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Abstract

A major cause of chemoresistance and recurrence in tumors is the presence of dormant tumor foci

that survive chemotherapy and can eventually transition to active growth to regenerate the cancer. In

this paper, we propose a Quasi Birth-and-Death (QBD) model for the dynamics of tumor growth and

recurrence/remission of the cancer. Starting from a discrete-state master equation that describes the time-

dependent transition probabilities between states with different numbers of dormant and active tumor foci,

we develop a framework based on a continuum-limit approach to determine the time-dependent probability

that an undetectable residual tumor will become large enough to be detectable. We derive an exact formula

for the probability of recurrence at large times and show that it displays a phase transition as a function of

the ratio of the death rate µA of an active tumor focus to its doubling rate λ. We also derive forward and

backward Kolmogorov equations for the transition probability density in the continuum limit and, using a

first-passage time formalism, we obtain a drift-diffusion equation for the mean recurrence time and solve it

analytically to leading order for a large detectable tumor size N . We show that simulations of the discrete-

state model agree with the analytical results, except for O(1/N) corrections. Finally, we describe a scheme

to fit the model to recurrence-free survival (Kaplan-Meier) curves from clinical cancer data, using ovarian

cancer data as an example. Our model has potential applications in predicting how changing chemotherapy

schedules may affect disease recurrence rates, especially in cancer types for which no targeted therapy is

available.
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1. Introduction

The advent of chemotherapy was an important milestone in the history of cancer treatment and research.

For the treatment of early stage cancer, it remains the only option after surgery and radiation for cancers

where no long-term targeted adjuvant (post-surgery) therapy is available, such as serous ovarian cancer

and triple negative (ER-/HER2-/PR-) breast cancer [1]. By targeting rapidly cycling cells, chemotherapy5

systemically attacks growing tumors. Side effects on other tissues, especially on cells with a high turnover

rate, such as skin and the intestinal epithelium, can be moderate to severe, depending on the duration and

intensity of treatment.

Several mathematical models have been proposed to predict optimal regimens of adjuvant chemotherapy

to specify duration, dosage levels or dosing protocols, with the goal of reducing recurrence hazard rates.10

These models may be classified by their mathematical approach, which can be either stochastic or deter-

ministic and linear or nonlinear, and to the nature of the biological assumptions underlying them (see [2] for

a review). Examples of such models include optimal-control-theory models [3], game-theoretical models [4],

as well as models of drug resistance and/or chemotherapy scheduling, which can be either stochastic [5–8]

or deterministic [9–11].15

In current clinical practice, chemotherapy is usually given at “maximum tolerated dose” for the “mini-

mum possible duration”, which is usually 3-6 months, in the belief that this will have the most benefit to

the patient in the least possible time [13]. This is based on modeling tumor cells as continuously dividing

at some fixed deterministic rate [14]. Norton and Simon [15] proposed that tumor growth follows a type of

sigmoid curve known in the literature as the Gompertzian function, and also proposed the tumor-regression20

hypothesis, that cell kill is proportional to the growth rate of the untreated tumor [12, 16]. Since the

Gompertzian growth rate decreases as the tumor grows, they concluded that it becomes increasingly more

difficult to kill the tumor as its size increases. This model provides the justification for the “maximum

tolerated dose” and maximizing dose density, the goal being to efficiently kill the tumor when it is small and

growing rapidly. However, the effectiveness of this treatment paradigm is unclear and not entirely consistent25

with some clinical and experimental data [17, 18] (see also the review paper [16] for a detailed literature

review).

Furthermore, it is known that the stage of a cancer, which is related to the tumor size and degree of

lymph node involvement, is an excellent predictor of prognosis, independently of cancer type or therapy.

The larger the tumor, the more difficult it is to effect a cure. Likewise, tumor grade, which is a measure of30

tumor aggressiveness, is also a good predictor of outcome. However, it has been suggested that the fractional

impact of treatment on improved survival is higher for patients with late-stage or high-grade tumors than for

patients with early-stage or low-grade tumors (see, for example, the studies [20] and [21]). This observation

argues against the high-dose/short-term treatment paradigm by suggesting that unlike Norton and Simon
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proposed in their deterministic Gompertzian growth model, tumor cells may not all be in continuous growth,35

and that actively growing tumors tend to be more responsive to cytotoxic drugs than those that are mostly

in a dormant or resting state.

In [19], a stochastic alternative to Norton and Simon’s deterministic Gompertzian model is proposed for

breast cancer, where tumors are not in continuous growth, but can be either in a dormant state or in an

active-growth state. Indeed, it has been suggested that a major cause of resistance to chemotherapy is the40

presence of dormant tumor foci with a cycle time that exceeds the duration of chemotherapy [18, 19, 22].

This is consistent with the observation that often, the effect of chemotherapy on recurrence rates does

not last for a long time after chemotherapy ends. Several clinical trials [23–25] have shown that improved

recurrence rates for patients receiving chemotherapy revert to rates for the control group (who received no

chemotherapy) in a relatively short time after termination of treatment, suggesting the presence of residual45

dormant tumor foci that survive treatment and regenerate the cancer. These data also suggest that short-

duration chemotherapy only targets the tumor foci that cycle during chemotherapy. Tumor foci that cycle

after chemotherapy ends are not affected and can cause recurrence. This suggests that chemotherapy may

be more effective if its duration is optimized to the time it takes dormant foci to transition to active growth.

Direct evidence for this hypothesis is available in analysis of lymphoma data [26, 27], where maximiz-50

ing chemotherapy dosage did not have a prolonged effect on outcome, whereas extending the duration of

chemotherapy, while maintaining a minimum effective dose was more beneficial. Long-term hormonal ther-

apy with drugs that target the ER pathway (e.g. tamoxifen) in ER+/HER2- breast cancers, which are

low grade (have low transition rates of tumor foci from dormancy to active growth) provides yet another

example that longer-term treatment is preferable to short-term treatment [28]. These studies provide evi-55

dence that optimally adjusting the duration of chemotherapy may improve chemotherapy effectiveness, while

maintaining the same total amount of drug administered over the course of the chemotherapy regimen.

These observations suggest the following two hypotheses: 1) For a given cancer type, there is a charac-

teristic time for dormant tumor foci to transition to active growth; 2) Dormant tumor foci are often resistant

to chemotherapeutic agents, while active tumor foci are not. Based on these hypotheses, we develop a math-60

ematical model and framework with potential application to study the impact of variation in dosage and

duration of chemotherapy on recurrence rates. Our model may serve as a guide for the design of experiments

and clinical trials that may eventually lead to optimized chemotherapy regimens.

The remainder of the paper is organized as follows. In Section 2, we give an overview of the model

by defining its state space, parameters and transition rules. In Section 3, the stochastic dynamics of the65

model is formulated in terms of a continuous-time master equation in the discrete state space that represents

the numbers of dormant and active tumor foci. In Section 4, it is shown that an expansion of the master

equation for a large detectable-tumor size N leads to a simplified approach by mapping the original discrete-

state model to a stochastic process in a continuous two-dimensional state space. In Section 5, we find the
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large-time probability of recurrence in closed analytic form and calculate the mean recurrence time (MRT)70

analytically to leading order in N . In Section 5, we compare these analytical results to simulations and

describe a scheme to fit the model to recurrence-free survival (Kaplan-Meier) curves from clinical cancer

data, using ovarian cancer data as an example. Finally, in Section (6) we present our concluding remarks.

2. Overview of the discrete-state model

The precise discrete model for tumor recurrence that will be described in this section was inspired by75

previous work on the effect of quiescence (i.e., the presence of dormant tumor foci) on treatment success,

such as the work of Komarova and Wodarz [8], which inspired the stochastic model described below, or to

deterministic versions of their model, proposed in [9], [10], or [11]. However, in contrast to these earlier

studies, the focus of our paper is on finding a relationship between the model parameters and the time to

recurrence for a given treatment regimen. This is achieved using special boundary conditions that will be80

described in Sections 3 and 4, which to our knowledge, is a novel contribution to tumor modeling. For

simplicty and as a first exercise, we will explore only treatment regimens controlled by a single parameter

µA, the death rate of actively-dividing tumor foci. Also, unlike previous work mentioned above, we will

only model transitory chemoresistance resulting from dormancy, without discussing the important but more

difficult stochastic issue of resistance from acquired mutations.85

After surgery and radiation therapy, we assume that cancer patients retain a number of residual, un-

detectable tumor foci that may eventually grow and create a detectable tumor (recurrence). The foci can

transition from a dormant (non-dividing, chemo-resistant) state to an active (dividing, chemo-sensitive)

state and vice versa with rates η and ξ respectively. Chemotherapy affects only active foci, which can either

double or die, with rates λ and µA respectively. The dynamics of this process is modeled as a Quasi Birth-90

and-Death (QBD) process (for an introduction to the topic, see [29, 30]) that describes the stochastic time

evolution of the number of active and dormant tumor foci in a patient, resulting in either tumor recurrence

(when the number of foci is large enough to be detected) or remission (when there are no foci left).

