Whole genomic sequencing as a tool for diagnosis of drug and multidrug-resistance tuberculosis in an endemic region in Mexico

Carlos Francisco Madrazo-Moya^{1-2¶}, Irving Cancino-Muñoz^{3¶&}, Betzaida CuevasCordoba^{4&}, Vanessa Gonzalez-Covarrubias^{4&}, Martín Barbosa-Amezcua ^{4&},
Xavier⁵Soberón ^{4&}, Raquel Muñiz-Salazar^{5¶}, Armando Martínez-Guarneros^{6&}, Claudia
Backer^{6&}, José Zarrabal-Meza^{7&}, Clara Sampieri-Ramirez^{1¶}, Antonio Enciso-Moreno^{8¶},
Michael Lauzardo^{9&}, Iñaki Comas ^{3¶&}, Roberto Zenteno-Cuevas^{1,2¶,*}.

8 1. Instituto de Salud Pública, Universidad Veracruzana. Veracruz, México.

9 2. Programa de Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud.
10 Universidad Veracruzana, Veracruz, México.

Biomedicine Institute of Valencia IBV-CSIC, Valencia, Spain; CIBER in Epidemiology
 and Public Health, Spain.

4. Laboratorio de Farmacogenómica. Instituto Nacional de Medicina Genómica, Ciudad de
 México, México

15 5. Laboratorio de Epidemiología y Ecología y Molecular, Escuela de Ciencias de la Salud,

16 Universidad Autónoma de Baja California, Ensenada, Baja California, México

Laboratorio de Micobacterias, Instituto Nacional de Diagnóstico y Referencia
 Epidemiológica, México.

7. Laboratorio Estatal de Salud Pública, Secretaria de Salud, Veracruz, México. Escuela de
 Ciencias de la Salud, Universidad Autónoma de Baja California, México.

8. Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, Zacatecas, México

9. Division of Infectious Diseases and Global Medicine, College of Medicine, University of
Florida, Gainesville, Florida, USA.

These authors contributed to conceptualization, data analysis and writing, review and
editing of manuscript.

- [&] These authors contributed to the provision of study materials and methodology.
- 2 * Corresponding author: email: <u>robzencue@gmail.com</u> (RZ-C)
- 3 Keywords: Whole Genome Sequencing, *Mycobacterium*, Drug resistance, Mexico
- 4 Short title: WGS and diagnosis of drug resistance in Mexico
- 5

1 Abstract

Background: Whole genome sequencing (WGS) has been proposed as a tool for
diagnosing drug resistance in tuberculosis. However, reports of its effectiveness in endemic
countries with important numbers of drug resistance are scarce. The goal of this study was
to evaluate the effectiveness of this procedure in isolates from a tuberculosis endemic
region in Mexico.

Methods: WGS analysis was performed in 81 tuberculosis positive clinical isolates with a known phenotypic profile of resistance against first-line drugs (isoniazid, rifampin, ethambutol, pyrazinamide and streptomycin). Mutations related to drug resistance were identified for each isolate; drug resistant genotypes were predicted and compared with the phenotypic profile. Genotypes and transmission clusters based on genetic distances were also characterized.

Findings: Prediction by WGS analysis of resistance against isoniazid, rifampicin, ethambutol, pyrazinamide and streptomycin showed sensitivity values of 84%, 96%, 71%, 75% and 29%, while specificity values were 100%, 94%, 90%, 90% and 98%, respectively. Prediction of multidrug resistance showed a sensitivity of 89% and specificity of 97%. Moreover, WGS analysis revealed polymorphisms related to second-line drug resistance, enabling classification of eight and two clinical isolates as pre- and extreme drug-resistant cases, respectively.

Four lineages were identified in the population (L1, L2, L3 and L4). The most frequent of
these was L4, which included 90% (77) of the isolates. Six transmission clusters were

- 1 identified; the most frequent was TC6, which included 13 isolates with a L4.1.1 and a
- 2 predominantly multidrug-resistant condition.
- 3 Conclusion: The results illustrate the utility of WGS for establishing the potential for 4 prediction of resistance against first and second line drugs in isolates of tuberculosis from 5 the region. They also demonstrate the feasibility of this procedure for use as a tool to 6 support the epidemiological surveillance of drug- and multidrug-resistant tuberculosis.

1 Introduction

According to the annual report of the World Health Organization in 2017, 10.5 million new cases and 1.7 million deaths were related to tuberculosis (TB), establishing TB as the infectious disease with the greatest impact on human health. [1]

5 Close to 25% of TB cases recorded worldwide every year show resistance (DR-TB) to at least one of the four antibiotics used in first line treatment against this disease; 6 7 Rifampicin (R), Isoniazid (H), Ethambutol (E) and Pyrazinamide (Z). Of these DR-TB isolates, about 5% evolve into multi-drug resistant tuberculosis; i.e., they present a 8 9 combined resistance to isoniazid and rifampicin (MDR-TB), which may evolve into an 10 aggravated form known as extreme drug-resistant tuberculosis (TB-XDR), which are isolates that possess simultaneous resistance to a flouroquinolone and at least one of the 11 three second-line injectable drugs (amikacin, kanamycin and capreomicin). The number of 12 isolates with these characteristics is steadily increasing, reducing the possibility of 13 eliminating TB as a global public health problem by 2020. [2] 14

Whole Genome Sequencing (WGS) provides accurate information about polymorphisms, 15 insertions and deletions (indels) of potential relevance to the rapid prediction of drug 16 susceptibility phenotypes of clinical importance [3,4]. The implementation of WGS has 17 potential for improving traditional phenotypic procedures to detect DR-TB cases and to 18 19 influence clinical decision-making in high-income settings [5-11], in addition, this technique has also been successfully used to examine transmission dynamics, identify 20 transmission clusters and reconstruct timelines of acquisition of antimicrobial resistance 21 22 [12–15].

The current body of knowledge regarding mutations that confer drug resistance has led to the suggestion that identification of true DR-TB isolates may be more complex than previously thought [16], raising the need to further this type of study in order to identify the changes involved and increase diagnostic efficiency. Moreover, there is a lack of evidence regarding the utility of WGS in emerging or poorly-developed countries, which are precisely those most affected by drug-resistant tuberculosis, and where information relating to the polymorphism associated with drug resistance is limited [6,17–21]

In Mexico, tuberculosis is endemic. According to the 2017 Global Report, 22,869 new 8 9 cases of TB were reported in 2016, with an incidence of 22 cases per 100,000 inhabitants [1]. DR-TB cases were observed in 2.5% of these cases, and there was also a prevalent 10 population of 610 individuals with MDR-TB. Moreover, increasing numbers of XDR-TB 11 cases are reported every year [22]. These figures make Mexico the country in the Americas 12 with the third highest contribution of tuberculosis, including aggravated forms of TB such 13 14 as DR-TB, MDR-TB and possibly XDR-TB. [23] Previous studies using Sanger sequencing protocols have shown that Mexico presents a considerable diversity of 15 mutations associated with DR-TB, as well as variations related to geographical regions 16 [24–31], which act to limit the utility of new genotypic diagnostic procedures and make 17 WGS a very attractive alternative. This study therefore attempts to assess the diagnostic 18 value of WGS for the detection of resistance to first line anti-tuberculosis drugs in isolates 19 circulating in a region of Mexico with a high incidence of DR-TB. 20

21 Materials and Methods

Recovery of mycobacterial strains, culture and drug susceptibility test

An initial collection of 91 isolates of mycobacterial strains, with positive drug resistance determined by the phenotypic test method (BACTEC, MGIT 960 Becton-Dickinson) from 2012 to 2016, was randomly selected from the strain bank of the Public Health Institute of Veracruz. Demographic information of the patients bearing the selected strains was obtained from clinical laboratory records and anonymised.

