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Abstract

Diverse interactions among species within bacterial biofilms often lead to intricate spatiotemporal
dynamics. The spatial structure of biofilms can determine growth and survival of different species, but
the mechanisms driving formation of this structure are not fully understood. Here, we describe the
emergence of complex structures in a biofilm grown from mixtures of motile and non-motile bacterial
species on a soft agar surface. Time-lapse imaging shows that non-motile bacteria “hitchhike” on the
motile bacteria as the latter migrate outward. The non-motile bacteria accumulate at the boundary of
the colony and trigger an instability that leaves behind striking flower-like patterns. The mechanism
of the front instability governing this pattern formation is elucidated by a mathematical model for the
frictional motion of the colony interface, with friction depending on the local concentration of the non-
motile species along the interface. A more elaborate two-dimensional phase-field model that explicitly
accounts for the interplay between growth, mechanical stress from the motile species, and friction provided
by the non-motile species, fully reproduces the observed flower-like patterns.

Introduction

Microbial communities inhabit every ecosystem on Earth, from soil to hydrothermal vents to plants to the
human gut [1–3]. They often form dense biofilms, whose structures are shaped by biological, chemical, and
physical factors [4–6]. In the wild, most biofilms are comprised of multiple bacterial strains. They feature
a diverse repertoire of social interactions, including cooperation [7, 8], competition [9], and predation [10].
Bacteria often signal, sense, and respond to each other through secondary metabolites [11] or antibiotic
compounds [12], and co-cultures can even exhibit different motility from either species on its own [13].
These interactions may lead to the emergence of complex spatial structures, which can have a profound
effect on bacteria survival and function, and promote biodiversity by optimizing the division of labor within
the biofilm [14]. Spatial structure can also enhance horizontal gene transfer among different species [15].

In addition to biochemical interactions, mechanical forces also play an important role in shaping the
bacterial community structures. In dense colonies, bacteria push against each other due to growth and
motility. Bacteria can exploit these mechanical interactions to adapt to the environment. For example,
mechanical stresses generate buckling in Bacillus subtilis biofilms to optimize nutrient transport and con-
sumption [16–18]. Although the role of mechanical interactions in single-species colonies has been studied
previously [19–22], dynamics of multi-species communities driven by mechanical forces have received much
less attention. Since bacterial strains can have significant differences in their growth and motility character-
istics, one can expect the mechanical stress distribution to be highly heterogeneous, which in turn can result
in a complex spatial structure of the colony.
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Here we study the interactions between bacterial species with significantly different biological and physical
properties. We choose Acinetobacter baylyi, a gram-negative bacterium that easily moves on soft surfaces
using twitching motility [23–25], and an Escherichia coli strain that is almost non-motile on soft agar.
Meanwhile, wild-type A. baylyi possesses a Type VI Secretion System (T6SS) that enables them to kill other
bacteria (including E. coli) on direct contact [15, 26]. We found that when these two strains are mixed
together and inoculated on an agar surface, growing biofilms develop intricate flower-like structures that are
absent when either species is grown by itself.

To shed light on the mechanism behind this intricate pattern formation, we tested whether biological
cell-cell communication or mechanical interaction between strains with different motilities played the key
role. Experiments with A. baylyi mutants lacking T6SS showed that the pattern formation did not rely on
this mechanism. On the other hand, genetically impairing A. baylyi motility eliminated the patterns entirely.
We also showed that agar concentration that affects cell motility, also played a key role in pattern formation.
These findings suggested that the mechanical interactions between species were indeed primarily responsible
for the pattern formation.

We then performed theoretical and computational analysis of two models: a geometrical model of the
colony boundary motion and a 2D phase-field model of the entire colony to describe the mechanical interaction
between two species. Our results show that cell motility differences are sufficient to explain the emerging
patterns. Since the structures require only differential motility, this mechanism of pattern formation may be
broadly generalizable to other mixed-species biofilms.

Results

Flower-like patterns in mixtures of A. baylyi and E. coli on nutrient-rich soft
agar

We inoculated a mixture of E. coli and A. baylyi cells with an initial density ratio of 10:1 at the center of
a Petri dish filled with soft LB agar (0.5% agar). To distinguish the two strains, we labeled E. coli with
constitutively expressed mTFP. After growing at 37◦C for 3 days, this colony developed an intricate flower-
like pattern (Fig. 1A). To see how such patterns form, we tracked the colony growth with time-lapse imaging
(Fig. 1B, Movie S1). Up to 8 hours after inoculation, the expanding colony remained nearly uniform and
circular. Then the colony front began visibly undulate. As the colony expanded further, the undulations
grew and formed cusps that in turn would leave behind tracks (or “branches”). These branches then merged,
following the movement of cusps along the interface as the colony continued to expand. The branches were
visible even in bright-field imaging, but they were also bright in the teal fluorescence channel, indicating
that branches predominantly consisted of E. coli cells (Fig. S1).