Denoting by |m,n〉 the state with m dormant (D) tumor foci and n active (A) foci, the goal is to predict

the time evolution of the joint probability distribution pmn(t), given the initial condition pmn(0). Without95

loss of generality, we can choose pmn(0) = δm0,n0
, where m0 and n0 are respectively initial counts of dormant

and active foci. This is so because the latter initial condition defines a Green’s function, from which the

solution for any arbitrary initial condition can be constructed as a convolution of transition probabilities,

because of linearity.

Our QBD model for tumor recurrence is a Markov process on the two-dimensional lattice of all possible100

Fock states |m,n〉 with the following transition rules:

• At any given time, an active (A) tumor focus may either double or die at rates λ and µA, respectively.
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(a) Possible transitions on the lattice of states (m,n),

where m is the number of dormant (D) tumor foci and

n is the number of active (A) foci.

(b) Boundaries of the state space D⊗A. The bound-

ary conditions are absorbing at the cure state (0, 0)

and also at the recurrence line m+ n = N .

Figure 1: Structure of the Fock-like state space of the QBD model for tumor recurrence.

During chemotherapy (between time t = 0 and time t = tchemo > 0), the death rate is µA = µchemo

and after treatment (beyond time t = tchemo), it decreases to a lower baseline rate µA = µ0.

• By definition, a dormant (D) tumor focus cannot double, but it could in principle die at some rate105

µD. However, we will eventually set µD = 0. This is because dormant foci can repair chemotherapy

damage as we argued above, i.e., they are chemoresistant.

• An active (A) tumor focus may transition to dormancy (D) at rate ξ and a dormant tumor focus may

become active at rate η.

• Let T̄D and T̄A be the respective times that a tumor focus spends, on average, in the dormant and

active states before it doubles (averaged over many doublings). It then follows that the D → A and

A → D hopping rates are given by η = 1/T̄D and ξ = 1/T̄A, respectively, so the doubling rate is given

by λ = 1/(T̄A + T̄D). Hence, the rates η, ξ and λ are related by the equation

1

λ
=

1

η
+

1

ξ
. (1)

This constraint reduces the number of parameters in the model by one and allows us to parametrize

the rates η, ξ as

ξ = λ(1 + ν) , η = λ(1 + 1/ν) (ν > 0). (2)
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• All the tumor foci within each population (either D or A) are equally likely to undergo a transition,

so each transition probability on the two-dimensional lattice of states is proportional to either the

population of dormant foci (m) or the population of active foci (n). The transition probabilities of

any transitions beyond nearest neighbors are assumed to be second order in infinitesimal time, so the

model is “skip free”. The transition probabilities to neighboring states are then given by

Pr{m− 1, n; t+ ∆t|m,n; t} = µDm∆t+O(∆t2)

Pr{m,n− 1; t+ ∆t|m,n; t} = µAn∆t+O(∆t2)

Pr{m,n+ 1; t+ ∆t|m,n; t} = λn∆t+O(∆t2) (3)

Pr{m− 1, n+ 1; t+ ∆t|m,n; t} = ηm∆t+O(∆t2)

Pr{m+ 1, n− 1; t+ ∆t|m,n; t} = ξn∆t+O(∆t2)

and for transitions to states beyond nearest-neighbors, i.e., for |m−m′| > 1 or |n−n′| > 1, we assume

Pr{m′, n′; t+ ∆t|m,n; t} = O(∆t2). (4)

A diagram of the state space showing the transitions above is given in Fig. 1.110

• If the total number of tumor foci m + n reaches a sufficiently large number N , the tumor becomes

detectable and no further transitions are allowed, i.e., the disease recurrence is defined by means of

absorbing boundary conditions at the recurrence boundary m+n = N . The absorbing boundary con-

dition at the extinction state (0, 0) is automatically satisfied, since the transition rates are proportional

to either m or n.115

3. Master equation for the state probabilities

From the transition rules described in Section 2, it follows that the time evolution of the state probabilities

pmn(t) is given by the master equation

d |p(t)〉
dt

= Q̂ |p(t)〉 , (5)

where |p(t)〉 is the probability vector, whose components are the state probabilities pmn(t), i.e., |p(t)〉 =∑
mn

pmn(t) |m,n〉. The infinitesimal transition operator Q̂ = Q̂bulk + Q̂edge consists of a “bulk” part Q̂bulk

and an edge correction Q̂edge due to the absorbing boundary conditions at the recurrence line m+ n = N .

In second-quantized language, the bulk part is given by

Q̂bulk = (λ â+ + µA â− + ξ d̂+ â− − λ− µA − ξ) n̂+

+ (µD d̂− + η d̂− â+ − µD − η) m̂ (6)

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 13, 2019. ; https://doi.org/10.1101/551770doi: bioRxiv preprint 

https://doi.org/10.1101/551770
http://creativecommons.org/licenses/by-nc-nd/4.0/


and the edge correction is given by

Q̂edge =
∑N
m=0 [ −µDm |m− 1, N −m〉〈m,N −m|

−µA(N −m) |m,N −m− 1〉〈m,N −m|

−ξ(N −m+ 1) |m,N −m〉〈m− 1, N −m+ 1|

+(λ+ µA + ξ)(N −m) |m,N −m〉〈m,N −m|

−η (m+ 1) |m,N −m〉〈m+ 1, N −m− 1|

+ (µD + η)m |m,N −m〉〈m,N −m| ] .

(7)

In Eq. (7), d̂+ and d̂− are respectively creation and annihilation operators for dormant tumor foci and

â+ and â− are those for the active foci. These operators are defined as:

d̂± |m,n〉 = |m± 1, n〉 ,

â± |m,n〉 = |m,n± 1〉 . (8)

The number operators m̂ and n̂ are defined in the usual fashion:

m̂ |m,n〉 = m |m,n〉 ,

n̂ |m,n〉 = n |m,n〉 . (9)

The structure of the matrix Q̂ is block-tridiagonal in the linear space D⊗A, with block indices (m,m′)

that run across the Fock states of D, and with indices (n, n′) within each nonzero block that run across the

Fock states of A. The N + 1 blocks along the diagonal are themselves tridiagonal and decrease in size as

the D-space index n increases. The structure of Q̂, as described in Appendix A, is sufficiently complicated120

that explicit analytical solutions are not straightforward, although analytical formulas are available for the

inversion of general tridiagonal and even certain types of block-tridiagonal matrices [31, 32]. Analytical

and even stable numerical methods for general level-dependent QBD processes, i.e., QBD models with a

block-tridiagonal matrix structure where the blocks are not constant along the diagonals [33], are scarce in

the literature. Although a matrix-analytic method has been developed for these models in [34], it still relies125

on the ability to to solve non-trivial matrix equations. Numerical methods have been developed for finding

stationary distributions in level-dependent QBD models [35], but generally applicable numerical methods

for finding transient solutions (other than the expensive matrix exponentiation) have yet to be developed

[36]. For a special class of level-dependent QBD models with applications in biology and epidemiology, a

method based on a continuous-fraction representation of the Laplace-transformed transition probabilities130

has recently been developed [36]. However, it is not applicable to the model defined by Eqs. (5), (6) and

(7), where all the transition and birth/death rates can be nonzero.