Mycobacterium tuberculosis strains were isolated in Lowenstein-Jensen media, and
sensitivity testing against first-line drugs was performed by the fluorometric method
(BACTEC MGIT 960, Becton-Dickinson) using the following critical concentrations:
isoniazid (H) 0.1µg/mL, rifampin (R) 1.0 µg/mL, ethambutol (E) 5.0 µg/mL and
streptomycin (S) 1.0 µg/mL. Pyrazinamide (Z) sensitivity was determined using BACTEC
MGIT 960 PZA kit (Becton Dickinson).

14

15 DNA extraction, WGS sequencing and bioinformatics analysis

Extraction and purification of the genomic DNA from isolates was carried out following Van Soolingen et al. [32]. Quantification was conducted initially with a nanodrop (ThermoScientific, USA) with subsequent adjustment to a concentration of 0.2 ng/μL. The libraries were prepared according to the Nextera XT (Illumina, CA., USA) protocol, using Ing of DNA quantified by Qubit fluorometer (Invitrogen, CA, USA). Quality was determined using TapeStation (Agilent Genomics) and the pool was normalized and loaded

into a 300-cycle mid output cartridge at 1.8pM. Sequencing was performed using NexSeq
 500 (Illumina, CA., USA), in a 2 × 150 paired-end format.

Due to the possible presence of DNA material that is not of the *M. tuberculosis* complex, 3 Kraken software V2 [33] was used to classify the WGS reads and identify other 4 Mycobacteria species. We further focused only on those reads that belong to the 5 Mycobacterium tuberculosis species. The WGS analysis, including mapping and variant 6 7 calling (SNP and INDELS), was performed following a previous pipeline [34]. Briefly, 8 sequencing reads were mapped and aligned to an inferred MTBC most likely common 9 ancestor genome using BWA. Variants were then separated into INDELS (small insertions and deletions included) and single nucleotide polymorphism (SNPs) using VarScan. In 10 11 order to detect drug resistance-associated mutations with different frequencies within the population, single polymorphisms with at least 10 reads in both strands and a quality score 12 of 20 were classified into two categories. We considered those mutations that involved a 13 14 frequency range of 10 and 89% as variant-SNPs, and those with at least 90% frequency in the sample as constant-SNPs. An INDEL was considered where the mutation was present 15 16 with at least 10x depth coverage. Variant annotation was performed using *M. tuberculosis* H37Rv annotation reference (AL123456.2). In addition, SNPs annotated in regions that 17 were difficult to map, such as repetitive sequences and PPE/PE-PGRS genes, as well as 18 19 those detected near INDELS, were excluded from the analysis.

20 Identification of drug resistance-associated variants

In order to determine mutations related to drug resistance in the isolates included in the study, SNP data obtained by WGS were compared to a list of genes known to confer

resistance to each anti-tuberculosis drug [35]: For resistance to rifampicin: rpoB, rpoA and 1 2 rpoC genes; to streptomycin: rrs, rpsl and gidB; to isoniazid: katG, inhA, oxvR-ahpC, ndh, fadE24 and FabG1; to pyrazinamide: pncA and rpsA; to ethambutol: embC, embA and 3 *embB*. For resistance to second-line drugs; Flouroquinolone: gvrA and gvrB; 4 Aminoglycoside: rrs and tlyA; Ethionamide: ethR, mshA, inhA, ndh ethA and fabG; 5 6 Linezolid: Rrl and rplC; Kanamycin/ethionamide: eis; p-amino salicylic acid: thvA; 7 Isoniazid/ethionamide: inhA; and finally, for resistance to isoniazide, ethionamide and 8 amikacin: *ndh*.

9 Phylogenetic analysis and identification of transmission clusters

In order to classify the isolates, and to identify whether they had a specific genotype 10 and whether these were related, a phylogenetic analysis was performed. We classified all of 11 the strains according to the presence of the specific lineages or sub-lineages of phylogenetic 12 13 variants proposed by Coll et al. 2014 [36] and Stucki et al. 2016 [37]. In order to detect highly likely genomic transmission clusters, we performed a pairwise genetic distance 14 15 analysis based on a concatenated SNP alignment obtained from every constant-SNP from 16 every isolate. A ≤ 12 SNP threshold was applied to delineate the transmission clusters, as proposed by Walker et al. 2013 [38]. A phylogeny including all the clinical isolates, with 17 18 three samples used as an outgroup (one belonging to Lineage (L) 5, another to L6 and 19 Mycobacterium canetti [34]), was inferred using the maximum likelihood phylogenetic 20 approach implemented in MEGA V6 [39] by applying a general time reversible model of 21 nucleotide substitution, with a gamma distribution (GTRGAMMA) and considering 1000 22 bootstraps. The tree was visualized in iTOL v. 4 (https://itol.embl.de/tree).

1 Analysis of the diagnostic efficiency of WGS

2	Drug resistant profiles for each first-line drug, as predicted by WGS, were compared
3	to the BACTEC MGIT phenotypic assay that was used as a reference standard for the
4	diagnostic. The sensitivity (Sen), specificity (Spe), positive predictive values (PPV) and
5	negative predictive values (NPV) were determined with 95% confidence intervals. Data
6	was analyzed using STATA V.13. Inter-test agreement for both results was expressed by
7	the percentage of overall agreement and kappa (κ) statistic, according to Landis et al. [40].
8	Ethical concerns
9	No physical interventions took place with the patients and all of the information
10	collected was treated as confidential. The ethics committee of the Public Health Institute at
11	University of Veracruz oversaw and approved the ethical issues involved in this study
12	
13	

1 **Results**

2 Isolate recovery, patient data and resistotyping

Ninety-one clinical isolates, obtained from the same number of individuals with TB and resistance to at least one first-line drug, were initially included in the study. Further genome analysis confirmed the presence of the species *M. tuberculosis* in 81 of the isolates. Four isolates presented *M. fortuitum* and two presented *M. abscessus* and it was not possible to determine the species in a further four isolates. These ten isolates were therefore excluded from the global study.

9 Of the 81 individuals ultimately included in the study, 50% (42) were male, with a
10 mean age of 45 years (±14.6) and all individuals presented respiratory TB. A total of 36%
11 (31) presented type 2 diabetes mellitus (T2DM), 47% (40) were undergoing primary
12 treatment and 42% (36) presented a re-treatment.

In relation to the phenotypic drug resistance profile of the 81 isolates determined by BACTEC MGIT assay, S resistance was observed in 47% (38) of the isolates, while H resistance was presented in 75% (61), R resistance in 62% (n=51), E resistance in 29% (24) and Z resistance in 34% (28). A total of 25% (21) of the isolates were classified as monoresistant, 14% (12) as poly-resistant, 56% (46) as MDR-TB and 16% (13) as resistant to all first-line drugs.

19 Polymorphism conferring resistance against first-line drugs

1	According to the BACTEC MGIT phenotypic assay, 61 isolates showed H
2	resistance, of which 51 (62%) presented polymorphisms that could explain their condition,
3	while no mutations were detected in ten (12%) of the isolates, according to the WGS
4	analysis. The most frequent mutation identified was katG315S/T in 35 (60%) isolates,
5	followed by the intergenic position 1673425 (c/t) of the <i>fabG1</i> gene in nine (14%) isolates
6	and the intergenic positions 2726105088-2726145 of <i>ahpC-OxyR</i> , which were observed in
7	seven (11%) isolates (Table 1).

