λ1, λ2)− max ll10(λ, λ) (9)

where ll10 denotes log10 likelihood.119

We follow Zeng et al. (2000) and Tian et al. (2016) in defining profile LOD by the equation120

profile LOD1(λ1) = max
λ2

LOD(λ1, λ2) (10)

We define profile LOD2(λ2) analogously. The profile LOD1 and profile LOD2 traces have the same121

maximum value, which is non-negative and gives the overall LOD test statistic.122

We construct the pleiotropy trace by calculating the log-likelihoods for the pleiotropic models at123

every position.124

LODp(λ) = ll10(λ, λ)− max ll10(λ, λ) (11)

By definition, the maximum value for this pleiotropy trace is zero.125

Bootstrap for test statistic calibration126

We use a parametric bootstrap to determine statistical significance (Efron 1979). While Jiang and Zeng127

(1995) used quantiles of a chi-squared distribution to determine p-values, this does not account128

for the two-dimensional search over QTL positions. We follow the approach of Tian et al. (2016),129

and identify the maximum likelihood estimate of the QTL position under the null hypothesis of130

pleiotropy. We then use the inferred model parameters under that model and with the QTL at that131

position to simulate bootstrap data sets according to the model in equations 1–3. For each of b boot-132

strap data sets, we perform a two-dimensional QTL scan (over the genomic region of interest) and133

derive the test statistic value. We treat these b test statistics as the empirical null distribution, and134

calculate a p-value as the proportion of the b bootstrap test statistics that equal or exceed the ob-135

served one, with the original data, p = #{i : LOD∗
i ≥ LOD}/b where LOD∗

i denotes the LOD score136

for the ith bootstrap replicate and LOD is the observed test statistic.137

Data & Software Availability138

Our methods have been implemented in an R package, qtl2pleio, available at GitHub:139

https://github.com/fboehm/qtl2pleio140

Custom R code for our analyses and simulations are at GitHub:141

https://github.com/fboehm/qt2pleio-manuscript142

The data from Recla et al. (2014) and Logan et al. (2013) are available at the Mouse Phenome Database:143
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Table 1 Type I error rates for all runs in our 23 experimental design. We set (marginal) genetic vari-
ances (i.e., diagonal elements of Vg) to 1 in all runs. Ve was set to the 2 by 2 identity matrix in all
runs. We used allele probabilities at a single genetic marker to simulate traits for all eight sets of
parameter inputs. In the column “Allele effects partitioning”, “ABCD:EFGH” means that lines A–
D carry one QTL allele while lines E–H carry the other allele. “F:ABCDEGH” means the QTL has a
private allele in strain F.

Run ∆(Allele effects) Allele effects partitioning Genetic correlation Type I error rate

1 6 ABCD:EFGH 0 0.032

2 6 ABCD:EFGH 0.6 0.035

3 6 F:ABCDEGH 0 0.040

4 6 F:ABCDEGH 0.6 0.045

5 12 ABCD:EFGH 0 0.038

6 12 ABCD:EFGH 0.6 0.042

7 12 F:ABCDEGH 0 0.025

8 12 F:ABCDEGH 0.6 0.025

https://phenome.jax.org/projects/Chesler4 and https://phenome.jax.org/projects/Recla1.144

They are also available in R/qtl2 format at https://github.com/rqtl/qtl2data.145

Simulation studies146

We performed two types of simulation studies, one for type I error rate assessment and one to147

characterize the power to detect separate QTL. To simulate traits, we specified X, B, Vg, K, and Ve148

matrices (Equations 1–3). For both we used the allele probabilities from a single genomic region149

derived empirically from data for a set of 479 Diversity Outbred mice from Keller et al. (2018).150

Type I error rate analysis151

To quantify type I error rate (i.e., false positive rate), we simulated 400 pairs of traits for each of eight152

sets of parameter inputs (Table 1). We used a 23 factorial experimental design with three factors:153

allele effects difference, allele effects partitioning, and genetic correlation, i.e., the off-diagonal entry154

in the 2 by 2 matrix Vg.155

We chose two strong allele effects difference values, 6 and 12. These ensured that the univariate156

phenotypes mapped with high LOD scores to the region of interest. For the allele partitioning factor,157

we used either equally frequent QTL alleles, or a private allele in the CAST strain (F). For the residual158

genetic correlation (the off-diagonal entry in Vg), we considered the values 0 and 0.6. The marginal159

genetic variances (i.e., the diagonal entries in Vg) for each trait were always set to one.160