If we disregard constraint (1) for the moment and consider the special case η = ξ = µD = 0, the system

reduces to a continuous-time birth-and-death process with transition rates λn and µAn (otherwise known
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in queuing theory as the M/M/1/N queue [29]) and with absorbing boundary states. The version of this

model with N → ∞ (i.e., semi-infinite Markov chain) and reflecting boundary conditions has been studied

extensively and analytical solutions have been obtained for its transient analysis using several techniques

[37–41]. A version of the M/M/1/N queuing model that is more relevant to our analysis is the one with

finite N and absorbing boundary states, which is solved analytically in [42], where the transient solution

is obtained and a simple expression is given for the large-time probability πrec of absorption at the state

n = N (corresponding to recurrence in our model), under the initial condition pn(0) = δn,n0
:

πrec =
1− (µA/λ)n0

1− (µA/λ)N
(10)

The probability of absorption at the zero-particle state n = 0 (corresponding to cure) is then πcure =

1− πrec. In the limit N →∞, we note that this model has a phase transition at µA/λ = 1:

πrec =

1− (µA/λ)n0 if µA/λ ≤ 1

0 otherwise
(11)

As will be shown in Section 5.1, a similar stationary solution also occurs in general in the QBD model

defined by Eqs. (5), (6) and (7). We will show this both analytically in the continuum limit and in

simulations of the discrete-state stochastic process.135

4. Continuum-limit of the discrete-state QBD model

A simple approach that is suitable for our tumor recurrence model is to take the continuum limit of the

master equation (5), i.e., take the large N limit. Since the reciprocal of the detectable tumor size (1/N) is

a natural small parameter in the model, the master equation can be expanded in powers of 1/N and thus

converted to a continuum equation. The resulting partial differential equation may then be solved using140

well-developed methods [43].

There are two alternative ways to represent the time evolution of the stochastic process at hand [43–47],

namely the forward master equation (5) and the backward master equation

d

dt
〈P (m,n; t)| = 〈P (m,n; t)| Q̂†, (12)

where Q̂† is the adjoint of the operator Q̂ defined in Eqs. (6), (7) and the state vector 〈P (m,n; t)| is defined

as the probability to end up at a particular state 〈m,n| at time t, starting from any state 〈m0, n0| at time

t = 0, i.e.,

〈P (m,n; t)| ≡
∑
m0,n0

〈m0, n0|Pr{m,n; t|m0, n0; 0}. (13)

When either Eq. (5) or Eq. (12) is used in the large-N expansion, we get respectively the forward or

the backward Kolmogorov equation in the continuum limit 1/N � 1 by truncating the expansion after the

second term, as discussed further below.
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4.1. Forward Kolmogorov approach145

We can define a continuum limit of the state space Ω = {(m,n)|m ≥ 0;n ≥ 0;m + n ≤ N} by defining

continuous variables x = m/N and y = n/N , which represent the dormant and active foci populations as a

fraction of the detectable tumor size N , respectively. We define a “tumor focus” as the resolution scale of

our model: for example, we can define a focus as 1/1000 of a detectable tumor, in which case N = 1000 is a

natural definition of recurrence (detectable tumor size). When N � 1, the lattice of discrete states (m,n)150

becomes a continuum as the spacings 1/N decrease to zero. The discrete probabilities pmn(t) can then be

replaced by a smooth probability density ρ(~x, t) = N2pmn(t), where ~x = (x, y) is an arbitrary point in the

bounded region Ω = {(x, y)|x ≥ 0; y ≥ 0;x+ y ≤ 1}.

We proceed to take the continuum limit of the master equation by first replacing the raising/lowering

operators (see Eqs. (5), (6) and (8)) by the corresponding translation operators in the continuum, i.e.,

d̂± → e∓δx∂/∂x and â± → e∓δy∂/∂y (the reason for the opposite signs is that the creation and annihilation

operators are passive transformations, whereas the continuum translation operators are defined as active

transformations). Then a Kramers-Moyal expansion of the master equation can be obtained by expanding

the operator (6) in powers of δx = δy = 1/N . Retaining only the first and the second terms in this large-size

expansion, we obtain the two-dimensional Fokker-Planck equation

∂ρ(~x, t)

∂t
= −~∇ · ~J(~x, t), (14)

which is a local continuity equation with a probability current density given by

~J(~x, t) = [−(ηx− ξy)(êx − êy)− µDxêx + (λ− µA)yêy] ρ(~x, t)−

− 1

2N

{
(êx − êy)

(
∂

∂x
− ∂

∂y

)
[(ηx+ ξy)ρ(~x, t)] +

+ êx
∂

∂x
[µDxρ(~x, t)] + êy

∂

∂y
[(λ+ µA)yρ(~x, t)]

}
, (15)

where each drift term is a product of the respective transition rate by the probability density, along the

unit vector in the direction of the transition, and the terms proportional to 1/N represent diffusion, with155

a diffusion tensor that involves off-diagonal terms (i.e., the terms that involve mixed second derivatives

∂2ρ/∂x∂y are nonzero) and is dependent upon the state variables (x, y).

Since Eq. (14) gives the probability density ρ(~x, t) at any state ~x = (x, y) at time t ≥ 0, given the

initial condition ρ(~x, 0), it corresponds to the well-known forward Kolmogorov equation [43–47]. Here we

define the initial condition to be sharply peaked at a state ~x0 = (x0, y0), i.e., ρ(~x, 0) = δ(~x − ~x0). Note160

that the normalization of the probability density ρ(~x, t) is not preserved by the time evolution, because the

probability flux exits through the recurrence boundary x + y = 1, and also accumulates at the cure state

(0, 0).
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The boundary conditions for Eq. (14) are the following. At the recurrence line x+ y = 1, the absorbing

boundary condition is ρ(~x, t) = 0. In the vicinity of the cure state (0, 0) we define ρ(~x, t) = 0 on the line165

x + y = ε, where ε � 1/N is a small parameter. In the weak limit (in the distributional sense) ε → 0, the

small region x+ y ≤ ε, representing the cure state, becomes a single absorbing point where the probability

density collapses to a Dirac delta function weighted by the probability of cure before time t, which will

henceforth be denoted by pcure(t).

On the boundaries x = 0, ε ≤ y ≤ 1 and y = 0, ε ≤ x ≤ 1, the boundary conditions are both reflecting,170

i.e., the normal component of the probability current density must vanish. In other words, ~J(~x, t) · ~n = 0,

where ~n is the outward normal and the current density ~J(~x, t) is defined by Eq. (15) (see Appendix B.1 for

details).

Equation (14) is separable with respect to time, i.e., it can be reduced to an eigenvalue problem for the

forward Fokker-Planck operator Lf defined by recasting Eq. (14) in the form ρ̇(~x, t) = Lfρ(~x, t). However,

it is not separable in the coordinates (x, y) and also depends on these variables explicitly through coefficients

inside the differential operators. Finding a basis of two-variable eigenfunctions of Lf satisfying the mixed

boundary conditions described above is a difficult problem, but unnecessary for our main goal, which is to

derive an equation for the recurrence-free survival function S(t), defined as the probability of no-recurrence

before time t, i.e.,

S(t) ≡
ˆ

Ωε

ρ(~x, t)d2x+ pcure(t) = 1− prec(t), (16)

where the domain of integration is the region Ωε = {(x, y)|x ≥ 0; y ≥ 0; ε ≤ x + y ≤ 1} and prec(t) and

pcure(t) are respectively the time-dependent probabilities of recurrence and cure before time t.175

The function S(t) defined in Eq. (16) is a bridge that connects data (survival curves) to the model.

The backward Kolmogorov approach is often more appropriate to first-passage time problems [45–48] and

will be used in combination with Eq. (15) to derive an equation for S(t). The current density derived

from the forward equation (Eq. (15)) will be used to derive formulas for the probability flux into the cure

state or through the recurrence boundary (note that unlike the forward equation, the backward equation180

cannot be expressed as a local continuity equation for the conservation of probability). Furthermore, the

boundary conditions for the backward equation are derived from those of the forward equation, as explained

in Appendix B.2.