- 8 Table 1. Isoniazid mutations obtained by WGS from *Mycobacterium tuberculosis* isolates
- 9 circulating in Veracruz, Mexico

Position Region		Codon	Amino Acid	Change	Frequency
katG					
2154250 ¹	Coding	621	$A \rightarrow V$	gcc/gtc	1*
2155139 ¹	Coding	325	$P \rightarrow S$	ccg/tcg	1
2155167	Coding	315	$S \rightarrow R$	agc/aga	1
2155168	Coding	315	$S \rightarrow T$	agc/acc	35
2155168	Coding	315	$\mathrm{S} \rightarrow \mathrm{I}$	agc/atc	1*
2155168	Coding	315	$S \rightarrow N$	agc/aac	1
2155700	Coding	138	$N \rightarrow H$	aac/cac	2*
ahpC-OxyR					
2726105	Intergenic			g/a	2*
2726117	Intergenic			t/a	2*
2726139	Intergenic			c/t	1
2726145	Intergenic			g/a	2
fabG1	-			-	
1673425	Intergenic			c/t	9
Total	-				58*

- 10 * In combination with other mutation in a single isolate.
- 11

12 Of the 51 isolates that were rifampicin-resistant according to the BACTEC MGIT 13 phenotypic assay, 49 (96%) had a mutation in the *rpoB* gene. Some isolates presented more

than one mutation, while two isolates presented no mutations. One sensitive isolate, as
determined by the BACTEC assay, showed the *rpoB430L/P* mutation while another strain
had the mutation *rpoB432Q/L*. Thirteen mutations were observed, the most frequent of
which was found at *rpoB450S/L* in 35 (71%) of the isolates (Table 2).

5 Table 2. Rifampicin mutations detected by WGS from isolates of Mycobacterium

6 *tuberculosis* circulating in Veracruz, Mexico

Position	Region	Codon	Amino Acid	Change	Frequency of mutation
rpoB					
761004	Coding	400	$T \rightarrow A$	acc/gcc 501	1
761095	Coding	430	$L \rightarrow P$	ctg/ccg 511	1
761101	Coding	432	$Q \rightarrow L$	caa/cta 512	1
761108	Coding	434	$M \rightarrow I$	atg/att 515	1
761109	Coding	435	$\mathrm{D} \to \mathrm{Y}$	gac/tac 516	2
761110	Coding	435	$\mathrm{D} \rightarrow \mathrm{V}$	gac/gtc 516	3
761139	Coding	445	$\mathrm{H} \to \mathrm{Y}$	cac/tac 526	5
761139	Coding	445	$\mathrm{H} \to \mathrm{D}$	cac/gac 526	1
761140	Coding	445	$\mathrm{H} \to \mathrm{L}$	cac/ctc 526	1
761140	Coding	445	$\mathrm{H} \to \mathrm{P}$	cac/ccc 526	1
761140	Coding	445	$H \rightarrow R$	cac/cgc 526	1
761155	Coding	450	$S \rightarrow L$	tcg/ttg 531	35
761155	Coding	450	$\mathbf{S} \to \mathbf{W}$	tcg/tgg 531	2
		Total			55*

7 *some isolates with double mutations

8 Of the 24 isolates with phenotypically E resistance, 17 (71%) presented 9 polymorphisms that explained their condition, according to WGS. However, seven (30%) 10 of the resistant isolates showed no mutation, mine while six isolates, defined as sensitive by 11 the BACTEC MGIT phenotypic assay, showed one mutation related to resistance to this 12 drug. The most frequent mutation was observed at *embB306M/V/I* in eleven isolates,

1 followed by the embA promoter C-12T mutation at the intergenic genome position

- 2 4243221, which was observed in eight isolates (Table 3).
- 3 Table 3. Ethambutol mutations obtained by WGS from isolates of *Mycobacterium*
- 4 *tuberculosis* circulating in Veracruz, Mexico

Position	Region	Codon	Amino Acid	Change	Frequency
embA					
4243221	Intergenic			c/t	8
4243225	Intergenic			c/a	1
embB					
4246734	Coding	74	$L \rightarrow R$	ctg/cgg	1
4247429	Coding	306	$\mathrm{M} ightarrow \mathrm{V}$	atg/gtg	2
4247431	Coding	306	$M \rightarrow I$	atg/att	2
4247431	Coding	306	$M \rightarrow I$	atg/ata	7
4247730	Coding	406	$G \rightarrow D$	ggc/gac	2
4249518	Coding	1002	$\mathrm{H} \rightarrow \mathrm{R}$	cac/cgc	2
		Total			25*

5 *some isolates with double mutations

6 Of the 28 isolates with resistance to Z according to the phenotypic assay, 21 (75%) 7 had mutations at *pncA* while seven presented a wild-type genotype. Four isolates 8 phenotypically identified as Z-susceptible presented a mutation that could be associated 9 with resistance. In total, 17 mutations were identified in *pncA*. The most frequent of these 10 was *pncA120L/P*, which was detected in 14 isolates (Table 4).

11

12

Table 4. Pyrazinamide mutations obtained by WGS from isolates of Mycobacterium

Position Region		Codon	Amino Acid	Change	Frequency
oncA					
2288766	Coding	159	$L \rightarrow R$	ctg/cgg	1
2288778	Coding	155	$V \rightarrow G$	gtg/ggg	1
2288826	Coding	139	$V \rightarrow G$	gtg/ggg	1
2288836	Coding	136	$\mathrm{D} \to \mathrm{Y}$	gat/tat	1
2288839	Coding	135	$T \rightarrow P$	acc/ccc	1
2288841	Coding	134	$A \rightarrow V$	gcc/gtc	1
2288847	Coding	132	$G \rightarrow A$	ggt/gct	2
2288850	Coding	131	Insertion	/+cc	1
2288859	Coding	128	$V \rightarrow G$	gtc/ggc	1
2288883	Coding	120	$L \rightarrow P$	ctg/ccg	14
2288988	Coding	97	$\mathbf{G} \rightarrow \mathbf{A}$	ggt/gct	1
2288988	Coding	85	$L \rightarrow P$	ctg/ccg	1
2289040	Coding	68	$W \rightarrow G$	tgg/ggg	1
2289073	Coding	57	$\mathbf{H} \to \mathbf{Y}$	cac/tac	1
2289100	Coding	48	$L \rightarrow E$	aag/gag	1
2289101	Coding	47	Deletion	/-gttgc	1
2289252	Intergenic			a/g	2
		Total			32*

2 *tuberculosis* circulating in Veracruz, Mexico

1

3 *some isolates with double mutations

Of the 38 isolates with phenotypic S resistance, only eleven (29%) presented a mutation that would explain the resistant condition (Table 5). The remaining 27 (71%) isolates presented no change. Only one phenotypically-determined sensitive isolate showed one polymorphism associated with resistance. Nine mutations were observed in three genes (*gidB*, *rpsL* and *rrs*); the most abundant of which were *rpsL43K/R* and a c/t mutation at position 1472362 on the *rrs* gene, both found in three isolates each. (Table 5)

1 Table 5. Streptomycin mutations obtained by WGS from isolates of Mycobacterium

Position	Region	Codon	Amino Acid	Change	Frequency
gidB					
4407790	Coding	138	$A \rightarrow V$	gcg/gtg	1
4407992	Coding	71	$G \rightarrow R$	gga/aga	1
rpsL					
781687	Coding	43	$K \rightarrow R$	aag/agg	3
781821	Coding	88	$K \rightarrow Q$	aag/cag	1
781822	Coding	88	$K \rightarrow T$	aag/acg	1
781822	Coding	88	$K \rightarrow R$	aag/agg	1
rrs					
1472359	Ribosomal			a/c	1
1472362	Ribosomal			c/t	3
1472751	Ribosomal			a/g	1
		Total			13*

2 *tuberculosis* circulating in Veracruz, Mexico

3

*some isolates with double mutations

4

5 Polymorphism conferring multidrug and second line drug

6 resistance

Of the 46 isolates identified as MDR-TB by the BACTEC MGIT method, 41 (89%)
showed simultaneous mutations in the genes associated with resistance against rifampicin
and isoniazid by WGS. Four isolates (7%) lacked any polymorphism associated with
isoniazid resistance in the *katG*, *inhA*, *oxyR-ahpC* or *FabG1* genes analyzed, and two
isolates (3%) did not present a mutation associated with rifampicin resistance in *rpoB*, *rpoA*and *rpoC* genes.