To test whether these flower-like patterns originate from interactions between the two species, we grew
each species separately on the same 0.5% LB agar surface. The E. coli motility on agar is small, and the
colony size remained relatively unchanged after 16 hours of growth (Fig. 1C, left). After the same time, a
colony of highly motile A. baylyi reached the edge of the plate (Fig. 1C, right). In both cases, no patterns
emerged, which proves that the flower-like pattern formation is a result of inter-species interaction. We
measured the sizes of mixed, pure E. coli and pure A. baylyi colonies at different times after inoculation
(Fig. 1D). The expansion speed of mixed colonies falls between those of pure A. baylyi and pure E. coli
colonies, and the speed did not change much once the colonies began expanding.

E. coli destabilize colony front by hindering A. baylyi expansion

To observe the pattern formation at higher resolution, we modified the experimental setup to fit under a
fluorescence microscope (see Methods). After 24 hours of growth, a droplet of 1:1 mixture of E. coli (ex-
pressing mTFP) and A. baylyi (expressing mCherry) grew into a clearly-visible flower-like pattern (Fig. 2A).
By zooming in on the front of the expanding colony, we were able to track the formation and merging of
branches that give rise to the flower-like structure of the patterns (Fig. 2B, Movie S2). While A. baylyi
managed to kill most of E. coli via T6SS within the inoculum, a significant number of E. coli managed to
survive at the periphery where they were not in direct contact with A. baylyi. E. coli also has a higher
growth rate (1.53 ± 0.11 h−1, n = 3) than A. baylyi (1.13 ± 0.03 h−1, n = 3), so by the time the colony
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Figure 1: Flower-like patterns in mixtures of E. coli and A. baylyi. (A) The pattern after 3 days of growth
on a 0.5% LB agar surface. (B) Time-lapse bright-field images of the developing pattern. (C) Pure E. coli
and pure A. baylyi colonies show no patterns. (D) Radius of the colony vs time for pure E. coli (green),
pure A. baylyi (red), and the mixture of E. coli and A. baylyi (blue).

began to expand, E. coli cells had already grown near the colony boundary which resulted in a band of E.
coli around the expanding colony of mostly A. baylyi (Fig. 2B, 11h).

As the colony kept expanding, in regions with more E. coli cells near the front, the expansion was
slower, so the interface began to curve inward (Fig. 2B, 13h). As the undulations grew bigger, the E. coli
in the regions lagging behind became more concentrated, thus slowing down the local front advance even
more. Eventually, the front folded onto itself near these stagnant regions and formed narrow “branches”
that continued to grow outward with the expanding colony front (Fig. 2B, 15h, 17h). Later, the front with
the branches folded again, and the previous branches merged inside the new fold (Fig. 2B, 19h, 21h). Since
E. coli continued to grow at the expanding colony front, new undulations and branches constantly appeared,
and eventually a macroscopic, flower-like pattern of growing and converging branches formed.

To quantify the effect of local E. coli concentration on the biofilm expansion, we analyzed the time-lapse
images in Fig. 1B (see Methods). We adapted a boundary tracking program for eukaryotic cells [27] to
track the boundary of the bacterial colony. The colony boundary was parameterized by 300 virtual “nodes”
connected by springs [28]. For each node, we measured local brightness (a proxy for E. coli concentration),
speed and curvature. To offset the non-uniformity of the illumination and the overall change in speed and
curvature for a growing colony, we detrended the data. The kymographs of these quantities for each node
are shown in Fig. 2C. Then we compute cross-correlations between these quantities within the time window
when the pattern began to form (about 9.5 - 11.5 hours after inoculation). As shown in Fig. 2D (left),
the brightness and extension speed show an anti-correlation (Pearson coefficient ρ = −0.66). This result
confirms that higher E. coli density slows down the front propagation. Variations in the front speed lead
to variations of the local curvature, and the scatter plot between brightness and curvature indeed shows
significant anti-correlation (Fig. 2D right, Pearson coefficient ρ = −0.41).
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Figure 2: Development of branches in a growing pattern. (A) The whole colony in a Petri dish after one
day. (B) Time-lapse microscopic images of the front propagation leading to branch formation and merging.
(C) Kymographs of relative brightness, speed and curvature along the colony boundary. (D) Scatter plots
for relative brightness and speed (left) and relative brightness and curvature (right). Each circle corresponds
to one virtual tracking node at one time point.