4.2. Backward Kolmogorov approach

Starting with Eq. (12) and using the adjoint of the master equation operator (6), we can derive the

backward Kolmogorov equation by means of a Kramers-Moyal expansion similar to that leading to the

forward equation (14). It should be noted that the differential operators in the backward equation act on
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functions of the initial-state variables (x0, y0):

∂ρ(~x, ~x0, t)

∂t
= [−(ηx0 − ξy0)(êx − êy)− µDx0êx +

+(λ− µA)y0êy] · ~∇~x0
ρ(~x, ~x0, t)+

+
2∑
i=1

2∑
j=1

Dij(~x0)
∂2ρ(~x, ~x0, t)

∂x0i∂x0j

≡ Lb ρ(~x, ~x0, t), (17)

where Lb is the backward operator, (x01, x02) ≡ (x0, y0), and Dij(~x0) are the components of the diffusion

tensor

D(~x0) =

D11(~x0) D12(~x0)

D21(~x0) D22(~x0)


=

1

2N

ηx0 + ξy0 + µDx0 −(ηx0 + ξy0)

−(ηx0 + ξy0) ηx0 + ξy0 + (λ+ µA)y0

 . (18)

The backward equation (17) is somewhat different from Eq. (14) in that the non-constant coefficients185

appear outside the differential operators. It is subject to the final condition that some state ~x will be reached

at time t, starting from anywhere (~x0) in the state space. This explains why the backward equation is often

more useful for first-passage time problems than its forward counterpart.

The boundary conditions for the backward equation (17), which can be derived from those of the forward

equation (14), are the following. On both absorbing boundaries x0 + y0 = ε and x0 + y0 = 1, ρ(~x, ~x0, t) = 0.

At the reflecting boundaries, the boundary conditions are

∂ρ(~x,~x0,t)
∂x0

∣∣∣
x0=0

= ∂ρ(~x,~x0,t)
∂y0

∣∣∣
x0=0

(19)

at the boundary x0 = 0, ε ≤ y0 ≤ 1 and

∂ρ(~x,~x0,t)
∂x0

∣∣∣
y0=0

= ∂ρ(~x,~x0,t)
∂y0

∣∣∣
y0=0

(20)

at the boundary y0 = 0, ε ≤ x0 ≤ 1. These boundary conditions are derived in Appendix B.2.

The equations for the probability flux through the absorbing boundaries x+y = 1 and x+y = ε are given

in Appendix C. From them, we can derive the partial differential equations below for the time-dependent

probabilities of recurrence and cure before time t, respectively (see Appendix C for details):

ṗrec(~x0, t) = Lb prec(~x0, t), (21)

ṗcure(~x0, t) = Lb pcure(~x0, t), (22)

where Lb is the backward operator defined in Eq. (17) and we have used the notation prec(~x0, t), pcure(~x0, t)

to recall the dependence on the initial condition ~x0 = (x0, y0). Since the recurrence-free survival function is

11
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Table 1: Boundary conditions for the PDEs satisfied by a few relevant functions of the initial-state variables

~z0 = (z0, w0), where z0 ≡ x0 and w0 ≡ x0 + y0.

Function Equation

Boundary

w0 = ε w0 = 1 z0 = 0 z0 = w0

ρ(~z, ~z0, t) ρ̇ = Lb ρ ρ = 0 ρ = 0 ∂ρ
∂z0

= 0 ∂ρ
∂z0

= 0

prec(~z0, t) ṗrec = Lb prec prec = 0 prec = 1 ∂prec
∂z0

= 0 ∂prec
∂z0

= 0

pcure(~z0, t) ṗcure = Lb pcure pcure = 1 pcure = 0 ∂pcure
∂z0

= 0 ∂pcure
∂z0

= 0

S(~z0, t) Ṡ = Lb S S = 1 S = 0 ∂S
∂z0

= 0 ∂S
∂z0

= 0

T
(1)
rec(~z0) Lb

[
prec(∞)T

(1)
rec

]
= −prec(∞) undef.* T

(1)
rec = 0

∂T (1)
rec

∂z0
= 0

∂T (1)
rec

∂z0
= 0

* The mean recurrence time diverges at the cure-state boundary w0 = ε.

defined as S(~x0, t) = 1− prec(~x0, t), it must satisfy the PDE

Ṡ(~x0, t) = Lb S(~x0, t). (23)

For µD = 0, we can simplify the backward equation (17) by transforming to the new variables z0 ≡ x0,

w0 ≡ x0 + y0,
∂ρ(~z, ~z0, t)

∂t
= Lb ρ(~z, ~z0, t), (24)

where ~z ≡ (z, w) and the transformed backward operator is given by

Lb =− [ηz0 − ξ(w0 − z0)]
∂

∂z0
+ (λ− µA)(w0 − z0)

∂

∂w0
+

+
1

2N
[ηz0 + ξ(w0 − z0)]

∂2

∂z2
0

+
1

2N
(λ+ µA)(w0 − z0)

∂2

∂w2
0

(25)

In the new variables (z0, w0), the boundary conditions for Eqs. (21), (22), (23) and (24) are summarized190

in Table 1. The Neumann boundary conditions for Eq. (24) at the boundaries z0 = 0 and z0 = w0, given

in Table 1, follow immediately from Eqs. (19) and (20), and those for Eqs. (21), (22) and (23) follow from

the equations for the probability flux through the absorbing boundaries x + y = 1 and x + y = ε, given in

Appendix C.

The PDEs (21), (22) and (23), subject to the boundary conditions given in Table 1, are all separable in195

time, but not in the initial-state variables (z0, w0). However, they can be solved analytically in the large-time

limit t→∞, as will be shown in Section 5.1 below.

A key random variable in our model is the recurrence time (which will be henceforth denoted by Trec),

corresponding to the first passage time through the recurrence boundary. The normalized probability that

12
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Trec lies between t and t+ dt can be obtained from a simple application of Bayes’ theorem [47]:

Pr{t < Trec < t+ dt | recurrence} =
ṗrec(t)dt

prec(∞)
(26)

In other words, the probability density function (PDF) for the recurrence time Trec is ṗrec(t)/prec(∞) =

−Ṡ(t)/prec(∞), where the probability prec(∞) =
´∞

0
ṗrec(t)dt that recurrence takes place at any time t <∞

is given in closed analytic form in Section 5.1 below (see Eq. (32)). The ratio prec(t)/prec(∞) then gives200

the cumulative distribution function (CDF) of Trec.

Let

T (n)
rec ≡

ˆ ∞
0

tn
ṗrec(t)

prec(∞)
dt (27)

denote the n-th moment of the recurrence time Trec (n = 0, 1, 2, . . . ). From Eqs. (21) and (27), we get the

hierarchy of equations below [44, 45], where the n-th moment of Trec is related to its (n− 1)-th moment:

Lb
[
prec(∞)T (n)

rec (~z0)
]

= −n prec(∞)T (n−1)
rec (~z0) (28)

Here we have used the notation T
(n)
rec (~z0) to recall the dependence on the initial condition ~z0. Since the

function prec(∞) also depends on the initial condition through the variable w0 (see Eq. (32) below), it

cannot be taken outside the backward operator Lb, because the latter acts on the initial condition variables

(z0, w0).205

The boundary condition for Eq. (28) at the absorbing boundary w0 = 1 is T
(n)
rec (~z0)] = 0. From Eq. (27)

and Table 1, it also follows that Neumann boundary conditions ∂
∂z0

[prec(∞)T
(n)
rec (~z0)] = 0 must be imposed

at both reflecting boundaries z0 = 0 and z0 = w0.

Letting n = 1 in Eq. (28), we get an equation for the mean recurrence time (MRT), denoted here by

T
(1)
rec:

Lb
[
prec(∞)T (1)

rec(~z0)
]

= −prec(∞) (29)

This is a key equation in our analysis, which will be used to find an approximate analytical formula for the

MRT.210

5. Results and discussion

In this section, we discuss our main results, namely the stationary solution of Eq. (21) at large times in

closed analytic form, as well as the “outer solution” of the mean recurrence time (MRT) equation (29) at

leading (zeroth) order in 1/N , which is approximately valid everywhere except inside thin boundary layers

that stretch along the reflecting barriers z0 = 0 and z0 = w0. For several choices of the parameters and215

initial conditions, these solutions are compared against simulations. We also describe a simple procedure to

fit the model to survival data, using serous ovarian cancer data downloaded from the public database The

Cancer Genome Atlas [54] as an example.
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Figure 2: Large-time probability of recurrence vs. µA/λ for µD = 0, obtained analytically using the backward Kolmogorov

approach (see Eq. (32)). Pane 2a shows the effect of changing the total initial number of tumor foci (N0), whereas pane 2b

shows the effect of a finite detectable-tumor size N on the phase transition.