It was not possible to determine phenotypic resistance against second-line drugs in 1 2 the isolates analyzed because of limitations in reagents and infrastructure. However, the WGS analysis of genes related with resistance against these drugs showed that twelve 3 isolates presented a mutation that would confer resistance to fluoroquinolones: ten had a 4 5 mutation at gyrA, conferring resistance to ofloxacin, and two had one mutation at gyrB, 6 conferring resistance to levofloxacin (Table 6). In addition, five isolates presented 7 mutations at *eis* and *rrs*, conferring resistance to kanamycin, amikacin and capreomycin. 8 Finally, no polymorphisms were observed in genes associated with resistance to linezolid 9 (*rrl* and *rplC*), aminoglycosides (*tlyA*), ethionamide (*ethR*, *mshA*, *inhA*, *ndh* and *ethA*) and 10 p-amino salicylic acid (*thyA*).

A joint analysis of MDR-TB isolates with the mutations related to resistance against second-line drugs showed the presence of eight isolates that could potentially be considered as pre-XDR-TB (with resistance to H and R, associated with resistance to FQ or a secondline injectable, but not both), as well as three isolates that were recognized as XDR-TB (with resistance to H and R, and resistance to any of the fluoroquinolones (such as levofloxacin or moxifloxacin)), and to at least one of the three injectable second-line drugs (amikacin, capreomycin or kanamycin).

18

19

20

1 Table 6. Second line drug mutations determined through WGS from isolates of

Position	Region	Codon	Amino Acid	Change	Frequency	
Fluoroquinolone	s					
gyrB						
6738	Coding	500	$T \rightarrow N$	acc/aac	2	
gyrA						
7564	Coding	88	$\mathbf{G} \rightarrow \mathbf{A}$	ggc/gcc	1	
7570	Coding	90	$A \rightarrow V$	gcg/gtg	3	
7581	Coding	94	$D \rightarrow Y$	gac/tac	1	
7582	Coding	94	$D \rightarrow A$	gac/gcc	3	
7582	Coding	94	$D \rightarrow G$	gac/ggc	2	
	,	Total			12	
Kanamycin (KM	[) / Amikacin (Al	M) / Capre	omicin (CM)			
Eis						
2715342	Intergenic			g/a	1	
Rrs	-			-		
1473246	Ribosomal			a/g	4	
	,	Total			10	

2 Mycobacterium tuberculosis circulating in Veracruz, Mexico.

3 *some isolates with double mutations

4 Concordance between WGS mutations and phenotypic

5 resistance and kappa test

Considering the diagnosis obtained by BACTEC MGIT phenotypic assay as the 6 7 reference test, the efficacy of WGS in terms of predicting resistance against H, R, E, Z and S showed sensitivity values of 84%, 96%, 71%, 75% and 29% and specificity values of 8 100%, 94%, 90%, 90% and 98%, respectively. The positive predictive values (PPV) were 9 100%, 96%, 74%, 84% and 92%, while the negative predictive values (NPV) were 67%, 10 94%, 89%, 85% and 62%, respectively. Finally, for multi-drug resistance, sensitivity and 11 specificity values of 89% and 97%, and PPV and NPV values of 97% and 88%, 12 respectively, were determined. 13

The analysis of concordance with Cohen's kappa test between the phenotypic assay
and the resistance profile determined by WGS showed substantial agreement for H (k: 0.73,
88%), perfect agreement for R(k= 0.90, 95%), substantial agreement for E (k=0.61, 84%)
and Z (k= 0.67, 84%), fair agreement for S (k= 0.28, 66%) and almost perfect agreement
for MDR-TB (k= 0.85, 92%).

6 Phylogenetic analysis and identification of transmission cluster

7 Four major lineages (L) were observed through the WGS analysis. Two (2.3%)isolates were included in L1 (EAI), both of which were MDR-TB. Four isolates (5%) were 8 located within L2 (Beijing) and included three MDR-TB isolates and one potential pre-9 XDR-TB isolate. Two isolates (2.3%) were located inside the L3 (CAS), both considered 10 through the WGS as potentially pre-XDR-TB. The remaining 76 (90%) isolates were 11 classified within L4, and included eight sub-lineages (T, T1, X2, X3-X1, LAM3, LAM9, 12 13 LAM11 and S). The most abundant was sub-lineage 4.1.1 (X), which was present in 23 (28%) isolates, followed by sub-lineage 4.1.2 (H) found in 22 (27%) isolates and sub-14 15 lineage 4.3.3 (LAM) found in eight (10%) isolates (figure 1).

The WGS analysis allowed identification of six transmission clusters (TC); TC1 included two isolates with L3, also sharing the polymorphisms related to a pre-XDR-TB character. The rest of the TC were located within L4; TC2 included three isolates with sublineage 4.3 (LAM), TC3 included three isolates, TC4 had two isolates and TC5 had three isolates, all included in the sub-lineage 4.1.2 (H). Finally, TC6 included thirteen isolates with sub-lineage 4.1.1 (X1-X3), all sharing a multidrug resistant condition. One presented

- 1 the polymorphisms that could potentially classify it as pre-XDR-TB and another as XDR-
- 2 TB (Figure 1).
- 3
- 4 Figure 1. Phylogeny and transmission clusters of *M. tuberculosis* isolates from Veracruz,
- 5 Mexico obtained by WGS

1 **Discussion**

Mexico is a country that presents endemic tuberculosis and more than 20,000 cases 2 are reported annually, of which close to 1,500 are DR-TB. The state of Veracruz has a 3 4 population of close to seven million inhabitants, and contributes 13% (2,500) of the total number of TB cases in Mexico, close to 15% of the annually reported number of DR-TB 5 6 cases in the country and occupies first place in terms of prevalent cases of MDR-TB [22]. 7 For these reasons, Veracruz is positioned as one of the most significant contributors to the 8 DR-TB and MDR-TB problem in Mexico. The epidemiological characteristics of the 9 population included in this study, such as a high proportion of individuals with T2DM 10 (36%) and primary treatment (47%), reflect previous reports for the region [24,25,30,41] 11 and confirm the influence of T2DM as an important factor in the development of DR-TB 12 and MDR-TB, as well as highlighting the difficulties for diagnosis, control and preventive management of DR-TB by the health agencies as well as evidencing the urgent need to 13 develop new diagnostic procedures. 14

Among the 81 DR-TB isolates subjected to WGS, more than 200 polymorphisms were identified in 60 positions of the more than 35 genes analyzed. This evidences the diversity of mutations present in the drug-resistant isolates in circulation, and is in agreement with previous reports describing mutations identified by Sanger-type sequencing [27–30,42–44].