We performed 400 simulation replicates per set of parameter inputs, and each used b = 400161

bootstrap samples. For each bootstrap sample, we calculated the test statistic (Equation 8). We162

then compared the test statistic from the simulated trait against the empirical distribution of its 400163

bootstrap test statistics. When the simulated trait’s test statistic exceeded the 0.95 quantile of the164

empirical distribution of bootstrap test statistics, we rejected the null hypothesis. We observed that165
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Figure 1 Pleiotropy vs. separate QTL power curves for each of four sets of parameter settings. Fac-
tors that differ among the four curves are allele effects difference and allele partitioning. Red de-
notes high allele effects difference, while black is the low allele effects difference. Solid line denotes
the even allele partitioning (ABCD:EFGH), while dashed line denotes the uneven allele partition-
ing (F:ABCDEGH).

the test is slightly conservative over our range of parameter selections (Table 1), with estimated type166

I error rates < 0.05.167

Power analysis168

We also investigated the power to detect the presence of two distinct QTL. We used a 2 × 2 × 5169

experimental design, where our three factors were allele effects difference, allele effects partitioning,170

and inter-locus distance. The two levels of allele effects difference were 1 and 2. The two levels of171

allele effects partitioning were as in the type I error rate studies, ABCD:EFGH and F:ABCDEGH172

(Table S1). The five levels of interlocus distance were 0, 0.5, 1, 2, and 3 cM. Vg and Ve were both set173

to the 2 by 2 identity matrix in all power study simulations.174

We simulated 400 pairs of traits per set of parameter inputs. For each simulation replicate, we175

calculated the likelihood ratio test statistic. We then applied our parametric bootstrap to determine176

the statistical significance of the results. For each simulation replicate, we used b = 400 bootstrap177

samples. Because the bootstrap test statistics within a single set of parameter inputs followed ap-178

proximately the same distribution, we pooled the 400 ∗ 400 = 160, 000 bootstrap samples per set179

of parameter inputs and compared each test statistic to the empirical distribution derived from the180

160,000 bootstrap samples. However, for parameter inputs with interlocus distance equal to zero,181

we did not pool the 160,000 bootstrap samples; instead, we proceeded by calculating power (i.e.,182

type I error rate, in this case), as we did in the type I error rate study above.183

We present our power study results in Figure 1. Power increases as interlocus distance increases.184

The top two curves correspond to the case where the QTL effects are largest. For each value for the185
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QTL effect, power is greater when the QTL alleles are equally frequent, and smaller when a QTL186

allele is private to one strain. One can have high power to detect that the two traits have distinct187

QTL when they are separated by > 1 cM and when the QTL have large effect.188

Application189

To illustrate our methods, we applied our test to data from Logan et al. (2013) and Recla et al. (2014),190

on 261 DO mice measured for a set of behavioral phenotypes. Recla et al. (2014) identified Hydin as191

the gene that underlies a QTL on Chromosome 8 at 57 cM for the “hot plate latency” phenotype (a192

measure of pain tolerance). The phenotype “percent time in light” in a light-dark box (a measure193

of anxiety) was measured on the same set of mice (Logan et al. 2013) and also shows a QTL near194

this location, which led us to ask whether the same locus affects both traits. The two traits show a195

correlation of −0.15 (Figure S1).196

QTL analysis with the LOCO method, and using sex as an additive covariate, showed multiple197

suggestive QTL for each phenotype (Figure S2; Table S2). For our investigation of pleiotropy, we198

focused on the interval 53–64 cM on Chromosome 8. The univariate QTL results for this region are199

shown in Figure 2.200

The estimated QTL allele effects for the two traits are quite different (Figure 3). With the QTL201

placed at 55 cM, for “percent time in light”, the WSB and PWK alleles are associated with large202

phenotypes and NOD with low phenotypes. For “hot plate latency”, on the other hand, CAST and203

NZO show low phenotypes and NOD and PWK are near the center.204

In applying our test for pleiotropy, we performed a two-dimensional, two-QTL scan for the pair205

of phenotypes. With these results, we created a profile LOD plot (Figure 4). The profile LOD for206

“percent time in light” (in brown) peaks near 55 cM, as was seen in the univariate analysis. The207

profile LOD for “hot plate latency” (in blue) peaks near 57 cM, also similar to the univariate analysis.208