Robustness of flower-like patterns to perturbations

First, we explored the effect of the initial A. baylyi :E. coli(A:E) density ratio on the resulting pattern. We
varied the ratio of A. baylyi to E. coli in the inoculum while maintaining the same total density of bacteria.
We found that when the starting ratios are low (A:E= 1:100 and 1:10), flower-like patterns emerged, while
at high ratios (10:1 and 100:1) the E. coli were completely eliminated and no patterns formed (Fig. 3A). At
the intermediate ratio 1:1, A. baylyi dominated significantly at the center of the colony by killing E. coli,
but the flower-like structure still developed at the colony periphery.

Second, we wondered whether T6SS-dependent killing played a role in the formation of these patterns
when E. coli were not completely eliminated. We tested this by knocking out T6SS in A. baylyi (see Methods
for details). The growth rate of T6SS− A. baylyi (1.09 ± 0.01 h−1, n = 3) was not significantly different
from the wild type while their motility was slightly lower as determined by colony expansion rate. Still, it
was still much higher than E. coli (Fig. S2). We inoculated mixtures of T6SS− A. baylyi and E. coli with
different initial ratios on 0.75% LB agar, and observed that the colony still formed an outer ring of E. coli
(Fig. S3) and subsequently developed front instability, branches of E. coli, and a flower-like pattern in all
cases (Fig. 3B). The only qualitative difference between the T6SS− and T6SS+ cases was that in the non-
killing case E. coli remained at a high concentration within the area of the initial inoculum. We measured
the average radius of the colonies with different initial density ratios (Fig. 3C). In the case of mixture of
T6SS− A. baylyi and E. coli, the more E. coli in the inoculum, the slower the colony expanded, which is
consistent with our hypothesis that E. coli hinders the overall colony expansion. However, the trend is not
as significant for T6SS+ case because, as we reason, T6SS+A. baylyi kill most E. coli at the early stage,
which increases and stabilizes the effective A:E ratio. We also counted the number of branches as they first
emerged, and found more branches in colonies seeded with less E. coli (Fig. 3D). In general, the overall
structure of the patterns remained unchanged in the mixture of T6SS− A. baylyi and E. coli. Thus, we
concluded that the T6SS did not play a major role in the formation of flower-like patterns.

Third, the fact that two-species colonies expanded much more quickly than pure E. coli colonies strongly
suggested that the high motility of A. baylyi is primarily responsible for the colony expansion. To test
this hypothesis, we knocked out the pilTU locus of T6SS+ A. baylyi, which is required for the pilus-based
twitching motility of A. baylyi [25, 29]. As expected, colonies of pilTU− A. baylyi cells did not expand
significantly (Fig. 3E, top) and did not form branching patterns when mixed with E. coli cells (Fig. 3E,
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Figure 3: Pattern formation requires A. baylyi motility, but not killing. (A,B) Bright-field snapshots of
colonies of T6SS+ (A) and T6SS− (B) A. baylyi with E. coli 16 hours after inoculations at different initial
density ratios. (C) The average colony radius vs density ratios. (D) Number of branches at the onset of
front instability vs density ratios. (E) Colonies of pure pil− T6SS+ A. baylyi and the mixture of pil− T6SS+

A. baylyi and E. coli 16 hours after inoculation.

bottom). This demonstrates that the high A. baylyi motility plays a crucial role in the flower-like pattern
formation.

Pattern-forming instability originates at the colony interface

Experiments showed that the formation of flower-like patterns appears to be preceded and caused by growing
undulations of the colony front, where E. coli cells concentrate and locally slow expansion. To mechanistically
understand how a ring of low-motility bacteria surrounding an expanding core of highly-motile bacteria can
create such patterns, we turned to mathematical modeling. We adapted a one-dimensional “geometrical”
model of front dynamics [30,31] that casts the motion of the interface in natural, reference-frame independent
variables of curvature κ and metric g as a function of its arclength s and time t:

κ̇ = −

(
∂2

∂s2
+ κ2

)
F[κ, g], ġ = 2gκF[κ, g].