A sensitivity of 84%, specificity of 100% and kappa concordance of 88% were determined for the diagnosis of resistance to H; these values are similar to that described in reports from different locations [8–11,21] (Table. 7). Ten isolates showed no mutations that

could explain their phenotypic condition of resistance. The possibility exists that other 1 2 mutations or unreported genes, such as pump flux, may be actively participating but further studies are required to confirm this possibility. There was a noteworthy presence of isolated 3 carriers of unusual mutations, such as katGP325S and katGN138H [45], as well as an 4 5 important number of mutations in the intergenic position of ahpC-OxyR, described as 6 compensatory for isoniazid resistance and associated with *katG* mutations [46]. 7 Considering all the above, the information obtained supports the proposal of the use of WGS as a useful tool for the diagnosis of isoniazid resistance [46]. 8

9 Table 7. Comparison of percentage of concordance values for drug resistant diagnosis10 prediction obtained by WGS found in this and several other studies

Drug	Me	study exico =81)	Walker 201 Ul (n=7	15 K	Glo	al., 2018 obal 6465)	Shea 201 New 2 (n=6	7. York	et al., In	terjee , 2017 dia 74)	Cry Conso 20 (n=10	rtium 18
	Sen	Spe	Sen	Spe	Sen	Spe	Sen	Spe	Sen	Spe	Sen	Spe
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Isoniazid	84	100	85	98	90	97	87	99	100	94	97	99
Rifampicin	96	94	92	99	93	98	100	97	100	94	97	99
Ethambutol	71	90	82	95	90	92	79	99	100	78	94	94
Pyrazinamide	75	90	24	100	65	92	86	98			91	96
Streptomycin	29	98	82	99	80	91	73	100	85	100		

11 Sen= sensitivity, Spe=Specificity.

The sensitivity of 96% and specificity of 94% observed for the diagnostic of R by WGS coincides with previous reports [8–11,21] (Table 7). Two isolates were notable for being phenotypically susceptible to rifampicin, despite the fact that they were carriers of the mutations *rpoB432Q*/L and *rpoB430L/P* respectively, which have been considered as "disputed mutations" [47] that confers low-level R resistance [48]. Isolates carrying this type of mutation are phenotypically misclassified as rifampicin susceptible, and routine genotypic tests fail in terms of their detection [47]. This indicates that WGS could improve the local diagnostic of R resistance, and of MDR, considering that rifampicin resistance has become a subrogated marker of MDR-TB [1]. In this context, the analyses of the 51 Rresistant isolates included in this study show that 46 (90%) of these were also MDR-TB according to the BACTEC MGIT phenotypic test, while 41 (80%) presented, through WGS, the mutations that explain that condition.

The sensitivity for the diagnosis of resistance to E by WGS was 71%, which is 8 9 one of the lowest described to date [8-11,21] (Table 7). Seven resistant isolates showed no mutations, while six sensitive isolates showed a mutation associated with resistance to this 10 11 drug. These contradictory results can explain the low sensitivity and positive predictive values observed. Such variations in the occurrence of mutations associated with resistance 12 to E are similar to those reported previously [49]. Resistant isolates lacking in mutations 13 14 and the presence of mutations related to resistance in sensitive isolates show the possibility of failures in the BACTEC MGIT phenotypic assay, and further analysis is required in 15 16 order to identify the factors that cause this low sensitivity and to improve the efficiency of WGS in predicting resistance against this drug among the isolates from the setting. 17

The sensitivity of 75% observed for Z was low compared to other reports [8–11,21] (Table 7); however, the specificity of 90% and kappa agreement of 84% supports the use of WGS for the diagnosis of resistance to this drug. The presence of four susceptible but mutation-carrying isolates and seven resistant but unmutated (*pncA or rpsA*) isolates can help to explain the low sensitivity found. However, technical problems with *in vitro* testing of Z resistance associated with inoculum concentration, volume and homogeneity [50], and

even changes in the pH of the culture medium, have been considered to influence the diagnostic of false positive resistant Z strains [51]. The diversity and number of mutations and indels observed in *pncA* was the highest among all of the genes studied, and was similar to values previously described [29]. A deletion in the *pncA47* position (2289101; gttgc) and an insertion in *pncA131* (2288850; +cc) were identified; both indels were described in isolates circulating in the region five years ago [29], raising the possibility that these isolates are still actively circulating in the present population.

8 The 29% sensitivity observed for S through the WGS was among the lowest 9 reported [8–11,21] (Table 7). The mechanisms of resistance to S are complex and involve 10 several genes. While those considered as canonical (*gibB*, *rpsL and rrs*) were characterized 11 here, only a limited number of isolates carried a mutation; a behavior similar to that 12 previously observed in isolates from the region [28], highlighting the need for further 13 studies to identify the mutations involved with resistance against this drug.

While S has not been used in Mexico as a first line drug against TB since the 1980s, the fact that 47% of the isolates analyzed presented resistance to this drug evidences the possible presence of "old" S resistant strains still in active circulation in the population and that actually participate in the resistance against first line drugs in TB. This could be of particular relevance in Mexico, considering the WHO recommendation for use of this drug as a second line drug in specific situations [52].

The sensitivity and specificity for the diagnosis of MDR-TB using WGS were 89% and 97%, respectively, and presented a kappa agreement of 92%. These values indicate the feasibility of using this technique as a support for prediction of the diagnosis of these

aggravated forms of TB. There is no doubt that this will have a significant value in Mexico,
 since it is a country that generates an important number of cases of MDR-TB in Latin
 America.

Through WGS, eight isolates were identified as bearing the mutations that would 4 confer a potential pre-XDR-TB character, and three isolates were predicted as XDR-TB: 5 6 nevertheless, it was not possible to acquire their phenotypic profiles against second line drugs and confirm the real condition of these isolates. In this sense, previous reports 7 8 describe that it is possible by means of WGS to identify XDR-TB isolates with sensitivity 9 and specificity values exceeding 85% [6,8,10,18,53]. Thus, the possibility of generating a faster screening diagnosis of pre- and XDR-TB strains using WGS could have important 10 11 implications for a middle-income country such as Mexico, where at least 6 to 12 months are required to establish a sensitivity profile against second line drugs in isolates suspected of 12 having this condition. 13

While it was only a relatively small number of isolates studied, four lineages were 14 15 identified; 90% (76) were placed in L4 (Euro-American), confirming the predominance of this lineage in the population [24,25,41,54,55] and the presence of the "founder effect", 16 where the predominance of specific lineages seems to limit the dispersion of new or less 17 frequent lineages [55–57]. Twenty-six (32%) isolates were located within six transmission 18 19 clusters, of which two were particularly noteworthy: i) the TC1, which included the only 20 two isolates with L3 (CAS) and ii) the TC6, comprising 13 (17%) MDR-TB isolates with 21 sub-lineage 4.1.1 (X), including one isolate identified as pre-XDR-TB and another as XDR-TB. These CAS and X lineages are rarely referred in Mexico, particularly with such a 22

strong tendency towards drug resistance [24,25,41,54,58] and additional studies will be
 necessary to determine the extension of this sub-lineages in the population.

