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 6 

DNA damage caused by alkylating chemicals induces an adaptive response in Escherichia coli 7 
cells that increases their tolerance to further damage. Signalling of the response occurs through 8 
methylation of the Ada protein which acts as a damage sensor and induces its own gene expression 9 
through a positive feedback loop. However, random fluctuations in the abundance of Ada 10 
jeopardize the reliability of the induction signal. I developed a quantitative model to test how gene 11 
expression noise and feedback amplification affect the fidelity of the adaptive response. A 12 
remarkably simple model accurately reproduced experimental observations from single-cell 13 
measurements of gene expression dynamics in a microfluidic device. Stochastic simulations 14 
showed that delays in the adaptive response are a direct consequence of the very low number of 15 
Ada molecules present to signal DNA damage. For cells that have zero copies of Ada, response 16 
activation becomes a memoryless process that is dictated by an exponential waiting time 17 
distribution between basal Ada expression events. Experiments also confirmed the model 18 
prediction that the strength of the adaptive response drops with increasing growth rate of cells. 19 

 20 

INTRODUCTION 21 

The accurate detection and repair of DNA damage is crucial for genome stability and cell survival. In 22 
addition to constitutively expressed repair pathways, cells employ DNA damage responses that activate 23 
DNA repair factors in the presence of DNA damage. The fidelity of the DNA repair system relies on a 24 
series of processes: sensing the presence of DNA damage or DNA damaging agents, inducing a DNA 25 
damage response, and correctly repairing lesions. Cell strains with genetic defects that impair the 26 
function of any of these processes show sensitivity to DNA damage, elevated mutation rates, and 27 
genome instability. However, even in fully repair-proficient cell strains the accuracy of the DNA repair 28 
system is fundamentally limited by the stochastic nature of the molecular interactions involved (1, 2): 29 
For example, proteins that signal or repair DNA damage perform a random target search and therefore 30 
have a finite chance of overlooking lesions (3–7). The repair process itself can also be error-prone and 31 
cause mutations, loss, or rearrangements of genetic material (8–12). Traditionally, research has focused 32 
on genetic defects and such “intrinsic errors” in DNA repair – i.e. errors that are inherent to the repair 33 
mechanism and thus occur with the same probability in all cells of a population. 34 

By comparison, less attention has been given to “extrinsic variation” in the DNA repair system – i.e. 35 
fluctuations in protein abundances that may affect the repair capacity of individual cells. Gene 36 
expression noise is ubiquitous (13, 14) and difficult for cells to suppress (15). Feedback gene regulation 37 
can establish bimodal distributions so that subpopulations of cells maintain distinct states of gene 38 
expression for long times. Whereas many biological processes are robust to a certain level of noise, 39 
even transient variation in the capacity of a cell to repair DNA damage can have severe and potentially 40 
irreversible consequences (16–18). For instance, cells that transiently express too little of a damage 41 
sensor protein may be unable to signal DNA damage efficiently, leading to mutations or cell death. But 42 
there may also be evolutionary benefits to heterogeneity and occasional errors in the DNA repair system 43 
when cells are facing selective pressure (19–21). 44 
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The adaptive response to DNA alkylation damage in Escherichia coli is a case where gene expression 45 
noise appears to cause significant cell-to-cell heterogeneity in DNA repair capacity (18, 17). Alkylated 46 
DNA lesions block DNA replication and transcription and can lead to mutations (22, 10). The adaptive 47 
response is regulated by the Ada protein, a DNA methyltransferase that directly repairs methylated 48 
phosphotriester and O6MeG lesions by transferring the methyl group from the DNA onto its own 49 
cysteine residues (23–25). These reactions are irreversible and turn the methylated Ada protein (meAda) 50 
into a transcriptional activator of the genes ada, alkB, alkA, and aidB that are involved in the repair or 51 
prevention of DNA alkylation damage (26). The response causes a positive feedback amplification of 52 
Ada expression that renders cells more tolerant to further damage. Surprisingly, the timing of response 53 
activation varies drastically across genetically identical cells even at saturating levels of DNA damage 54 
(18). The very low abundance of Ada before DNA damage treatment appears to be responsible for this 55 
variation. In particular, single-molecule imaging showed that stochastic Ada expression results in a 56 
subpopulation of cells that does not contain a single Ada protein and therefore cannot sense the presence 57 
of DNA alkylation damage. Without induction of the adaptive response, the insufficient repair capacity 58 
of these cells increases mutation rates to the same level as in mutant cells in which the ada gene has 59 
been deleted (17). 60 