5.1. Stationary solution at large times

The stationary solution of Eq. (21), which satisfies ṗrec(~z0, t) = 0, gives the large-time probability

prec(z0, w0,∞) of absorption at the recurrence boundary w = 1, given the initial state (z0, w0). In the

large-time limit t→∞, the probability of cure is given by pcure(~z0,∞) = 1−prec(~z0,∞): recurrence or cure

are the only possible fates at large times. Therefore, prec(z0, w0,∞) satisfies the homogeneous backward

equation

Lb prec(z0, w0,∞) = 0, (30)

where the backward operator in the variables (z0, w0) is given by Eq. (25). The boundary conditions are220

given in Table 1.

An ansatz solution to Eq. (30) would be a recurrence probability that only depends on the total initial

number of tumor foci w0 and not specifically on what fraction of this initial number are dormant foci (z0),

i.e., ∂
∂z0

prec(z0, w0,∞) = 0. This type of solution automatically satisfies the Neumann boundary conditions

at the reflecting boundaries z0 = 0 and z0 = w0 (see Table 1). Using the ansatz above and Eq. (25), the

homogeneous PDE (30) becomes the following ODE in the variable w0:

1

2N
(λ+ µA)

d2prec(∞)

dw2
0

+ (λ− µA)
dprec(∞)

dw0
= 0, (31)
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where prec(∞) ≡ prec(z0, w0,∞) only depends on w0. This equation can be easily solved for the Dirichlet

boundary conditions given in Table 1. The solution is

prec(∞) =
1− e−2RN0

1− e−2RN
, (32)

where N0 = w0N is the initial total number of tumor foci and

R ≡ 1− µA/λ
1 + µA/λ

. (33)

In Eq. (32), the limit ε → 0 has been taken. In the large-time limit t → ∞, the probability of cure is

given by

pcure(∞) = 1− prec(∞). (34)

In Fig. 2, the function (32) is plotted for different values of the detectable tumor size N at a fixed initial

number of foci N0 and also for different initial conditions N0 at a fixed N .

In the limit N →∞, this solution displays a phase transition at µA/λ = 1:

prec(∞) =

1− e−2RN0 if µA/λ ≤ 1

0 otherwise
(35)

Thus, in the limit N →∞, the large-time probability of cure for µA/λ ≤ 1 is pcure(∞) = 1− prec(∞) =

e−2RN0 , which is the large-time limit of the recurrence-free survival function S(t).225

The drift term of the Fokker-Planck equation (14) alone is not sufficient to reproduce the phase transition

(35). The latter is the result of a combination of drift and diffusion in the presence of two opposite absorbing

boundaries, so that the initial delta peak ρ(~x, 0) = δ(~x−~x0) splits into a bi-modal probability density ρ(~x, t)

with two peaks that travel in opposite directions, toward the cure or recurrence boundaries. For µA/λ > 1,

the height of the peak traveling toward the recurrence boundary vanishes, so the final state in the large-time230

limit t→∞ becomes the cure state (0, 0), with probability 1. The result (32) is only slightly different from

the stationary solution of the M/M/1/N queue with absorbing boundary states (see Eq. (11)). As we will

show, it agrees with simulations of the discrete-state QBD process.

5.2. Approximate solution of the mean recurrence time equation

In this section, we will solve the mean recurence time equation (29) analytically to the leading (zeroth)

order in 1/N . This approximation is valid outside boundary layers near the reflecting barriers z0 = 0 and

z0 = w0, the sizes of which vanish as N →∞. The leading order solution can be obtained by neglecting the

second derivative terms in Eq. (29). This results in the first order PDE

[ηz0 − ξ(w0 − z0)]
∂T

(1)
rec

∂z0
− (λ− µA)(w0 − z0)

∂T
(1)
rec

∂w0
= 1, (36)
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Figure 3: Level curves of the leading-order outer solution of the mean recurrence time equation (see Eqs. (37) and (38)) for

µA/λ = 0.5 and ν ≡ ξ/η = 2.5. At large N , these curves are approximately valid outside boundary layers that exist close

to the reflecting barriers x0 = 0 and y0 = 0. The sizes of these boundary layers vanish in the limit N → ∞. The values of

T
(1)
rec at the first few level curves are given in the figure in units of the doubling time 1/λ. The spacings between adjacent lines

(which were plotted for 1/λ increments of T
(1)
rec) approach zero at the cure state (0, 0), where the mean recurrence time diverges

logarithmically.
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(a) Level curves for N0 = 7, m0 = 3.

0 50 100 150 200 250
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

ξ η

µ A
λ

50 150 250 λTrec
(1)

(b) Level curves for N0 = 50, m0 = 20.

Figure 4: Level curves in parameter space of the leading-order outer solution of the mean recurrence time (MRT) equation (see

Eqs. (37) and (38)) for two different initial conditions, with N = 100. The ruler at the bottom of each plot gives the values of

the MRT in units of the doubling time 1/λ.

which can be solved by the method of characteristics. The solution is

T (1)
rec = − 1

β
lnu, (37)

where u is the only root of the transcendental equation

uα/β
{
−ξw0

[
(η + ξ − α)(1− u2) + β(1 + u2)

]
+

+ z0

[
(η + ξ − α)2 − β2

]
(1− u2)

}
+ 2ξβu = 0, (38)

where

α ≡ 1

2
(η + ξ + µA − λ) (39)

and

β ≡
[
α2 + η(λ− µA)

]1/2
. (40)

The procedure for obtaining this solution is described in Appendix D. The finite-N solution of Eq. (29)235

converges to the leading-order approximation given by Eqs. (37) and (38) pointwise, but not uniformly.

Indeed, the approximate solution above does not satisfy the homogeneous Neumann boundary conditions

at z0 = 0 or z0 = w0 (see Table 1); near each reflecting barrier, there is a boundary layer within which the

zeroth-order approximation in 1/N fails. This is seen in the form of the mean recurrence time (MRT) level
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curves given by Eqs. (37) and (38), which are straight lines that are not parallel to the recurrence boundary240

w0 = 1, except asymptotically in the limit T
(1)
rec → 0 (see Fig. 3). In reality, close to each reflecting barrier

(within some distance that vanishes in the limit N → ∞), the exact (finite-N) level curves bend toward

the boundary, where these curves end at a right angle. At fixed initial conditions and as a function of the

parameters µA/λ and ξ/η, the shapes of the MRT level curves given by Eqs. (37) and (38) in parameter

space are shown in Fig. 4 for two different initial conditions, namely N0 = 7, m0 = 3 and N0 = 50, m0 = 20.245

The PDE (29), along with its boundary conditions given in Table 1, is a singular perturbation problem

that should be handled by special perturbation methods, because the small parameter 1/N premultiplies the

second-derivative terms in the backward operator (25). Further inspection shows that Eq. (29) is structured

in such a way that the problem can be treated by boundary-layer theory [49]. Since the solution of Eq.

(29) obtained by dropping the diffusion (1/N) terms in the backward operator (25) is only valid outside the250

boundary layers that exist near the reflecting boundaries z0 = 0 and z0 = w0 (the sizes of which vanish as

N → ∞), in the language of boundary layer theory the solution given by Eqs. (37) and (38) is called the

“outer solution” of the boundary value problem. The “inner solutions”, on the other hand, require proper

rescaling of the variables before these solutions can be expanded asymptotically in the parameter 1/N ; in

this case, the second-derivative terms in Eq. (25) cannot be neglected inside each boundary layer, since they255

become comparable to the first-derivative terms within each layer.

An approximate composite solution that would be valid everywhere can in principle be obtained by the

method of matched asymptotic expansions, which requires solving Eq. (29) both inside and outside the

boundary layers [49]. In this paper, however, only the leading-order outer solution is given (Eqs. (37) and

(38) above). In practice, the outer solution itself is already a quite useful result, even at the lowest order260

in 1/N , since it agrees reasonably with simulations of the model (as will be shown in Section 5.3 below),

except for small corrections that can in principle be calculated using the boundary-layer method.