In the overdamped limit, the velocity functional F is proportional to the balance of a constant outward
pressure force F0 due to A. baylyi motility, surface tension Fs proportional to the interface curvature, and
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the resistance (friction) force Fr that is assumed to be proportional to the local concentration of E. coli on
the interface c(s, t) (Fig. 4A). For simplicity we ignore E. coli growth and leakage from the boundary in the
interior and assume that the local concentration of E. coli is only changed by stretching or contraction of the
interface, therefore c is taken to be inversely proportional to the metric g. A straightforward linear stability
analysis demonstrates that the interface is indeed unstable to a broad spectrum of initial perturbations (for
more details see Supporting Information).
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Figure 4: Discrete interface model. (A) Sketches of the continuum and discrete interface models. (B)
Snapshots of the interface in discrete interface model for a sample simulation with parameters listed in
Supporting Information. The colors of the nodes correspond to the distance between node and its neighbors.
(C) “Fossil record” of E. coli densitiy on the moving interface.

To simulate the interface dynamics beyond the linear regime, we also constructed a discrete model of
the continuous interface by replacing it with a closed chain of nodes connected by straight links (Fig. 4A
bottom). Each node carries a fixed amount of E. coli, so the local density of nodes per unit length of the
interface corresponds to the local density of E. coli. Nodes are driven by a constant outwards expansion
force F0, surface tension, and a friction force that is proportional to the window-weighted average density of
nodes per unit length. Additionally, we introduced short-range repulsive forces among nodes and between
nodes and links, to prevent self-crossing of the interface. Detailed description of this model is also given in
Supporting Information.

As an initial condition, we assumed that the chain forms a circle with nodes slightly perturbed from
equidistant positions. Figure 4B shows time-lapse snapshots of the interface in a sample simulation (also
see Movie S3). Fig. 4C shows the aggregate image of the interface during the colony expansion, with the
color of a point corresponding to density of nodes when the interface passed through that point (also see
Movie S4). Assuming that a fixed fraction of E. coli is left behind the interface, this interface “fossil
record” should roughly correspond to the density of E. coli inside the colony. At the beginning, the interface
remains nearly circular, but initial perturbations quickly grow as the colony expands, producing large front
undulations. Regions with lower node density expand more quickly because they experience less friction,
and this expansion stretches the chain and further reduces the node density per unit length, creating a
positive feedback loop. Concave regions, on the contrary, accumulate nodes and thus move outward more
slowly. Eventually, cusps are formed in these lagging regions that have very high node density and therefore
move very slowly, if at all. The regions on both sides of the cusp continue to expand toward each other and
eventually “collide”. After collision they form “double-layers” that remain nearly static and only increase in
length as the overall interface expands further. Thus, “branches” with high concentration of E. coli form.
As the front continues to expand, the interface already containing branches continues to undulate and form
new cusps. This causes the earlier branches to merge, similar to what we observed in experiments (Fig. 2B).
These simulation results suggest that indeed branch formation and merging can be explained by mechanics
of a resistive ring surrounding a colony, which is stretched by the colony expansion. However, since this
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model neglects E. coli growth, the average density of nodes per unit length gradually decays, and eventually,
the front instability ceases, in divergence with experimental results. To account for cell growth as well as
for the diffusive leakage of E. coli from the interface into the bulk of the expanding colony, we developed a
more elaborate 2D model of the growing multi-species biofilm.

Phase-field model of flower-like pattern formation

Our two-dimensional, multi-component model is conceptually similar to the phase-field models used for
description of eukaryotic cell motility and migration [32–34] (Fig. 5A). It is based on three PDEs for the
densities of A. baylyi ρA, E. coli ρE , and the phase field φ that changes continuously from 1 inside the colony
to 0 outside (see Supporting Information for detailed formulation of the model). The latter is introduced
to avoid computational difficulties of dealing with the sharp colony interface. All three components are
diffused and advected by the velocity field that is generated by a combination of stress due to cell growth
and motility, viscosity, and bottom friction that is proportional to the local E. coli density.
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Figure 5: Phase-field model simulations of two-species colony growth. (A) Illustration of the model. (B)
Snapshots of the colonies of pure E. coli and pure A. baylyi at t = 12. A colony of E. coli expanded only
slightly, while a pure colony of A. baylyi expanded quickly, but remained circular. (C) Colony radius vs
time for the mixed and single-species colonies. (D) Several snapshots of E. coli density during the growth
of a mixed colony in simulations. (E) Colony snapshots at time t = 17 in simulations using different friction
parameters. For larger friction, the colony grew slower, but still featured flow-like patterns. For smaller
friction, the colony expanded more quickly, but patterns eventually disappeared. However, increasing the
initial concentration of E. coli at low friction coefficients restored patterning. (F) Experimental snapshots
with different agar concentrations 16 hours after inoculation: similar phenomenology observed.