These surprising observations call for a quantitative model to pinpoint the noise source responsible for 61 
heterogeneity in the adaptive response. Quantitative models have been key to our current understanding 62 
of gene expression noise and its important functions in diverse biological processes (13, 27–30), 63 
including DNA damage signalling and repair (16, 31–34). Here, I capitalized on time-lapse microscopy 64 
data for the adaptive response that were recorded for a large range of damage conditions in hundreds of 65 
single E. coli cells (18). The direct measurement of key observables and parameters allowed 66 
construction of a quantitative model of the core Ada regulation. The proposed model is remarkably 67 
simple, yet accurately reproduces experimental observations – both the cell average as well as the 68 
stochastic behaviour of single cells. The model also predicts cell responses after different experimental 69 
perturbations. No additional post-hoc noise term was required in our model but propagation of basic 70 
Poisson fluctuations alone was sufficient to explain the observed cell-to-cell variation in response 71 
activation. These results establish that intrinsic noise in the basal expression of the ada gene is solely 72 
responsible for the stochastic nature of the adaptive response. The model also predicts that the strength 73 
of the response should be inversely related to the growth rate of cells, which was confirmed in 74 
experiments. 75 

 76 

MATERIALS AND METHODS 77 

Experimental data 78 

The construction of the model was based on experimental data described in reference (18). Briefly, the 79 
adaptive response was monitored in live E. coli AB1157 cells carrying a functional fusion of Ada to the 80 
fast-maturing fluorescent protein mYPet (35) that is expressed from the endogenous chromosomal 81 
locus, thus maintaining native expression levels. Single cells growing continuously inside the “mother 82 
machine” microfluidic device (36) were treated with the DNA methylating agent methyl 83 
methanesulfonate (MMS) and Ada-mYPet fluorescence was measured using time-lapse microscopy in 84 
multiple fields of view at 3-minute intervals. Fluorescence intensities were calculated from the average 85 
pixel intensities within the segmented cell areas. To correct for the background fluorescence, the 86 
intensity before MMS treatment was subtracted on a per-cell basis. 87 

Additional experiments (data in Fig. 5) used the same microfluidic imaging setup and acquisition 88 
parameters as described in our previous work (17). The only difference was that cell growth rates were 89 
varied using minimal medium supplemented either with glucose or glycerol as carbon sources. 90 

Ada response model 91 
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The structure of the model is based on previous genetic and biochemical characterization of the adaptive 92 
response (23–25). Key to the model is a positive feedback loop in which DNA damage-induced 93 
methylation of Ada creates meAda, which acts as a transcriptional activator for the ada gene. The 94 
chemical kinetics of the model can be described as a system of ODEs according to the diagram in Figure 95 
1A: 96 

d/dt [meAda] = f1([MMS]) · [Ada] – (ln(2) + ρ)·[meAda] (1) 97 

d/dt [Ada] = kbasal + f2([meAda]) – ln(2)· [Ada] 98 

Self-methylation of Ada in the presence of DNA methylation damage generates meAda molecules with 99 
a rate proportional to the MMS concentration: f1([MMS]) = kme· [MMS].  100 

In the absence of DNA methylation damage, the ada gene is expressed at a constant basal rate kbasal 101 
from the PAda promoter. Transcription of the ada gene is induced to rate kind when meAda binds to the 102 
PAda promoter with an association rate kon and dissociation rate koff in a non-cooperative manner (37): 103 

PAda + meAda ↔ PAda-meAda. 104 

In the deterministic model, Ada is produced according to the fraction of time that the PAda promoter is 105 
bound by meAda: 106 

f2([meAda]) = kind· [meAda]/(koff/kon + [meAda]) 107 

where kind is the fully induced production rate at saturating amounts of meAda. 108 