5.3. Simulations

The discrete-state QBD process was simulated for several values of the model parameters and initial

conditions using a pseudo random number generator. The results from the simulations were then compared265

to the large-time stationary solution given by Eq. (32), and also to outer solution given by Eqs. (37) and

(38). The time step was chosen to be such that the transition probabilities would always remain sufficiently

small within the range of the transition rates used in the simulations, even for transitions between states

with large numbers m,n ∼ N . For a given set of parameters, each simulation tracked both the fraction of

patients for which the tumor recurred and the recurrence times (from which the MRT was estimated) for270

an ensemble of 400 hypothetical patients. The detectable tumor size was set to N = 100.

For a simulation with ν ≡ ξ/η = 5 and initial condition m0 + n0 = 7, m0 = 3, Fig. 5 shows a plot

of the large-time fraction of patients for which the tumor recurred against µA/λ. The figure also shows
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Figure 5: Large-time fraction of patients for which the tumor recurred, obtained in a simulation of the QBD model with 400

hypothetical patients. The parameters are µD = 0, ν ≡ ξ/η = 5, m0 + n0 = 7, m0 = 3 and N = 100. The red curve shows the

analytical result given by Eq. (32).

that the result of the simulation agrees with the analytical formula given by Eq. (32). Fig. 6 shows a

plot of the MRT obtained in simulations against the initial total number of tumor foci (N0) along the line275

m0 = n0 = N0/2, for 4 different values of µA/λ, with ν ≡ ξ/η = 2.5. These results are compared to the

smooth curves obtained from the leading-order outer solution of the MRT equation (Eqs. (37) and (38)).

At the cure state N0 = 0, the MRT diverges logarithmically and the discrepancy between simulations and

the outer solution increases as N0 approaches zero, due to the boundary-layer structure (the vicinity of the

cure state is the region where the boundary layers along the reflecting barriers overlap).280

For both initial conditions N0 = 7, m0 = 3 and N0 = 50, m0 = 20, Fig. 7 shows the MRT obtained in

simulations against the ratio ν ≡ ξ/η at 5 different values of µA/λ, and compares it to the curves obtained

from the leading-order outer solution given by Eqs. (37) and (38). As expected, the higher the value of

µA/λ, the larger is the discrepancy, since the finite-size effect is greatest near the critical point µA/λ = 1.

It is worth noting that the ratio ν ≡ ξ/η can in principle be measured in experiments by estimating the285

relative times that the cells in a tumor spend in dormant versus active phases of the cell cycle, for example,

through reconstruction of cell cycle dynamics from single-cell transcriptome data [50–52].

Fig. 8 shows the MRT obtained in simulations against µA/λ for the initial conditions N0 = 7, m0 = 3

and N0 = 50, m0 = 20, at different values of the ratio ν ≡ ξ/η. These results are compared to the smooth

curves obtained from Eqs. (37) and (38). At leading order, the MRT given by the outer solution diverges at290
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Figure 6: Mean recurrence time (MRT) obtained in simulations vs. initial total number N0 along the line m0 = n0 = N0/2,

for different values of µA/λ with ν ≡ ξ/η = 2.5 and N = 100. The simulations were run for 400 hypothetical patients. The

smooth curves represent the leading-order outer solution of the MRT equation at different values of µA/λ (see Eqs. (37) and

(38)). We note the logarithmic divergence at the cure state N0 = 0.
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Figure 7: Mean recurrence time (MRT) obtained in simulations vs. the ratio ν ≡ ξ/η for two different initial conditions, with

N = 100. Each set of points on each panel corresponds to a different value of µA/λ and the lines represent the leading-order

outer solution of the MRT equation (see Eqs. (37) and (38)). The results represent an average over 400 hypothetical patients.
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Figure 8: Mean recurrence time (MRT) obtained in simulations vs. µA/λ for two different initial conditions, with N = 100.

Each set of points on each panel corresponds to a different value of the ratio ν ≡ ξ/η and the smooth curves represent the

leading-order outer solution of the MRT equation (see Eqs. (37) and (38)). The simulations were run for 400 hypothetical

patients. At leading order, the MRT given by the outer solution diverges at the critical point µA/λ = 1.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 13, 2019. ; https://doi.org/10.1101/551770doi: bioRxiv preprint 

https://doi.org/10.1101/551770
http://creativecommons.org/licenses/by-nc-nd/4.0/


the critical point µA/λ = 1, as shown by Eqs. (37) and (38). The larger discrepancy near the critical point

can be explained by a finite size effect in the phase transition given by Eq. (32), which effectively shifts the

critical point to a value slightly higher than µA/λ = 1 (see plot in Fig. 2b).

We note that the continuum limit of the discrete-state master equation is a good approximation, since

it agrees reasonably well with the simulations even at leading (zeroth) order in 1/N . This is a remarkable295

feature of our model, since the diffusion limit sometimes fails for other types of birth-and-death processes,

especially ones that involve non-linear transition rates [53].

5.4. Fitting the model to survival data

Even in the context of univariate birth-and-death processes, estimating model parameters from data is

generally a difficult problem [55]. In this section, we describe a simple procedure to fit the model to survival300

data through an example. Since the method that we describe below relies on the leading-order outer solution

given by Eqs. (37) and (38), it is approximately valid (within O(1/N) corrections) for initial conditions

outside the boundary layers.

Serous ovarian cancer data downloaded from the public database The Cancer Genome Atlas [54] (TCGA)

were used to generate the recurrence-free survival function shown in Fig. 9. Since 170 out of the 583 patients305

in the data set were censored, the Kaplan-Meier product-limit estimator [56] was used to estimate the time-

dependent probability of no recurrence.

In order to obtain the MRT from a given survival function S(t), we first need to renormalize the proba-

bility of recurrence prec(t) = 1−S(t) as in Eq. (26), i.e., the appropriate probability measure is conditioned

on recurrence. The renormalized survival function S̃(t) is then given by

S̃(t) =
S(t)− S(∞)

1− S(∞)
, (41)

which vanishes in the limit t → ∞. The MRT is then given by the area under the curve S̃(t), i.e., T
(1)
rec =´∞

0
S̃(t)dt. For the serous ovarian cancer data from TCGA, we found S(∞) = 0.086 (defined as the lowest

value of the Kaplan-Meier estimate for S(t)) and an MRT of 687.5 days. For a given initial condition,310

estimation of the parameter ν ≡ ξ/η from Eqs. (37) and (38) requires that the time scale be fixed by

specifying the doubling rate λ. Using the order of magnitude guess 1/λ = 40 days for the doubling time

based on clinical data [57], the MRT for the ovarian cancer data in units of the doubling time was then fixed

at λ(687.5 days) = 17.2.

For a given choice of the initial number N0, Eqs. (32) and (33) can be solved for the parameter µA/λ315

using the value prec(∞) = 1−S(∞) = 0.914 obtained from the Kaplan-Meier curve. Assuming m0 = 0.4N0

(for which the outer solution gives a reasonable approximation of the MRT, unless N0 is too small), it

then only remains to determine the value of the ratio ν ≡ ξ/η consistent with both the MRT (fixed at
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Figure 9: Product-limit estimate of the recurrence-free survival function (Kaplan-Meier curve [56]) for ovarian cancer in a group

of 583 patients, obtained from TCGA data [54], showing Kaplan-Meier’s estimate for the 90% confidence interval (green lines).

The red vertical crosses (+) represent censored patients, whereas the black saltire crosses (×) represent recurrence events. The

inset provides a closer view of the KM curve for the time interval between 0 and 500 days.

T
(1)
rec = 17.2/λ) and the inferred µA/λ. This is done by solving Eqs. (37) and (37) numerically for ν ≡ ξ/η

(see also Eq. (2)).320

Using the parameters determined through the scheme described above, survival curves were simulated

for several initial conditions N0. In Fig. 10, these curves are shown in one plot, along with the Kaplan-Meier

curve for the ovarian cancer data from TCGA. The time axis was rescaled to units of the MRT and the

values of N0, µA/λ and ν ≡ ξ/η used in the simulations are given in the legend. Among the initial conditions

shown in the plot, the best fit corresponds to the choice N0 = 45.325

In this procedure for fitting the model to data, we have assumed a sharply peaked initial condition,

i.e., the initial condition is a delta function centered at some specified initial number of tumor foci N0.