The main limitation of this study probably relates to the fact that all of the isolates 3 came from a single region of Mexico, even though it is one of the states with the highest 4 number of cases of DR-TB and MDR-TB in the country. It would undoubtedly be 5 necessary to increase the number of isolates sourced from different regions of the country, 6 and to identify the mutations that are most frequently involved in the development of 7 8 resistance to first- and second-line drugs. This information will guide the application of WGS, for early diagnosis and treatment of DR-TB, as well as the development of 9 10 epidemiological studies to identify the risk factors associated with the development and transmission of infection generated by DR-TB in the Mexican population. 11

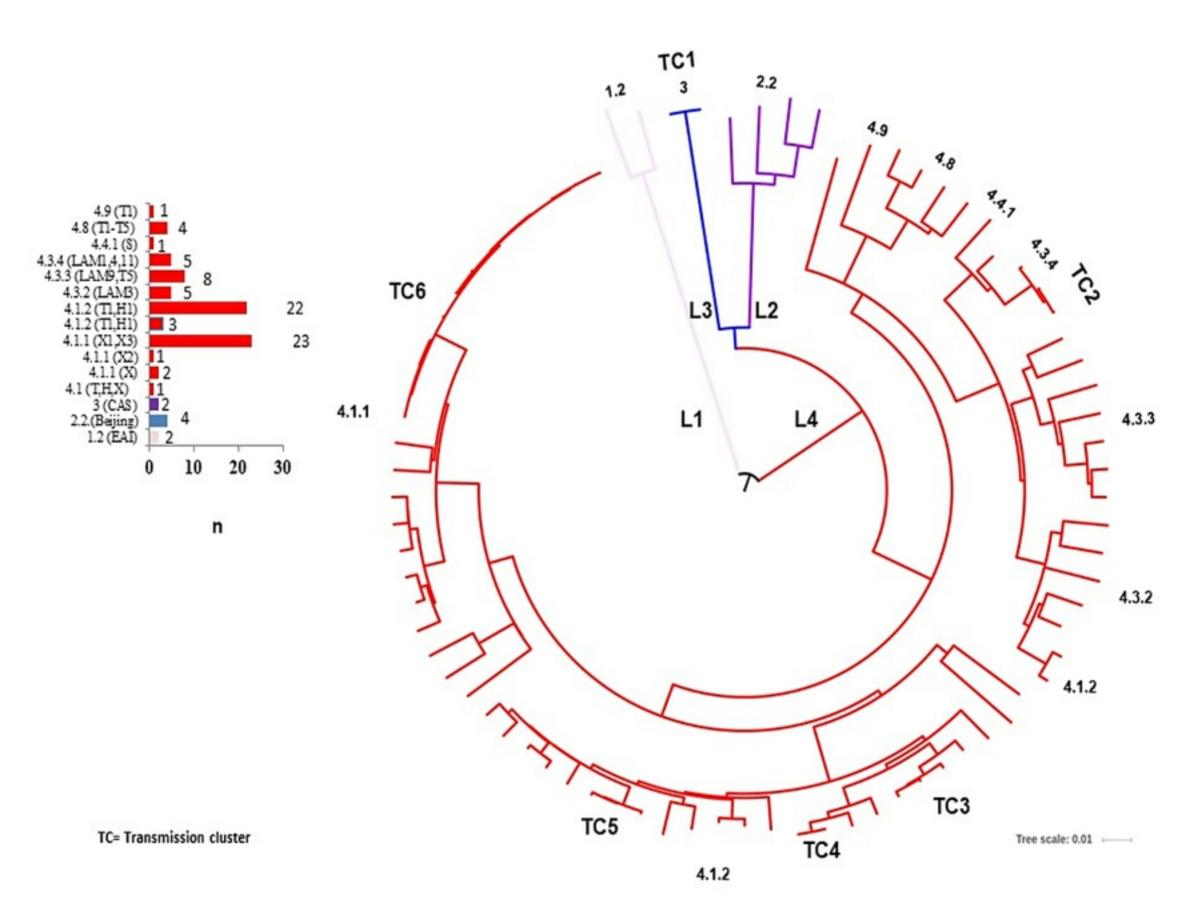
In conclusion, this study illustrates the utility of WGS in terms of the diagnostic of resistance against first line drugs, MDR-TB and the screening of pre-XDR- and XDR-TB in Mexico; as well as presenting the valuable additional possibility of characterizing the genotypes in circulation and identifying transmission clusters, allowing further development of epidemiological-genomic surveillance studies.

17 Acknowledgments

18 CFM-M was a CONACYT fellow of the Maestría en Ciencias de la Salud of the 19 Instituto de Ciencias de la Salud Universidad Veracruzana. RZ-C and IC were partially 20 funded by I-COOP-2017- COOPB2032. RMS was funded by CONACyT-Problemas 21 nacionales grant no. 2015-01-147. XS was funded by GACD-FONCICYT Conacyt 22 No.264693. Thanks go to Nancy Seraphín, from the Division of Infectious Diseases and

- 1 Global Medicine, University of Florida, Gainesville, Florida, USA, for performing the
- 2 WGS of certain isolates.
- 3
- 4

5 **References**


- 6 7 1. World Health Organization. Global Tuberculosis Report. 2016th ed. World Health 8 Organizaiton; 2017;2017: 1-4. doi:WHO/HTM/TB/2017.23 9 2. Stop TB Partnership W. The Global Plan to Stop TB 2016 - 2020. 2016;2020: 1-4. Feuerriegel S. Schleusener V. Beckert P. Kohl TA, Miotto P. Cirillo DM, et al. PhyResSE: 10 3. A web tool delineating Mycobacterium tuberculosis antibiotic resistance and lineage from 11 12 whole-genome sequencing data. Carroll KC, editor. J Clin Microbiol. 2015/04/10. 2015;53:
- 13 1908–1914. doi:10.1128/JCM.00025-15
- Coll F, McNerney R, Preston MD, Guerra-Assunção JA, Warry A, Hill-Cawthorne G, et al.
 Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences.
 Genome Med. 2015;7: 51. doi:10.1186/s13073-015-0164-0
- Witney AA, Gould KA, Arnold A, Coleman D, Delgado R, Dhillon J, et al. Clinical
 Application of Whole-Genome Sequencing To Inform Treatment for Multidrug-Resistant
 Tuberculosis Cases. Forbes BA, editor. J Clin Microbiol. 2015;53: 1473–1483.
 doi:10.1128/JCM.02993-14
- Senghore M, Otu J, Witney A, Gehre F, Doughty EL, Kay GL, et al. Whole-genome
 sequencing illuminates the evolution and spread of multidrug-resistant tuberculosis in
 Southwest Nigeria. PLoS One. 2017/09/20. 2017;12: e0184510.
- 24 doi:10.1371/journal.pone.0184510
- Witney AA, Cosgrove CA, Arnold A, Hinds J, Stoker NG, Butcher PD. Clinical use of
 whole genome sequencing for Mycobacterium tuberculosis. BMC Med. 2016;14: 46.
 doi:10.1186/s12916-016-0598-2
- Walker TM, Merker M, Kohl TA, Crook DW, Niemann S, Peto TEA. Whole genome
 sequencing for M/XDR tuberculosis surveillance and for resistance testing. Clin Microbiol
 Infect. Elsevier Ltd; 2017;23: 161–166. doi:10.1016/j.cmi.2016.10.014
- Coll F, Phelan J, Hill-Cawthorne GA, Nair MB, Mallard K, Ali S, et al. Genome-wide
 analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet.
 2018/01/24. 2018; doi:10.1038/s41588-017-0029-0
- Shea J, Halse TA, Lapierre P, Shudt M, Kohlerschmidt D, Van Roey P, et al.
 Comprehensive whole-genome sequencing and reporting of drug resistance profiles on clinical cases of Mycobacterium tuberculosis in New York State. J Clin Microbiol.
 2017/04/07. 2017;55: 1871–1882. doi:10.1128/JCM.00298-17
- The CRyPTIC Consortium and the 100 000 Genomes Project. Prediction of Susceptibility to
 First-Line Tuberculosis Drugs by DNA Sequencing. N Engl J Med. Massachusetts Medical
 Society; 2018; NEJMoa1800474. doi:10.1056/NEJMoa1800474
- Eldholm V, Monteserin J, Rieux A, Lopez B, Sobkowiak B, Ritacco V, et al. Four decades
 of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat
 Commun. Nature Publishing Group; 2015;6: 7119. doi:10.1038/ncomms8119
- 44 13. Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR, Caugant DA, et al.
- 44 15. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible

1		ancestor in a single patient. Genome Biol. BioMed Central; 2014;15: 490.
2		doi:10.1186/s13059-014-0490-3
3	14.	Cohen KA, Abeel T, Manson McGuire A, Desjardins CA, Munsamy V, Shea TP, et al.
4		Evolution of Extensively Drug-Resistant Tuberculosis over Four Decades: Whole Genome
5		Sequencing and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-
6		Natal. PLoS Med. 2015/09/30. 2015;12: e1001880. doi:10.1371/journal.pmed.1001880
7	15.	Holt KE, McAdam P, Thai PVK, Thuong NTT, Ha DTM, Lan NN, et al. Frequent
8		transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for
9		the EsxW Beijing variant in Vietnam. Nat Genet. Nature Publishing Group; 2018;50: 849-
10		856. doi:10.1038/s41588-018-0117-9
11	16.	Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis: Update
12		2015 [Internet]. International Journal of Tuberculosis and Lung Disease. 2015. pp. 1276-
13		1289. doi:10.5588/ijtld.15.0389
14	17.	Ali A, Hasan Z, McNerney R, Mallard K, Hill-Cawthorne G, Coll F, et al. Whole genome
15		sequencing based characterization of extensively drug-resistant mycobacterium tuberculosis
16		isolates from pakistan. PLoS One. 2015/02/27. 2015;10: e0117771.
17		doi:10.1371/journal.pone.0117771
18	18.	Aung HL, Tun T, Moradigaravand D, Köser CU, Nyunt WW, Aung ST, et al. Whole-
19		genome sequencing of multidrug-resistant Mycobacterium tuberculosis isolates from
20		Myanmar. J Glob Antimicrob Resist. 2016/08/18. 2016;6: 113-117.
21		doi:10.1016/j.jgar.2016.04.008
22	19.	Manson AL, Abeel T, Galagan JE, Sundaramurthi JC, Salazar A, Gehrmann T, et al.
23		Mycobacterium tuberculosis Whole Genome Sequences From Southern India Suggest Novel
24		Resistance Mechanisms and the Need for Region-Specific Diagnostics. Clin Infect Dis.
25		2017/05/13. 2017;64: 1494–1501. doi:10.1093/cid/cix169
26	20.	Papaventsis D, Casali N, Kontsevaya I, Drobniewski F, Cirillo DM, Nikolayevskyy V.
27		Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: a
28		systematic review. Clin Microbiol Infect. 2016/10/23. Elsevier Ltd; 2017;23: 61-68.
29		doi:10.1016/j.cmi.2016.09.008
30	21.	Chatterjee A, Nilgiriwala K, Saranath D, Rodrigues C, Mistry N. Whole genome sequencing
31		of clinical strains of Mycobacterium tuberculosis from Mumbai, India: A potential tool for
32		determining drug-resistance and strain lineage. Tuberculosis. 2017/10/21. Elsevier Ltd;
33		2017;107: 63-72. doi:10.1016/j.tube.2017.08.002
34	22.	Castellanos-Joya M. Actual situation of Tuberculosis in Mexico, 2014.
35		http://www.cenaprece.salud.gob.mx/programas/interior/micobacteriosis/descargas/pdf/Situa
36		cionActualTbMexico.pdf [Internet]. 2014.
37	23.	Pan American Health Organisation. Tuberculosis in the Americas 2018 [Internet]. PAHO;
38		2018. doi:10.1086/203554
39	24.	Flores-Trevino S, Mendoza-Olazaran S, Garza-Gonzalez E. Drug resistance and molecular
40		epidemiology of Mycobacterium tuberculosis in Mexico: a systematic review. Salud Publica
41		Mex. 2014;56: 63-77. Available: http://www.ncbi.nlm.nih.gov/pubmed/24912522
42	25.	Munro-Rojas D, Fernandez-Morales E, Zarrabal-Meza J, Martínez-Cazares MT, Parissi-
43		Crivelli A, Fuentes-Domínguez J, et al. Genetic diversity of drug and multidrug-resistant
44		Mycobacterium tuberculosis circulating in Veracruz, Mexico. PLoS One. 2018;13.
45		doi:10.1371/journal.pone.0193626
46	26.	Zenteno-Cuevas R, Xochihua-Gonzalez O, Cuevas-Córdoba B, Victoria-Cota NL, Muñiz-
47		Salazar R, Montero H, et al. Mutations conferring resistance to first- and second-line drugs
48		in multidrug-resistant Mycobacterium tuberculosis clinical isolates in southeast Mexico
49		[Internet]. International Journal of Antimicrobial Agents. 2015. pp. 671-673.
50		doi:10.1016/j.ijantimicag.2015.02.006
51	27.	Zenteno-Cuevas R, Zenteno JC, Cuellar A, Cuevas B, Sampieri CL, Riviera JE, et al.

1		Mutations in rpoB and katG genes in mycobacterium isolates from the Southeast of Mexico.
2		Mem Inst Oswaldo Cruz. 2009;104: 468-472. doi:10.1590/S0074-02762009000300012
3	28.	Cuevas-Córdoba B, Cuellar-Sánchez A, Pasissi-Crivelli A, Santana-álvarez CA, Hernández-
4		Illezcas J, Zenteno-Cuevas R. Rrs and rpsL mutations in streptomycin-resistant isolates of
5		Mycobacterium tuberculosis from Mexico. J Microbiol Immunol Infect. 2013;46: 30-34.
6		doi:10.1016/j.jmii.2012.08.020
7	29.	Cuevas-Córdoba B, Xochihua-González SO, Cuellar A, Fuentes-Domínguez J, Zenteno-
8		Cuevas R. Characterization of pncA gene mutations in pyrazinamide-resistant
9		Mycobacterium tuberculosis isolates from Mexico. Infect Genet Evol. 2013;19: 330–334.
10		doi:10.1016/j.meegid.2012.12.013
11	30.	Juarez-Eusebio DM, Munro-Rojas D, Muñiz-Salazar R, Laniado-Laborín R, Martinez-
12		Guarneros JA, Flores-López CA, et al. Molecular characterization of multidrug-resistant
13		Mycobacterium tuberculosis isolates from high prevalence tuberculosis states in Mexico.
14		Infect Genet Evol. 2016/09/18. 2017;55: 384–391. doi:10.1016/j.meegid.2016.09.012
15	31.	Perez-Navarro LM, Fuentes-Dominguez F, Morales-Romero J, Zenteno-Cuevas R. [Factors
16		associated to pulmonary tuberculosis in patients with diabetes mellitus from Veracruz,
17		Mexico]. Gac Med Mex. 2011;147: 219–225. Available:
18		http://www.ncbi.nlm.nih.gov/pubmed/21743589
19	32.	van Soolingen D, Hermans PW, de Haas PE, Soll DR, van Embden JD. Occurrence and
20		stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation
21		of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of
22		tuberculosis. J Clin Microbiol. 1991;29: 2578–2586. Available:
23		http://www.ncbi.nlm.nih.gov/pubmed/1685494
24	33.	Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact
25		alignments. Genome Biol. 2014;15: R46. doi:10.1186/gb-2014-15-3-r46
26	34.	Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa
27		migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans.
28		Nat Genet. 2013/09/03. 2013;45: 1176–1182. doi:10.1038/ng.2744
29	35.	Feuerriegel S, Schleusener V, Beckert P, Kohl TA, Miotto P, Cirillo DM, et al. PhyResSE: a
30		Web Tool Delineating Mycobacterium tuberculosis Antibiotic Resistance and Lineage from
31		Whole-Genome Sequencing Data. J Clin Microbiol. 2015/04/10. 2015;53: 1908–1914.
32		doi:10.1128/JCM.00025-15
33	36.	Coll F, McNerney R, Guerra-Assunção JA, Glynn JR, Perdigão J, Viveiros M, et al. A
34		robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun.
35		2014/09/02. 2014;5: 4–8. doi:10.1038/ncomms5812
36	37.	Stucki D, Ballif M, Egger M, Furrer H, Altpeter E, Battegay M, et al. Standard Genotyping
37		Overestimates Transmission of Mycobacterium tuberculosis among Immigrants in a Low-
38		Incidence Country. J Clin Microbiol. 2016/05/20. 2016;54: 1862–1870.
39		doi:10.1128/JCM.00126-16
40	38.	Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-genome
41		sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational
42		study. Lancet Infect Dis. 2012/11/20. 2013;13: 137–146. doi:10.1016/S1473-
43		3099(12)70277-3
44	39.	Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary
45		Genetics Analysis Version 6.0. Mol Biol Evol. 2013;30: 2725–2729.
46		doi:10.1093/molbev/mst197
47	40.	Landis JR, Koch GG. The measurement of observer agreement for categorical data.
48		Biometrics. 1977;33: 159–74. Available: http://www.ncbi.nlm.nih.gov/pubmed/843571
49	41.	Martinez-Guarneros A, Rastogi N, Couvin D, Escobar-Gutierrez A, Rossi LM, Vazquez-
50		Chacon CA, et al. Genetic diversity among multidrug-resistant Mycobacterium tuberculosis
51		strains in Mexico. Infect Genet Evol. 2013;14: 434–443. doi:10.1016/j.meegid.2012.12.024