Production of Ada and meAda molecules is counteracted by dilution due to exponential cell growth. 109 
When time is expressed in units of generation times, the dilution rate is equal to ln(2). In addition to 110 
dilution, our model also includes loss of meAda at a constant rate ρ. This feature was required to match 111 
the rapid deactivation of Ada expression upon MMS removal that we observed in experiments and as 112 
previously suggested (38, 39). The equation governing the concentration of the inactivated Ada species 113 
is: 114 

d/dt [inAda] = ρ ·[meAda] – ln(2)*[inAda] 115 

This formulation of the model approximates protein expression as one reaction where transcription and 116 
translation are described with a single production rate constant. This reduces the number of free 117 
parameters of the model and allows direct comparison of the experimental observables (i.e. Ada-mYPet 118 
proteins) with the variables in the model. The simplification is valid when protein expression follows 119 
first-order kinetics with a single rate-limiting step. This is consistent with the complete lack of ada 120 
expression bursting in our experiments (18), and a short half-life and low translation efficiency of ada 121 
mRNAs (40, 41). 122 

Steady-state solution 123 

Setting equations (1 – 3) to zero gives the abundances of Ada and meAda at steady-state. These can be 124 
expressed as the solution of a quadratic equation: 125 

[Ada] = – b/(2a) + (b2 – 4ac)/(2a), with 126 

a = kme·[MMS] / (ln(2) + ρ) 127 

b = koff/kon – (kbasal + kind)·kme·[MMS] / (ln(2) + kme·[MMS]·(ln(2) + ρ)) 128 

c = –kbasal · koff/kon / (ln(2) + kme·[MMS]) 129 

[meAda] = kme·[MMS] · [Ada] / (ln(2) + ρ) 130 

[inAda] = ρ /ln(2)·[meAda] 131 
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The total Ada level corresponding to the measured Ada-mYPet fluorescence is given by the sum [Ada] 132 
+ [meAda] + [inAda]. 133 

Numerical solution 134 

The time-dependent solution of the model equations was numerically obtained using the ode45 solver 135 
in MATLAB. 136 

Stochastic simulation 137 

We simulated time-traces of Ada expression in single cells using a custom implementation of 138 
Gillespie’s algorithm in MATLAB (42). To this end, the equations (1-3) of the deterministic model 139 
were expressed as elementary unimolecular or bimolecular reactions. Gillespie’s algorithm assumes 140 
memoryless kinetics, which is appropriate for transitions between discrete chemical states where the 141 
system is defined entirely by its present state (Markov process). Stochasticity arises due to the 142 
discreteness of the states of the system (i.e. the integer number of molecules in the cell) with 143 
spontaneous random transitions given by the elementary reactions of the system. At a given time point, 144 
the waiting time until the next transition is drawn from an exponential distribution with an expectation 145 
value given by the inverse of the sum of all rates exiting that state (i.e. the rates of molecule production, 146 
conversion, and loss). Which of the possible transitions occurs is then chosen randomly with 147 
probabilities according to the relative rates of the reactions. Initial molecule numbers were drawn from 148 
a Poisson distribution defined by the basal expression rate (see Fig. 2A). 149 

Model parameters 150 

Parameters were either obtained by direct experimental measurement (18), or by matching the model 151 
output to experimental observations (Table 1). One set of parameters was used for all the deterministic 152 
or stochastic model realizations in this paper. The cell generation time of 42 min in supplemented M9 153 
glucose medium at 37°C (or 75 min in M9 glycerol, Fig 5) was obtained directly by timing cell division 154 
events in the microfluidic experiments. To directly compare Ada abundances between experiment and 155 
model, fluorescence intensity units were converted to molecule concentrations as described previously 156 
(18, 43). To account for incomplete fluorescent protein maturation and presence of photobleached 157 
mYPet molecules, we estimated that the detection efficiency of fluorescent Ada-mYPet is 80% of the 158 
total abundance. 159 

Parameter Value 

Cell generation time 42 min (75 min in Fig. 5) 

kbasal 1.25 molecules generation-1 

kind 1250 molecules generation-1 

kon 10 molecules generation-1 

koff 1200 generation-1 

kme 1.5 molecules [MMS] -1 generation-1 

Dilution rate ln(2) generation-1 

ρ 0.65 generation-1 

mYPet detection efficiency 0.8 

Table 1. Parameter values used for all plots in this paper. 160 

 161 

RESULTS 162 

A quantitative model of the adaptive response 163 

I first examined whether the proposed model (Fig. 1A) could reproduce the cell-average steady-state 164 
expression of Ada after continuous treatment with MMS for 20 cell generations. Experiments showed 165 
that Ada expression was very low in the absence of damage treatment and for concentrations below a 166 
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threshold of 200 µM MMS. A switch-like dose response occurred for concentrations above 350 µM 167 
MMS where Ada expression saturated with a very narrow transition region of intermediate Ada 168 
expression levels. The analytical steady-state solution of the model accurately reproduced the dose 169 
response curve (Fig. 1B). 170 