The pleiotropy trace (in gray) peaks near 55 cM.209

The likelihood ratio test statistic for the test of pleiotropy was 1.2. Based on a parametric bootstrap210

with 1,000 bootstrap replicates, the estimated p-value was 0.11, indicating weak evidence for distinct211

QTL for the two traits.212

Discussion213

We developed a test of pleiotropy vs. separate QTL for multiparental populations, extending the214

work of Jiang and Zeng (1995) for multiple alleles and with a linear mixed model to account for215

population structure (Kang et al. 2010; Yang et al. 2014). Our simulation studies indicate that the test216

has power to detect presence of separate loci, especially when univariate trait associations are strong217

(Figure 1). Type I error rates indicate that our test is slightly conservative (Table 1).218

In the application of our method to two behavioral phenotypes in a study of 261 Diversity Out-219

bred mice (Recla et al. 2014; Logan et al. 2013), we obtained weak evidence (p=0.11) for the presence220

of two distinct QTL, with one QTL (which contained the Hydin gene) affecting only “hot plate la-221

tency” and a second QTL affecting “percent time in light” (Figure 4).222

Founder allele effects plots provide further evidence for the presence of two distinct loci. As223

Macdonald and Long (2007) and King et al. (2012) have demonstrated in their analyses of multi-224

parental Drosophila populations, a biallelic pleiotropic QTL would result in allele effects plots that225

have similar patterns. While we do not know that “percent time in light” and “hot plate latency”226

arise from biallelic QTL, the dramatic differences that we observe in allele effects patterns further227

support the argument for two distinct loci.228
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Figure 2 Chromosome 8 univariate LOD scores for percent time in light and hot plate latency re-
veal broad, overlapping peaks between 53 cM and 64 cM. The peak for percent time in light spans
the region from approximately 53 cM to 60 cM, with a maximum near 55 cM. The peak for hot
plate latency begins near 56 cM and ends about 64 cM.

8 Boehm et al.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/550939doi: bioRxiv preprint 

https://doi.org/10.1101/550939
http://creativecommons.org/licenses/by/4.0/


percent time in light

50 55 60 65 70

3.0

3.5

4.0

Chr 8 position

Q
T

L
 e

ff
e

c
ts

AJ

B6

129

NOD

NZO

CAST

PWK

WSB

hot plate latency

50 55 60 65 70

1.6

1.8

2.0

2.2

Chr 8 position

Q
T

L
 e

ff
e

c
ts

Figure 3 Chromosome 8 univariate LOD scores for percent time in light and hot plate latency re-
veal broad, overlapping peaks between 53 cM and 64 cM. The peak for percent time in light spans
the region from approximately 53 cM to 60 cM, with a maximum near 55 cM. The peak for hot
plate latency begins near 56 cM and ends about 64 cM.

Testing pleiotropy in MPPs 9

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/550939doi: bioRxiv preprint 

https://doi.org/10.1101/550939
http://creativecommons.org/licenses/by/4.0/


−4

−2

0

2

50 55 60 65 70 75

Marker position

L
O

D

Trace

Pleiotropy

percent time in light

hot plate latency

percent time in light and hot plate latency

Figure 4 Profile LOD curves for the pleiotropy vs. separate QTL hypothesis test for “percent time
in light” and “hot plate latency”. Gray trace denotes pleiotropy LOD values. Triangles denote the
univariate LOD maxima, while diamonds denote the profile LOD maxima. For “percent time in
light”, the brown triangle obscures the smaller brown diamond. Likelihood ratio test statistic value
corresponds to the height of the blue and brown traces at their maxima.
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We have implemented our methods in an R package qtl2pleio, but analyses can be computa-229

tionally intensive and time consuming. qtl2pleio is written mostly in R, and so we could likely230

obtain improved computational speed by porting parts of the calculations to a compiled language231

such as C or C++. To accelerate our multi-dimensional QTL scans, we have integrated C++ code232

into qtl2pleio, using the Rcpp package (Eddelbuettel et al. 2011).233

Another computational bottleneck is the estimation of the variance components Vg and Ve. To234

accelerate this procedure, especially for the joint analysis of more than two traits, we will consider235

other strategies for variance component estimation, including that described by Meyer et al. (2018).236

