
 

1 
 

Large, three-generation CEPH families reveal post-zygotic mosaicism and 
variability in germline mutation accumulation  

 
Thomas A. Sasani1, Brent S. Pedersen1, Ziyue Gao4, Lisa Baird1, Molly Przeworski5,6, Lynn B. Jorde1,3*, 
Aaron R. Quinlan1,2,3* 

 
1 Department of Human Genetics, University of Utah. Salt Lake City, UT 
2 Department of Biomedical Informatics, University of Utah. Salt Lake City, UT 
3 USTAR Center for Genetic Discovery, University of Utah. Salt Lake City, UT 
4 Howard Hughes Medical Institute & Department of Genetics, Stanford University, Stanford, CA 
5 Department of Biological Sciences, Columbia University, New York City, NY 
6 Department of Systems Biology, Columbia University, New York City, NY 
* to whom correspondence should be addressed (lbj@genetics.utah.edu & aaronquinlan@gmail.com)   
 
Keywords: De novo mutation, germline mutation, germline mosaicism, postzygotic mutation, 
gonosomal mutation, human pedigrees 
  
Abstract 
The number of de novo mutations (DNMs) found in an offspring's genome increases with both 

paternal and maternal age. But does the rate of mutation accumulation in human gametes 

differ across families? Using sequencing data from 33 large, three-generation CEPH families, 

we observed significant variability in parental age effects on DNM counts across families, with 

estimates ranging from 0.19 to 3.24 DNMs per year. Additionally, we found that approximately 

3% of DNMs originated following primordial germ cell specification (PGCS) in a parent, and 

differed from non-mosaic germline DNMs in their mutational spectra. We also discovered that 

nearly 10% of candidate DNMs in the second generation were post-zygotic, and present in 

both somatic and germ cells; these gonosomal mutations occurred at equivalent frequencies 

on both parental haplotypes. Our results demonstrate that the rate of germline mutation 

accumulation varies among families with similar ancestry, and confirm that post-zygotic 

mosaicism is a substantial source of de novo mutations in humans. 

 

Data and code availability. Code used for statistical analysis and figure generation has been 

deposited on GitHub as a collection of annotated Jupyter Notebooks: 

https://github.com/quinlan-lab/ceph-dnm-manuscript. Data files containing high-confidence de 

novo mutations, as well as the gonosomal and post-primordial germ cell specification (PGCS) 

mosaic mutations, are included with these Notebooks. To mitigate compatibility issues, we 
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have also made all notebooks available in a Binder environment, accessible at the above 

GitHub repository.  

 
Introduction 

In a 1996 lecture at the National Academy of Sciences, James Crow noted that "without 

mutation, evolution would be impossible" (Crow 1997). His remark highlights the importance of 

understanding the rate at which germline mutations occur, the mechanisms that generate 

them, and the effects of gamete-of-origin and parental age. Not surprisingly, continued 

investigation into the germline mutation rate has helped to illuminate the timing and complexity 

of human evolution and demography, as well as the key role of spontaneous mutation in 

human disease (Scally and Durbin 2012; Moorjani, Gao, and Przeworski 2016; Deciphering 

Developmental Disorders Study 2017; Yuen et al. 2016; Acuna-Hidalgo, Veltman, and 

Hoischen 2016; Veltman and Brunner 2012).  

Some of the first careful investigations of human mutation rates can be attributed to 

J.B.S. Haldane and others, who cleverly leveraged an understanding of mutation-selection 

balance to estimate rates of mutation at individual disease-associated loci (Haldane 1935; 

Michael W. Nachman 2008). Over half of a century later, phylogenetic analyses inferred 

mutation rates from the observed sequence divergence between humans and related primate 

species at a small number of loci (M. W. Nachman and Crowell 2000; Shendure and Akey 

2015; Kondrashov 2002). In the last decade, whole genome sequencing of pedigrees has 

enabled direct estimates of the human germline mutation rate by identifying mutations present 

in offspring yet absent from their parents (de novo mutations, DNMs) (Ségurel, Wyman, and 

Przeworski 2014; Scally and Durbin 2012; Jónsson et al. 2017; Goldmann et al. 2016; Kong et 

al. 2012; Roach et al. 2010; Francioli et al. 2015). Numerous studies have employed this 

approach to analyze the mutation rate in cohorts of small, nuclear families, producing 

estimates nearly two-fold lower than those from phylogenetic comparison (Roach et al. 2010; 

Kong et al. 2012; Jónsson et al. 2017; Goldmann et al. 2016; Scally and Durbin 2012; 

Shendure and Akey 2015; Turner et al. 2017).  