Imaging cells inside a microfluidic device allowed following the gene expression dynamics of the 171 
adaptive response (18). Ada-mYPet expression was measured using time-lapse imaging for hundreds 172 
of cells over tens of generations per experiment. Averaging the measured fluorescence signal over all 173 
cells at each time point showed that continuous treatment with high MMS concentrations (>350 µM) 174 
caused rapid activation of Ada expression within 2 cell generations and steady-state expression was 175 
reached within ~10 generations (Fig. 1C). For lower MMS concentrations (<350 µM), initial response 176 
activation was delayed by more than 5 generations and expression reached steady state only after ~20 177 
generations of treatment. The numerical solution of the model closely matched the measured dynamics 178 
(Fig. 1C), using the same set of parameters as for the steady-state analysis. Furthermore, the model 179 
confirms that removal of MMS leads to deactivation of the adaptive response (Fig 1D). The abundance 180 
of meAda decayed exponentially immediately after MMS removal, whereas Ada remained induced for 181 
several generations until meAda levels had diminished. There were no signs of hysteresis effects after 182 
MMS removal, as expected for the non-cooperative promoter binding of meAda (37). 183 

 184 

 185 

Fig. 1 Deterministic model of the adaptive response. (A) Schematic of the model: Ada is expressed at 186 
a low basal level in undamaged cells. MMS treatment creates DNA methylation damage that converts 187 
Ada to meAda. ada transcription is activated by meAda binding to the PAda promoter. Both Ada and 188 
meAda molecules are diluted due to cell growth and division. Additionally, meAda gets inactivated by 189 
degradation or auto-repression. (B) Average steady-state expression of Ada after constant treatment 190 
with different doses of MMS for 20 cell generations (mean ± standard deviation). The curve shows the 191 
analytical steady-state solution of the total Ada abundance. (C) Average response induction dynamics 192 
when MMS was added at time 0 and Ada abundance was measured by time-lapse fluorescence 193 
microscopy. The model curves were generated by numerically solving the rate equations for different 194 
MMS concentrations. (D) Average response induction and deactivation dynamics upon addition and 195 
removal of 500 µM MMS. The vertical line indicates the time of MMS removal. For the model, total 196 
Ada (Ada + meAda + inAda) and meAda levels are shown as solid and dashed lines, respectively.  197 

 198 

 199 
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Poisson fluctuations of Ada expression in the absence of DNA damage 200 

Stochastic effects appear to play a key role in the dynamics of the adaptive response at the single-cell 201 
level. Single-molecule counting of Ada-mYPet showed that the average production rate in the absence 202 
of DNA methylation damage is as low as 1 Ada molecule per cell generation (18). This is equivalent to 203 
a population average of 1.4 Ada molecules per cell, given that the loss rate by cell division is ln(2) per 204 
cell generation. The distribution of Ada numbers ranged from 0 to ~6 molecules per cell. Spontaneous 205 
induction of higher Ada expression in the absence of MMS treatment was never observed in 206 
experiments (Fig. 2A inset). Ada copy numbers were well described by a simulated Poisson distribution 207 
when the mean was fixed by the average expression from experiments (Fig. 2A). The integer numbers 208 
of Ada molecules can be viewed as discrete cell states and transitions between these states occur with 209 
a constant (memoryless) probability given by the average production and loss rates. 210 

Many genes are expressed in bursts, where multiple mRNAs are produced in a short interval and each 211 
transcript is translated repeatedly (44), which broadens the expression distributions (45). The close fit 212 
of the Poisson distribution demonstrates a lack of expression bursting for Ada, which can be explained 213 
by the low translation efficiency and short half-life of ada mRNAs (40, 41). It has also been shown that 214 
periodic changes in the gene copy number due to DNA replication result in gene expression variation 215 
(46, 47). However, because the ada gene is located close to the chromosome terminus region the gene 216 
is present at a single gene copy throughout most of the cell cycle and therefore expected to show little 217 
expression variation over the cell cycle. 218 