Meyer et al. (2018), in joint analysis of dozens of traits, implement a bootstrap strategy to estimate237

variance components for lower-dimensional phenotypes before combining bootstrap estimates into238

valid covariance matrices for the full multivariate phenotype. Such an approach may ease some of239

the computational burdens that we encountered.240

We view tests of pleiotropy as complementary to mediation tests and related methods that have241

become popular for inferring biomolecular causal relationships (Chick et al. 2016; Schadt et al. 2005;242

Baron and Kenny 1986). A mediation test proceeds by including a putative mediator as a covariate243

in the regression analysis of phenotype and QTL genotype; a substantial reduction in the association244

between genotype and phenotype corresponds to evidence of mediation.245

Mediation analyses and our pleiotropy test ask distinct, but related, questions. Mediation analysis246

seeks to establish causal relationships among traits, including molecular traits, or dependent biolog-247

ical and behavioral processes. Pleiotropy tests examine whether two traits share a single source of248

genetic variation, which may act in parallel or in a causal network. Pleiotropy is required for causal249

relations among traits. In many cases, the pleiotropy hypothesis is the only reasonable one.250

Schadt et al. (2005) argued that both pleiotropy tests and causal inference methods may contribute251

to gene network reconstruction. They developed a model selection strategy, based on the Akaike252

Information Criterion (Akaike 1974), to determine which causal model is most compatible with the253

observed data. Schadt et al. (2005) extended the methods of Jiang and Zeng (1995) to consider more254

complicated alternative hypotheses, such as the possibility of two QTL, one of which associates with255

both traits, and one of which associates with only one trait. As envisioned by Schadt et al. (2005), we256

foresee complementary roles emerging for our pleiotropy test and mediation tests in the dissection257

of complex trait genetic architecture.258

Two related approaches for identifying and exploiting pleiotropy deserve mention. First, CAPE259

(Combined Analysis of Pleiotropy and Epistasis) is a strategy for identifying higher-order relation-260

ships among traits and marker genotypes (Tyler et al. 2013, 2016) and has recently been extended261

for use with multiparental populations, including DO mice (Tyler et al. 2017). CAPE exploits the262

pleiotropic relationship among traits in order to characterize the underlying network of QTLs, and263

it can suggest possible pleiotropic effects, but it does not provide an explicit test of pleiotropy. Sec-264

ond, Schaid et al. (2016) described a test for pleiotropy in the context of human genome-wide asso-265

ciation studies (GWAS). Their approach is fundamentally different from ours, in that rather than266

ask whether traits are affected by a common locus or distinct loci, they ask whether the traits are all267

affected by a particular SNP or only some are. The difference in these approaches may be attributed268

to the difference in mapping resolution between human GWAS and experimental populations.269

Technological advances in mass spectrometry and RNA sequencing have enabled the acquisi-270

tion of high-dimensional biomolecular phenotypes (Ozsolak and Milos 2011; Han et al. 2012). Mul-271

tiparental populations in Arabidopsis, maize, wheat, oil palm, rice, Drosophila, yeast, and other272

organisms enable high-precision QTL mapping (Yu et al. 2008; Tisné et al. 2017; Stanley et al. 2017;273

Raghavan et al. 2017; Mackay et al. 2012; Kover et al. 2009; Cubillos et al. 2013). The need to analyze274

high-dimensional phenotypes in multiparental populations compels the scientific community to de-275
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velop tools to study genotype-phenotype relationships and complex trait architecture. Our test, and276

its future extensions, will contribute to these ongoing efforts.277
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Table S1 Eight founder lines and their one-letter abbreviations.

Founder allele One-letter abbreviation

A/J A

C57BL/6J B

129S1/SvImJ C

NOD/ShiLtJ D

NZO/H1LTJ E

Cast/EiJ F

PWK/PhJ G

WSB/EiJ H
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Table S2 Both “hot plate latency” and “percent time in light” demonstrate multiple QTL peaks
with LOD scores above 5.

phenotype chr pos LOD score

percent time in light 8 55.28 5.27

hot plate latency 8 57.77 6.22

percent time in light 9 36.70 5.42

hot plate latency 9 46.85 5.22

percent time in light 11 63.39 6.46

hot plate latency 12 43.52 5.13

percent time in light 15 15.24 5.67

hot plate latency 19 47.80 5.48
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Figure S1 Scatter plot of “hot plate latency” against “percent time in light”, after applying loga-
rithm transformations and winsorizing both traits.
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Figure S2 Genome-wide QTL scan for percent time in light reveals multiple QTL, including one on
Chromosome 8.
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