However, in reality this number should follow a probability distribution that would reflect the histogram

of the residual-tumor size in the population under study. Moreover, different patients may have different

responses to treatment (i.e., different values of µA/λ), as well as different ξ/η values. This means that the330

fitted values should be regarded as only a guide that gives insight into the possible scenarios leading to the

observed survival curve.
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Figure 10: The same Kaplan-Meier curve shown in Fig. 9 for ovarian cancer data from TCGA [54] (dashed curve), plotted

along with several recurrence-free survival curves obtained in simulations of the QBD model for 400 hypothetical patients, with

N = 100. The mean recurrence time (MRT) for the TCGA data was found to be 687.5 days; assuming a doubling time of

1/λ = 40 days to fix the scale, the MRT in units of the doubling time was fixed at λ(687.5 days) = 17.2 for all the simulated

curves. For each curve, the time axis was rescaled to units of the MRT. Each curve was simulated for a different value of

N0 = m0 + n0 and assuming m0 = 0.4N0. For each value of N0, the parameters µA/λ and ν ≡ ξ/η (given in the legend)

were fixed using the scheme described in Section 5.4, which ensures that the MRT and the large-time recurrence probability

both match the data. Among the initial conditions shown in the plot, the best fit (thick blue curve) corresponds to the choice

N0 = 45.
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6. Conclusion

In this paper, we developed a mechanistic mathematical model aimed at describing the stochastic dy-

namics of tumor recurrence through a Quasi Birth-and-Death (QBD) process. The main assumption is the335

presence of residual tumor foci that can transition between a dormant, chemoresistant and an active-growth,

chemosensitive state. We started with a continuous-time discrete-state master equation that describes the

time-dependent probability pm,n(t) to be in a state with m dormant and n active tumor foci, and then

showed that for a large detectable-tumor size N , the discrete master equation can be well approximated

by a drift-diffusion equation in a continuous state space. Recurrence and cure were built into the model340

by imposing absorbing boundary conditions at the cure state (0, 0) and at the recurrence line m + n = N ,

respectively.

Using the forward and backward Kolmogorov approaches in the continuum limit, we derived an equation

for the time-dependent probability of recurrence and the appropriate boundary conditions. The stationary

solution at large times was then obtained analytically (see Eq. (32)) and we showed that it displays a phase345

transition as a function of µA/λ, where µA is the death rate of active tumor foci and λ is their doubling

rate. We also derived an equation for the mean recurrence time (MRT), which we solved analytically to

leading order in 1/N by dropping the diffusion (second-derivative) terms in the equation, an approximation

that works outside thin boundary layers along the reflecting barriers (see Eqs. (37) and (38) for the “outer

solution”).350

The analytical results were compared to simulations of the discrete-state QBD model. The large-time

probability of recurrence obtained in simulations matched the analytical solution, whereas the MRT from

the simulations showed a small discrepancy to the leading order outer solution of the MRT equation, except

near the critical point µA/λ = 1, where the discrepancy was larger due to the finite-size effect. In principle,

it is possible to get an improved approximation by solving the MRT equation inside the boundary layer355

(where the variables have to be rescaled) and constructing a composite solution by the method of matched

asymptotic expansions [49].

Finally, we described a scheme to fit the model to recurrence-free survival data (Kaplan-Meier curves),

using ovarian cancer data from TCGA [54] as an example (Fig. 10). The model has potential applications

to predicting the effect of changes in the tumor death rate or in the duration of chemotherapy on survival360

(recurrence rates). By switching the parameter µA at a specified time t = tchemo (where tchemo represents

the duration of chemotherapy) from some specified level µchemo to a lower baseline level µ0, we can simulate

the effect on survival of extending chemotherapy at lower dose (i.e., simultaneously increasing tchemo and

lowering µchemo). This would allow quantitative studies of the effect of changes in chemotherapy regimens

that can potentially be useful as a guide to clinical practice.365
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Appendix A. Structure of the infinitesimal transition matrix475

Projecting the operator Q̂ = Q̂bulk+ Q̂edge given by Eqs. (6) and (7) on both sides between basis vectors

〈m,n| and |m′, n′〉, we get matrix elements with a block-tridiagonal structure in the direct-product linear

space D ⊗A:

Q = Qbulk + Qedge =



Q00 Q01 0 . . . . . . 0

Q10 Q11 Q12 . . . . . . 0

0 Q21 Q22
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . QN−1,N

0 0 . . . . . . QN,N−1 QNN


(A.1)

From the geometry of the state space boundary (see Fig. 1b), it follows that the block matrices Qmm
decrease in size as m increases: Qmm is an (N − m + 1) × (N − m + 1) matrix, since only the subspace

spanned by the states |m, 0〉 , . . . , |m,N −m〉 is accessible. The bulk part of each block Qmm is tridiagonal

and acts within the accessible subspace of A:

Qbulkmm =



−mη 0 0 0 . . . 0

0 −mγD − γA 2µA 0 . . . 0

0 λ −mγD − 2γA 3µA . . . 0

0 0 2λ −mγD − 3γA

.
.
. 0

.

.

.

.

.

.

.

.

.

.
.
.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
. (N −m)µA

0 0 0 . . . . . . −mγD − (N −m)γA


, (A.2)

where

γD ≡ µD + η ,

γA ≡ λ+ µA + ξ . (A.3)

The bulk parts of the off-diagonal blocks are the matrices

Qbulk
m,m+1 = (m+ 1)



µD−η

η µD

η
. . .

. . . µD

η


(N−m+1)×(N−m)

(A.4)
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Qbulkm,m−1 =



0 ξ

0 2ξ

. . .
. . .

. . .
. . .

0 (N −m+ 1)ξ


(N−m+1)×(N−m+2)

(A.5)

The edge corrections for the three block matrices above are given by

Qedgemm =



0 0 . . . 0
...

. . .
. . .

...
...

. . . −(N −m)µA

0 . . . mγD + (N −m)γA


(N−m+1)×(N−m+1)

(A.6)

Qedge
m,m+1 =



0

0 0

0
. . .

. . .
. . .

. . . −(m+ 1)µD

−(m+ 1)η


(N−m+1)×(N−m)

(A.7)

Qedgem,m−1 =



0 0

0 0

. . .
. . .

. . .
. . .

0 −(N −m+ 1)ξ


(N−m+1)×(N−m+2)

(A.8)

Appendix B. Boundary conditions for the forward and backward Kolmogorov equations

In this appendix, we first explain in detail how the boundary conditions for the forward Kolmogorov

equation are properly defined, with special note to the appropriate treatment of the single absorbing point

at the origin (i.e., the cure state). Then we show how the boundary conditions for the backward Kolmogorov

equation can be derived from those of the forward equation.480
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Appendix B.1. Forward Kolmogorov equation

The boundary condition that the cure state ~x = (0, 0) acts as a single absorbing point can be imposed

by defining

ρ(~x, t) = ρreg(~x, t) + pcure(t)δ(~x) (B.1)

where ρreg(~x, t) is the regular part of ρ(~x, t) and pcure(t) is the probability of cure at any time ≤ t. In Section

4.2, it is shown that this boundary condition can be fixed through an equation for the function pcure(t) (see

Eq. (22)), which is derived using the backward Kolmogorov approach. In Section 5.1, the large-time limit

of pcure(t) is obtained in closed form in terms of the initial condition. The single-absorbing-point boundary

condition above can be defined more rigorously by setting ρ(~x, t) = 0 on the line x+ y = ε, where ε� 1/N

is sufficiently small (i.e., this line can be defined as an absorbing boundary through which the probability

flux gets into a small region near the origin), and by defining

ρ(~x, t) =
6

ε2

(
1− x+ y

ε

)
pcure(t) (B.2)

for any (x, y) within the small region {(x, y)|x ≥ 0; y ≥ 0;x + y ≤ ε}. When the probability density (B.2)

is integrated over this area, we get exactly pcure(t), i.e., the small region near the origin approximately

represents the cure state. In the weak limit (in distributional sense) ε → 0, the probability density at the

origin becomes a Dirac delta distribution.485

The boundary condition at the recurrence line x + y = 1 is also absorbing, i.e., ρ(~x, t) = 0. At either

x = 0 or y = 0, the boundary condition for the regular part of ~J(~x, t) (i.e., the current density defined by Eq.