1 2	42.	Zenteno-Cuevas R, Montes-Villaseñor E, Morales-Romero J, Coronel-Martín del Campo G, Cuevas B. Co-infection and risk factors of tuberculosis in a Mexican HIV+ population. Rev
3		Soc Bras Med Trop. 2011;44: 282–285. doi:10.1590/S0037-86822011005000034
4	43.	Cuevas-Córdoba B, Juárez-Eusebio DM, Almaraz-Velasco R, Muñiz-Salazar R, Laniado-
5		Laborin R, Zenteno-Cuevas R, et al. Mutation at embB codon 306, a potential marker for the
6 7		identification of multidrug resistance associated with ethambutol in Mycobacterium
8		tuberculosis. Antimicrob Agents Chemother. 2015;59: 5455–5462. doi:10.1128/AAC.00117-15
8 9	44.	Zenteno-Cuevas R, Cuevas-Cordoba B, Enciso A, Enciso L, Cuellar A. Assessing the utility
10		of three TaqMan probes for the diagnosis of tuberculosis and resistance to rifampin and
11		isoniazid in Veracruz, México. Can J Microbiol. 2012;58: 318–325. doi:10.1139/w11-127
12	45.	Seifert M, Catanzaro D, Catanzaro A, Rodwell TC. Genetic mutations associated with
13		isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS One. Public
14		Library of Science; 2015;10: e0119628. doi:10.1371/journal.pone.0119628
15	46.	Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE, et al. Compensatory
16		ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science. 1996;272:
17		1641-3. Available: http://www.ncbi.nlm.nih.gov/pubmed/8658136
18	47.	Van Deun A, Aung KJM, Bola V, Lebeke R, Hossain MA, de Rijk WB, et al. Rifampin drug
19		resistance tests for tuberculosis: challenging the gold standard. J Clin Microbiol. American
20		Society for Microbiology (ASM); 2013;51: 2633–40. doi:10.1128/JCM.00553-13
21	48.	Miotto P, Cabibbe AM, Borroni E, Degano M, Cirillo DM. Role of Disputed Mutations in
22		the rpoB Gene in Interpretation of Automated Liquid MGIT Culture Results for Rifampin
23		Susceptibility Testing of Mycobacterium tuberculosis. J Clin Microbiol. American Society
24 25	40	for Microbiology Journals; 2018;56: e01599-17. doi:10.1128/JCM.01599-17
25 26	49.	Cuevas-Córdoba B, Juárez-Eusebio DM, Almaraz-Velasco R, Muñiz-Salazar R, Laniado- Laborin R, Zenteno-Cuevas R. Mutation at embB codon 306, a potential marker for the
20 27		identification of multidrug resistance associated with ethambutol in Mycobacterium
27		tuberculosis. Antimicrob Agents Chemother. 2015;59: 5455–5462.
29		doi:10.1128/AAC.00117-15
30	50.	Chedore P, Bertucci L, Wolfe J, Sharma M, Jamieson F. Potential for Erroneous Results
31	00.	Indicating Resistance When Using the Bactec MGIT 960 System for Testing Susceptibility
32		of Mycobacterium tuberculosis to Pyrazinamide. J Clin Microbiol. 2010;48: 300–301.
33		doi:10.1128/JCM.01775-09
34	51.	Piersimoni C, Mustazzolu A, Giannoni F, Bornigia S, Gherardi G, Fattorini L. Prevention of
35		false resistance results obtained in testing the susceptibility of Mycobacterium tuberculosis
36		to pyrazinamide with the Bactec MGIT 960 system using a reduced inoculum. J Clin
37		Microbiol. 2013;51: 291–4. doi:10.1128/JCM.01838-12
38	52.	WHO Companion handbook to the WHO guidelines for the programmatic management of
39	52	drug-resistant tuberculosis. WHO. World Health Organization; 2016;
40	53.	Mahomed S, Naidoo K, Dookie N, Padayatchi N. Whole genome sequencing for the
41 42		management of drug-resistant TB in low income high TB burden settings: Challenges and implications. Tuberculosis. 2017/10/21. Elsevier Ltd; 2017;107: 137–143.
42 43		doi:10.1016/j.tube.2017.09.005
43 44	54.	Zenteno-Cuevas R, Mendoza-Damián F, Muñoz ICIC, Enciso-Moreno L, Pérez-Navarro
45	54.	LMLM, Ramírez-Hernández MDMD, et al. Description of the population structure and
46		genetic diversity of tuberculosis in Estado de México, a low prevalence setting from Mexico.
47		APMIS. 2015;123: 116–122. doi:10.1111/apm.12312
48	55.	Munro-Rojas D, Fernandez-Morales E, Zarrabal-Meza J, Martínez-Cazares MTMT, Parissi-
49		Crivelli A, Fuentes-Domínguez J, et al. Genetic diversity of drug and multidrug-resistant
50		Mycobacterium tuberculosis circulating in Veracruz, Mexico. Mokrousov I, editor. PLoS
51		One. Public Library of Science; 2018;13: e0193626. doi:10.1371/journal.pone.0193626

1	56.	Grandjean L, Iwamoto T, Lithgow A, Gilman RH, Arikawa K, Nakanishi N, et al. The
2		Association between Mycobacterium Tuberculosis Genotype and Drug Resistance in Peru.
3		PLoS One. 2015/05/20. 2015;10: e0126271. doi:10.1371/journal.pone.0126271
4	57.	Dymova MA, Liashenko OO, Poteiko PI, Krutko VS, Khrapov EA, Filipenko ML. Genetic
5		variation of Mycobacterium tuberculosis circulating in Kharkiv Oblast, Ukraine. BMC
6		Infect Dis. BioMed Central; 2011;11: 77. doi:10.1186/1471-2334-11-77
7	58.	Flores-López CA, Zenteno-Cuevas R, Laniado-Laborín R, Reynaud Y, García-Ortiz RA,
8		González-Y-Merchand JA, et al. Molecular epidemiology of Mycobacterium tuberculosis in
9		Baja California, Mexico: A result of human migration? Infect Genet Evol. 2017;55: 378-
10		383. doi:10.1016/j.meegid.2016.07.001
11		

figure 1