When we initialized the model with small circular domains of either pure E. coli or A. baylyi, the colony
boundaries remained circular, and no patterns emerged (Fig. 5B). Consistent with the experiments, the E.
coli colony only slightly expanded, while the A. baylyi colony expanded rapidly (Fig. 5C). When we initialized
the model with a mixture of A. baylyi and E. coli, the colony grew at an intermediate speed (Fig. 5C), as in
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the experiments (Fig. 1D). The mixed colony simulations also exhibited front instability leading to formation
of branches of E. coli (Fig. 5D, the snapshots of A. baylyi are shown in Fig. S4, also see Movie S5). As the
colony grew, the branches merged and expanded, and a flower-like pattern developed.

Agar concentration is known to have a strong effect on the motility of bacteria [23] and their adhesion
to the agar surface [35], so we reasoned that in our phase-field model changing agar concentration should
be reflected in changing friction parameters. The frictional force in our model consists of two contributions:
a small basal friction (characterized by parameter ξ) and stronger contribution proportional to the local E.
coli concentration with coefficient β. Thus, to mimic different agar concentrations, we varied both ξ and
β. The leftmost panel in Fig. 5E shows the colony snapshots at t = 17 for the same parameter values as
the time-lapse sequence in Fig. 5D. The next panel corresponds to larger ξ and β (presumably, higher agar
concentration), where as expected, the colony expanded slower. The third panel shows the snapshot for
smaller ξ and β (lower agar concentration), in which case the colony expands fast, but no patterns emerge.
However, for the same low ξ and β, when we started a simulation from 10x higher E. coli density, the friction
provided by E. coli increased, and patterning re-emerged (Fig. 5E, fourth panel).

These numerical predictions were fully validated by experiments in which we varied the agar concentration
and the initial density ratio of E. coli and T6SS− A. baylyi. The leftmost panel in Fig. 5F shows the snapshot
of the colony started from 1:1 mixture after 16 hours of growth on 0.75% agar surface. When we increased
the agar concentration to 1% (Fig. 5F, second panel), the colony expanded slower but the flower-like pattern
emerged. Conversely, for low agar concentration (0.5%), colony grew fast but patterns were completely
eliminated (Fig. 5F, third panel). However, for the same 0.5% agar concentration but A:E=1:100 initial
density ratio, the flower-like pattern formation was rescued (Fig. 5F, fourth panel).

Discussion

Motility plays a key role in the spread of dense bacterial colonies. In this paper, we studied the structure
of growing biofilms comprised of two bacterial species, E. coli and A. baylyi, with very different motilities.
Not only did the highly-motile species (A. baylyi) accelerate the spread of the slow species (E. coli), but
the structure of the expanding colony quickly became highly heterogeneous and eventually produced very
intricate, flower-like patterns.

Pattern formation in growing colonies of single bacterial species has been studied extensively [36–39],
and branching patterns were often found in these experiments. The emergence of these patterns is usually
driven by nutrient limitation and ensuing chemotaxis, with agar concentration also having a strong effect on
their morphology. For example, colonies expand homogeneously on soft agar rich with nutrients, but under
nutrient limitation and in semi-solid agar, complex patterns emerge [37,39]. In our system, however, we used
rich LB media, and single-species colonies in the same conditions did not produce patterns. This suggested
that the mechanism of pattern formation here was different. We also found no significant differences in
pattern formation with T6SS+ and T6SS− strains of A. baylyi. In fact, we did not observe noticeable killing
of E. coli by T6SS+ A. baylyi after a short initial period (Movie S2). We believe that an extracellular
matrix may have played a role here, as recent studies showed that it protected bacteria from T6SS attacks
from other species [40, 41]. Overall, our experiments and modeling provided strong evidence in favor of the
mechanical nature of the pattern-forming instability, arising from the interplay between outward pressure
generated by the growth and high motility of A. baylyi, and the friction provided by sessile E. coli that
adhere to the agar surface.