A stochastic model recapitulates single-cell response dynamics after DNA damage treatment 219 

In contrast to the gradual response induction suggested by the numerical solution of the model (Fig. 220 
1D), single-cell measurements revealed significant heterogeneity in ada expression after MMS 221 
exposure (18). Continuous treatment with low concentrations of MMS (50 - 100 µM) caused stochastic 222 
pulses of Ada expression but did not sustain conversion of Ada to the meAda transcription activator 223 
(Fig. 2B). Because the pulses are rare, the cell-average expression is close to the low average value 224 
predicted by the deterministic version of the model (grey curves in Fig. 2B-D). Intermediate MMS 225 
concentrations (200 – 350 µM) resulted in persistent Ada expression once the response was activated, 226 
but activation times were extremely broadly distributed across cells (Fig. 2C). Delays of more than 20 227 
generations were frequently observed, a time in which a single cell can grow into a colony of millions. 228 
Even at high MMS concentrations (500 µM – 2 mM), activation times differed by multiple generations 229 
between cells (Fig. 2D). Contrary to response activation, removal of MMS caused all cells to switch off 230 
the adaptive response uniformly (Fig. 2C). 231 

 232 

 233 
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 234 

Fig. 2 Stochastic dynamics of the adaptive response in single cells.  (A) Distribution of the number of 235 
Ada molecules per cell without MMS treatment. The experimental data (top) is from single-molecule 236 
counting experiments (18). Simulated data (bottom) were drawn from a Poisson distribution with a 237 
mean of 1 per cell. Inset: Single-cell time-traces of Ada expression without MMS treatment. (B) 238 
Example time-traces showing random unsynchronized pulses of Ada expression with 50 µM MMS 239 
treatment for experimental (top) and simulated data (bottom). The cell-average data is shown in grey. 240 
(C-D) Stochastic activation of the Ada response with 200 µM and 1 mM MMS treatment. Example time-241 
traces for experimental (top) and simulated data (bottom) are shown. The arrow indicates the time 242 
when MMS was removed. The cell-average data is shown in grey. 243 

 244 

I tested whether the proposed model could explain aspects of the observed cell-to-cell variation. 245 
Importantly, the microfluidic imaging system ensures that cells grow under constant identical 246 
conditions such that any heterogeneity can be attributed to stochastic processes intrinsic to the cell. I 247 
hypothesized that incorporating the discrete nature of molecule numbers and probabilistic reaction 248 
kinetics into the model could account for the stochastic response dynamics. This hypothesis was driven 249 
by the fact that Poisson fluctuations are especially pronounced for low numbers of molecules as 250 
measured for Ada. Moreover, the positive feedback loop of Ada can amplify any initial fluctuations 251 
(48). 252 

Stochastic simulations provide a general approach for generating single-cell trajectories that can be 253 
directly compared to experimental data (49). To this end, I expressed the model equations as 254 
unimolecular or bimolecular elementary reactions and used Gillespie’s algorithm (42) to create 255 
probabilistically exact realizations of the proposed model. I used the same parameter values as for the 256 
deterministic model. Remarkably, simulated trajectories closely resembled the complex dynamics of 257 
the adaptive response in single cells over the whole range of MMS concentrations used in the 258 
experiments (Fig. 2). In particular, simulations reproduced the random Ada expression bursts at low 259 
MMS as well as the stochastic activation followed by sustained Ada expression at high MMS 260 
concentrations. Simulated cell traces also showed uniform deactivation of Ada expression after MMS 261 
removal. Importantly, no additional features or noise terms had to be added to the model to achieve 262 
these features. 263 
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 264 

Fig. 3 Activation of the adaptive response is delayed by gene expression noise. (A) Cumulative 265 
distribution showing the percentage of cells that activated the adaptive response after MMS exposure. 266 
The activation time corresponds to the time when Ada levels crossed a threshold of 23 molecules/cell 267 
(a threshold close to the experimental detection limit). The experimentally measured distributions 268 
include between 59 and 149 cells for each MMS concentration (left). Model results are from 1000 269 
independent Gillespie simulations for each MMS concentration (right). Simulated cell trajectories were 270 
analysed identical to experimental data. (B) Average delay time between MMS addition and generation 271 
of the first meAda molecule from 1000 simulated trajectories, conditional on the initial number of Ada 272 
molecules at the time of MMS addition. The red curve is for cells that initially had zero Ada molecules; 273 
solid black line for 1 Ada molecule, dashed black line for 2 Ada molecules, dotted black line for more 274 
than 2 Ada molecules. The average waiting time between basal expression events is shown in grey. (C) 275 
Simulated distribution of response delay times after 2 mM MMS treatment for cells with initially zero 276 
Ada molecules (red), or more than two Ada molecules (grey). 277 