(15), corresponding to the regular part of ρ(~x, t)) is given by ~Jreg(~x, t)·~n = 0, where ~n is the outward normal,

i.e., there cannot be any flux crossing the boundaries x = 0 or y = 0, except at the cure state (x, y) = (0, 0),

at which the regular part of ρ(~x, t) vanishes, whereas the delta peak works as a single absorbing point.490

The absorbing boundary conditions should be interpreted as follows: while the single absorbing point at

the origin pins any probability that it absorbs to the cure state (thus the delta peak), the probability flux

through the recurrence boundary x + y = 1 exits to the outer region {(x, y)|x ≥ 0; y ≥ 0;x + y ≥ 1} and

never returns.

This proper definition of the boundary condition near the origin ensures that the Fokker-Planck equation

(14) gives the correct probability conservation equation in its integral form. Indeed, using the boundary-

condition scheme described above and integrating Eq. (14) over the area Ωε = {(x, y)|x ≥ 0; y ≥ 0; ε ≤

x+ y ≤ 1}, we get
d

dt

ˆ
Ωε

ρ(~x, t)d2x = −
ˆ

Ωε

~∇ · ~J(~x, t)d2x. (B.3)

Using the divergence theorem and the reflecting boundary condition ~J(~x, t) ·~n = 0 at the boundaries x = 0,

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 13, 2019. ; https://doi.org/10.1101/551770doi: bioRxiv preprint 

https://doi.org/10.1101/551770
http://creativecommons.org/licenses/by-nc-nd/4.0/


ε ≤ y ≤ 1 and y = 0, ε ≤ x ≤ 1, we get

d

dt

ˆ
Ωε

ρ(~x, t)d2x = −
ˆ

x+y=1
(1,0)→(0,1)

~J(~x, t) · ~n dl −
ˆ

x+y=ε
(0,ε)→(ε,0)

~J(~x, t) · ~n dl

= − ṗrec(t)− ṗcure(t), (B.4)

where ~n is the outward normal and prec(t), pcure(t) are the probabilities of recurrence and cure at any time495

≤ t, respectively.

Appendix B.2. Backward Kolmogorov equation

The boundary conditions for the backward equation (17) can be derived from those of the forward

equation (14) as follows (see e.g. [44]). Let f and g be arbitrary square-integrable functions defined

on the domain Ωε = {(x, y)|x ≥ 0; y ≥ 0; ε ≤ x + y ≤ 1}, satisfying the forward and the backward

equations/boundary conditions, respectively. Let us consider the L2 inner product

〈Lff, g〉 ≡
ˆ

Ωε

g Lff d2x = −
ˆ

Ωε

g ~∇ · ~Jf d2x, (B.5)

where ~Jf is the current density as defined in Eq. (15) for the density function f . Integrating the right-hand

side of Eq. (B.5) by parts, it can be shown that

〈Lff, g〉 = 〈f,Lbg〉 −
‰
∂Ωε

[
g ~Jf + f(D~∇g)

]
· ~n dl, (B.6)

where D is the diffusion tensor defined in Eq. (18).

Since the backward operator is the adjoint of the forward operator, i.e., Lb = L†f , we must have 〈Lff, g〉 =

〈f,Lbg〉 for any square-integrable functions f, g defined on the domain Ωε that satisfy the forward and

backward equation/boundary conditions, respectively. Therefore, it follows that the boundary term on the

right-hand side of Eq. (B.6) must vanish for any such f, g. This means that given boundary conditions on

any function f satisfying the forward equation, the boundary conditions for any function g satisfying the

backward equation have to be chosen in such a way that the integrand on the second term of Eq. (B.6) must

vanish. It then follows that g = 0 for absorbing boundaries and (D~∇g) · ~n = 0 for reflecting boundaries.

Hence, on both absorbing boundaries x0 + y0 = ε and x0 + y0 = 1, the boundary condition is ρ(~x, ~x0, t) = 0.

Using Eqs. (17) and (18), we can also show that

∂ρ(~x,~x0,t)
∂x0

∣∣∣
x0=0

= ∂ρ(~x,~x0,t)
∂y0

∣∣∣
x0=0

(B.7)

at the reflecting boundary x0 = 0, ε ≤ y0 ≤ 1 and

∂ρ(~x,~x0,t)
∂x0

∣∣∣
y0=0

= ∂ρ(~x,~x0,t)
∂y0

∣∣∣
y0=0

(B.8)

at the reflecting boundary y0 = 0, ε ≤ x0 ≤ 1.
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Appendix C. Probability flux through the absorbing boundaries500

The probability flux through the recurrence boundary can be obtained by integrating the normal com-

ponent of the current density (15) over the line x+ y = 1,

ṗrec(~x0, t) = −Ṡ(~x0, t) =

ˆ

x+y=1
(1,0)→(0,1)

~J(~x, ~x0, t) · ~n dl, (C.1)

where S(~x0, t) is the recurrence-free survival function (see Eqs. (16) and (B.4)) and ṗrec(~x0, t) ≡ ∂
∂tprec(~x0, t).

For µD = 0, using the boundary condition that the probability density has to vanish at the recurrence line

x+ y = 1, we get

ṗrec(~x0, t) = − 1

2N
(λ+ µA)

ˆ 1

0

y
∂ρ(x, y, ~x0, t)

∂y

∣∣∣∣
x=1−y

dy. (C.2)

Using the scheme described in Appendix B.1 for the boundary condition near the origin (see discussion

below Eq. (B.1) and also Eq. (B.4)), for µD = 0 we find that the probability flux into the cure state (0, 0)

is given by

ṗcure(~x0, t) = − 1

2N
(λ+ µA) lim

ε→0+

ˆ ε

0

y
∂ρ(x, y, ~x0, t)

∂y

∣∣∣∣
x=ε−y

dy. (C.3)

The partial differential equations (21) and (22) for the time-dependent probabilities of recurrence and

cure before time t can immediately be derived, respectively, by doing the operations on the right-hand sides

of Eqs. (C.2) and (C.3) on both sides of Eq. (17). These operations commute with the backward operator

Lb defined in Eq. (17), because the latter only acts on the initial-condition variables (x0, y0). Eqs. (21) and

(22) then follow after integration in time from 0 to t.505

Appendix D. Solution of the mean recurrence time equation outside the boundary layers

(leading order)

At leading (zeroth) order in 1/N Eq. (29) becomes the first-order PDE (36), which is valid outside

boundary layers that exist near the reflecting boundaries z0 = 0 and z0 = w0. Eq. (36) can be solved by

the method of characteristics, as follows.510

Along the characteristic curves (which are parametrized by a parameter r), the PDE (36) becomes the

set of ODEs

dz0

dr
= ηz0 − ξ(w0 − z0)

dw0

dr
= −(λ− µA)(w0 − z0) (D.1)

dT
(1)
rec

dr
= 1

This last equation immediately gives r = T
(1)
rec (here we can choose the constant of integration to be zero,

since it can be absorbed into the constants s1 and s2 in Eqs. (D.2) below).
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Solving the first two ODEs yields

z0 = s1 e
Λ−T

(1)
rec + s2 e

Λ+T
(1)
rec ,

w0 =
1

ξ
(η + ξ − Λ−) s1 e

Λ−T
(1)
rec +

1

ξ
(η + ξ − Λ+) s2 e

Λ+T
(1)
rec , (D.2)

where s1 and s2 are constants of integration and

Λ± = α± β, (D.3)

with α and β given by Eqs. (39) and (40).

By imposing the absorbing boundary condition T
(1)
rec = 0 at w0 = 1, we find the relation

s1 =
ξ − (η + ξ − Λ+)s2

η + ξ − Λ−
(D.4)

Using this relation in Eqs. (D.2), it follows that

(η + ξ − Λ−)z0 − ξeΛ−T
(1)
rec = s2

[
(η + ξ − Λ−)eΛ+T

(1)
rec − (η + ξ − Λ+)eΛ−T

(1)
rec

]
,

ξw0 − ξeΛ−T
(1)
rec = s2

[
(η + ξ − Λ+)eΛ+T

(1)
rec − (η + ξ − Λ+)eΛ−T

(1)
rec

]
. (D.5)

Eliminating the constant of integration s2 from Eqs. (D.5) and simplifying the resulting equation, we

finally get the solution given by Eqs. (37) and (38).515
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