Ecologically, one of the primary challenges for any species is to maximize its geographic dispersal. Motility
enables bacteria to escape from local stresses, move to locations with more nutrients, or invade host tissue [23].
However, motility, especially on hard surfaces, requires additional gene expression which could be a metabolic
burden [21]. So some bacteria take advantage of other species with larger motility to colonize new niches. For
example, by hitchhiking on zooplankton, water-borne bacteria can reach places that are otherwise inaccessible
for them due to density gradients [42]. Non-motile Staphylococcal species hitchhike on swimming bacteria
such as Pseudomonas aeruginosa [43]. In other studies, motile swarming Paenibacillus vortex was shown
to transport non-motile Xanthomonas perforans [44] or E. coli [45] on agar surfaces. In our system, A.
baylyi cells move by twitching instead of swarming, and our results suggest that slow-moving bacteria might
take advantage of fast-moving twitching species by hitchhiking, or “surfing” along the expanding boundary,
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and thus spread farther. This can be seen clearly from the experiment in which E. coli and A. baylyi
were inoculated separately at a small distance on agar surface (Movie S6). A. baylyi colony expanded and
pushed E. coli to places where E. coli alone could not reach. Although E. coli and A. baylyi may not
necessarily find themselves in the same ecological niche, bacteria with different motilities are ubiquitous in
the environment [23]. Therefore, the mechanisms of codependent motility and pattern formation described
here are likely to be broadly applicable in natural habitats or even have implications in the transmission
of pathogenic microbes. For example, Acinetobacter baumannii, an increasing threat in hospitals due to
mutil-drug resistance [46], is closely related to A. baylyi [15,47] and also has twitching motility [48,49], and
thus other microbes which coexist with A. baumannii might also take advantage of its motility to spread.

Materials and Methods

Strains

We used E. coli MG1655 and A. baylyi ADP1 (ATCC #33305). The E. coli strain carried a plasmid that
constitutively expressed mTFP and a kanamycin resistance gene. A. baylyi had a kanamycin resistance gene
and the mCherry gene integrated in the genome. We also constructed a T6SS− A. baylyi (Mhcp) mutant
by first fusing the tetracycline resistance marker from pTKS/CS to approximately 400 bp homology arms
amplified from either side of hcp (ACIAD2689) in the A. baylyi genome, and mixing the donor oligo with
naturally competent A. baylyi. The pilTU− strain was constructed similarly to delete the genes ACIAD0911-
0912.

Culture conditions and image capturing

E. coli and A. baylyi cells were taken from -80◦C glycerol stocks, inoculated in LB with appropriate antibiotics
(kanamycin for E. coli and T6SS+ A. baylyi, tetracycline for T6SS− A. baylyi) and grown at 37◦C separately.
When their OD600 reached about 0.3, both E. coli and A. baylyi were concentrated to OD=1, still separately.
They were then mixed at specified volume ratios, and 3 µL was inoculated on the surface of 10 mL LB agar
in the center of an 8.5 cm Petri dish. The plate was incubated at 37◦C. The images were taken using a
custom “milliscope” fluorescence imaging device unless indicated otherwise.

When the colony development was to be observed under a microscope, a 5.5 cm Petri dish was used
with 15 mL 1% base agar (without LB) and top 10 mL LB agar (1% agar). After the cell culture was
inoculated and dried, it was put on the stage of an inverted, epifluorescence microscope (Nikon TI2). The
magnification was 4X. Fluorescent images were acquired using a 4X objective and a Photometrics CoolSnap
cooled CCD camera in a 37◦C chamber. The microscope and accessories were controlled using the Nikon
Elements software.

The bacteria growth rates were measured in a Tecan plate reader.

Colony tracking

We adapted the method and the MATLAB™ code from [27] to track the colony boundary. The bright-field
images were first segmented to identify the colony using an active contour method [50]. The segmentation
result is illustrated in Movie S7. Then the colony boundary pixels were interpolated by a closed cubic spline
and the boundary was parameterized by 300 virtual nodes, which were evolved in time as a coupled spring
system (Fig. S5) [28]. For each node, three quantities were measured: brightness, extension speed and
curvature. Brightness at each node was defined as the median of the neighboring pixels assigned to each
node (see [27]). Extension speed was computed by the displacement of a node from frame t to frame t+ 10.
Curvature was calculated by taking derivatives of the spline contour. Then the time series of these quantities
were detrended and smoothed using FFT. An example of these quantities for all nodes at a particular time
point is shown in Fig. S6. In Fig. 2D, we sampled 7 time points with 20 min interval from 9.5 h to 11.5 h
and for each time point we plotted 100 nodes.
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Mathematical models

Detailed description of the two models is given in Supporting Information.
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