 278 

Poisson noise in basal Ada expression dictates stochastic response delays 279 

For a quantitative comparison of experiments and model simulations, I evaluated the distribution of 280 
delay times between addition of MMS and first activation of the adaptive response in single cells (Fig. 281 
3A). The delay time distributions from stochastic simulations of the model closely resembled those 282 
from experiments. However, it is evident that the fluctuations in Ada expression after response 283 
activation are larger in experiments than in the simulated trajectories (Fig. 2). The additional variation 284 
likely reflects “extrinsic noise” (50) due to fluctuations in factors that influence Ada expression but 285 
were not included in the model, such as RNA polymerase and ribosome concentrations and variation in 286 
the length of the cell cycle. Nevertheless, the perfect match of the simulated and experimental delay 287 
time distributions shows that stochasticity in the initial activation time of the response is not influenced 288 
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by such external noise sources but can be solely attributed to basic Poisson fluctuations in ada gene 289 
expression. 290 

In particular, noise in the low basal expression of Ada is responsible for a subpopulation of 20-30% of 291 
cells that do not contain any Ada molecules (18). These cells are thus unable to activate the auto-292 
regulatory adaptive response until they generate at least one Ada molecule. For simulated data, it is 293 
possible to calculate response delay times conditional on the initial number of Ada molecules at the 294 
time of MMS exposure. This analysis confirmed that the average delay time between MMS addition 295 
and generation of the first meAda molecule converges to zero with increasing MMS concentration only 296 
for cells that initially contain one or more Ada molecules (Fig. 3B-C). But for cells lacking any Ada 297 
molecules, the average delay time approaches a limit defined by the average waiting time between 298 
stochastic basal expression events (Fig. 3B-C). In the model, the basal ada production is a zero-order 299 
reaction with an MMS-independent rate constant. Thus, response activation for cells without Ada 300 
molecules follows a memoryless process with an exponential distribution of delay times (Fig. 3C), as 301 
seen in experiments (18). 302 

 303 

 304 

Fig. 4 Experimental perturbations to test the model of the adaptive response. The distributions were 305 
generated from 1000 simulation repeats. Note that the experiments are shown in fluorescence units 306 
(a.u.), while simulation outputs are in molecule numbers. Scale bars: 5 µm. (A) Unperturbed Ada-307 
mYPet expression after cell treatment with 10 mM MMS for 1 hour. (B) Cephalexin treatment for 45 308 
min before addition of 10 mM MMS for 1 hour. In the simulation, molecule loss was abolished while 309 
all other parameters remained unchanged. (C) Mild overexpression of Ada by transforming cells that 310 
express Ada-mYPet endogenously with a very low copy number plasmid (~1 per cell) carrying the PAda 311 
promoter and ada gene. Cells were treated with 10 mM MMS for 1 hour before imaging. In the 312 
simulation, the ada gene was duplicated while all other parameters remained unchanged. 313 

 314 
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Testing the predictive power of the model using experimental perturbations 315 

The predictive power of the model was tested by comparison to experiments in which cells were 316 
subjected to perturbations that alter the regulation of the adaptive response in a defined manner (18) 317 
(Fig. 4). When cell division was inhibited for 45 minutes using the antibiotic cephalexin prior to MMS 318 
treatment, Ada molecules accumulate in cells and activation of the adaptive response becomes uniform 319 
in the population (18). In agreement with this, prohibiting loss of molecules for 45 minutes was 320 
sufficient to generate a uniform response in the simulations (Fig. 4B). The response was also perturbed 321 
genetically by supplementing endogenous Ada-mYPet expression with a plasmid that is present at 1-2 322 
copies per cell and expresses ada from the PAda promoter. The slight overexpression of Ada strongly 323 
reduced cell-to-cell variation upon MMS treatment and eliminated the population of cells with a delayed 324 
response (18). I modelled this perturbation by duplicating the ada gene copy number in the simulations 325 
(Fig. 4C). This alteration resulted in uniform response activation as seen in experiments (Fig. 4C). 326 
However, the simulations generated higher Ada expression levels than measured experimentally, likely 327 
because Ada overexpression is toxic in experiments (18). 328 

Effect of cell growth rate on the response strength 329 

The doubling time of E. coli in rich growth medium is shorter than the time required to replicate the 330 
chromosome. This is achieved by initiating new rounds of replication before completion of the previous 331 
round (51). The early duplication of genes close to the replication origin increases their expression 332 
proportional to the replication initiation frequency and thus maintains protein abundances at faster 333 
growth. Expression of the ada gene, however, being located at 49.7 min on the chromosome map in the 334 
vicinity of the terminus region, is expected to drop with increasing growth rates (Fig. 5A). This 335 
prediction can be tested by the model of the Ada response. I fixed the Ada expression rate while 336 
modifying the growth rate, and hence dilution rate. A strong Ada response occurred during slow growth 337 
whereas faster growth did not sustain a response at the same MMS concentration (Fig. 5B). I tested this 338 
prediction experimentally by growing cells in minimal medium supplemented with glucose or glycerol 339 
carbon sources, which lead to 42 min or 75 min generation times, respectively. These measurements 340 
confirmed the inverse relation between the growth rate and the strength of the adaptive response (Fig. 341 
5C). 342 

 343 

 344 

Fig. 5 Effect of the cell growth rate on the strength of the adaptive response. (A) Schematic showing 345 
replication of the circular E. coli chromosome during slow (blue) and fast (yellow) cell growth. 346 
Replication initiates at oriC and proceeds bidirectional towards ter (triangles). For fast growth 347 
initiation occurs before completion of the previous replication round. The ada gene is located close to 348 
ter, so the gene copy number does not increase at faster growth. (B) Simulated single-cell traces for 349 
slow (blue) and fast (yellow) growth with 100 µM MMS treatment. (C) Experimental data with 100 µM 350 
MMS treatment for cells growing in minimal medium plus glycerol at 75 min/generation (blue) or in 351 
minimal medium plus glucose (yellow) at 42 min/generation. Vertical lines denote times when MMS 352 
was removed. 353 
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DISCUSSION 354 

The role of noise in the fidelity of DNA repair has been investigated in eukaryotes, where nucleotide 355 
excision repair involves stochastic and reversible assembly of repair factors into large complexes (52, 356 
53). Collective rate control renders the overall repair pathway robust to variation in the abundances of 357 
the individual components (34). The situation is opposite for damage signalling by Ada, which acts 358 
alone in the regulation of the adaptive response and feedback amplification results in extreme sensitivity 359 
to gene expression noise. Remarkably, random variation in the abundance of Ada by just a single 360 
molecule was responsible for separating isogenic cells into distinct populations that either induced or 361 
failed to induce the DNA damage response. This had important consequences because the lack of a 362 
damage response decreased survival and increased mutation in those cells (17). The adaptive response 363 
has been described as “a simple regulon with complex features” (24). Instead of attempting to 364 
incorporate all mechanistic details, the model described in this article attempts to reduce the ada 365 
regulation to its central features. For example, methylation of both Cys38 and Cys321 residues in the 366 
N- and C-terminal Ada domains is required for optimal activation of the PAda promoter (54). The model 367 
uses only one effective methylation rate and does not distinguish between single or double methylation 368 
of Ada. Furthermore, unmethylated Ada has been reported to inhibit meAda-dependent transcription 369 
activation (39), a feature that was not explicitly included in the model. The adaptive response also 370 
interacts with other cellular responses and processes. For instance, the alternative sigma factor RpoS 371 
induces Ada expression upon entry into stationary phase (24), while the SOS response is crucial for 372 
initial survival of alkylation damage and contributes to alkylation-induced mutagenesis (17). 373 
Considering these simplifications, it is remarkable that the most parsimonious model of the adaptive 374 
response not only succeeds in quantitatively reproducing a large spectrum of stochastic single cell 375 
dynamics but also in predicting the system’s behaviour after different experimental perturbations. 376 

 377 
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