These studies have demonstrated that the number of DNMs increases with both 

maternal and paternal ages; such age effects can likely be attributed to a number of factors, 

including the increased mitotic divisions in sperm cells following puberty, an accumulation of 

damage-associated mutation, and substantial epigenetic reprogramming undergone by germ 

cells (Jónsson et al. 2017; Kong et al. 2012; Goldmann et al. 2016; Rahbari et al. 2015; Crow 
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2000; Gao et al. 2019). There is also evidence that the mutational spectra of de novo 

mutations differ in the male and female germlines (Jónsson et al. 2017; Goldmann et al. 2016; 

Francioli et al. 2015; Gao et al. 2019; Agarwal and Przeworski 2019). Furthermore, a recent 

study of three two-generation pedigrees, each with 4 or 5 children, indicated that paternal age 

effects may differ across families (Rahbari et al. 2015). However, two-generation families with 

few offspring provide limited power to quantify parental age effects on mutation rates and 

restrict the ability to assign a gamete-of-origin to ~20-30% of DNMs (Rahbari et al. 2015; 

Jónsson et al. 2017; Goldmann et al. 2016).  

Here, we investigate germline mutation among families with large numbers of offspring 

spanning many years of parental age. We describe de novo mutation dynamics across multiple 

conceptions using blood-derived DNA samples from large, three-generation families from 

Utah, which were collected as part of the Centre d'Etude du Polymorphisme Humain (CEPH) 

consortium (Dausset et al. 1990). The CEPH/Utah families have played a central role in our 

understanding of human genetic variation (Prescott, Lalouel, and Leppert 2008; The 1000 

Genomes Project Consortium et al. 2015) by guiding the construction of reference linkage 

maps for the Human Genome Project (Lander et al. 2001), defining haplotypes in the 

International HapMap Project (International HapMap Consortium 2003), and characterizing 

genome-wide variation in the 1000 Genomes Project (The 1000 Genomes Project Consortium 

et al. 2015). 

The CEPH/Utah pedigrees are uniquely powerful for the study of germline mutation 

dynamics in that they have considerably more (min = 4, max = 16, median = 8) offspring than 

those used in many prior studies of the human mutation rate (Supplementary File 1). Multiple 

offspring, whose birth dates span up to 27 years, motivated our investigation of parental age 

effects on DNM counts within families and allowed us to ask whether these effects differed 

across families. The structure of all CEPH/Utah pedigrees (Supplementary File 1) also 

enables the use of haplotype sharing through three generations to determine the parental 

haplotype of origin for nearly all DNMs in the second generation. Using this large dataset of 

"phased" DNMs, we can investigate the effects of gamete-of-origin on human germline 

mutation in greater detail. 

Finally, if a DNM occurs in the early cell divisions following zygote fertilization 

(considered gonosomal), or during the proliferation of primordial germ cells, it may be mosaic 

in the germline of that individual. This mosaicism can then present as recurrent DNMs in two or 

more children of that parent. As DNMs are an important source of genetic disease (Campbell, 
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Yuan, et al. 2014; Campbell et al. 2015; Biesecker and Spinner 2013; Forsberg, Gisselsson, 

and Dumanski 2017; Acuna-Hidalgo, Veltman, and Hoischen 2016; Veltman and Brunner 

2012), it is critical to understand the rates of mosaic DNM transmission in families. The 

structures of the CEPH/Utah pedigrees enable the identification of these recurrent DNMs and 

can allow for the differentiation of mutations arising as post-zygotic gonosomal variants or as 

mosaic in the germline of the second generation. 

 
Results 
 
Identifying high-confidence DNMs using transmission to a third generation 

We sequenced the genomes of 603 individuals from 33, three-generation CEPH/Utah 

pedigrees to a genome-wide median depth of ~30X (Figure 1—figure supplement 1, 
Supplementary File 1), and removed 10 samples from further analysis following quality 

control using peddy (Pedersen and Quinlan 2017). After standard quality filtering, we identified 

a total of 4,671 germline de novo mutations in 70 second-generation individuals, each of which 

was transmitted to at least one offspring in the third generation (Figure 1a, Supplementary 
File 2). Approximately 92% (4,298 of 4,671) of DNMs observed in the second generation were 

single nucleotide variants (SNVs), and the remainder were small (<= 10 bp) insertion/deletion 

variants. The eight parents of four second-generation samples were re-sequenced to a median 

depth of ~60X (Figure 1—figure supplement 1d), allowing us to estimate a false positive rate 

of 4.5% for our de novo mutation detection strategy (Methods). Taking all second-generation 

samples together, we calculated median germline mutation rates of 1.10 x 10-8 and 9.29 x 10-10 

per base pair per generation for SNVs and indels, respectively, which corroborate prior 

estimates based on family genome sequencing with roughly comparable parental ages 

(Jónsson et al. 2017; Kong et al. 2012; Besenbacher et al. 2016; Rahbari et al. 2015). 

Extrapolating to a diploid genome size of ~6.4 Gbp, we therefore estimate an average number 

of 70.1 de novo SNVs and 5.9 de novo indels per genome, at average paternal and maternal 

ages of 29.1 and 26.0 years, respectively.  
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Figure 1. Estimating the rate of germline mutation using multigenerational CEPH/Utah pedigrees. 
(a) The CEPH/Utah dataset comprises 33 three-generation families. Summaries of sequencing coverage for 

CEPH/Utah individuals are presented in Figure 1—figure supplement 1. After identifying candidate de novo 

mutations in the second generation (e.g., the de novo "T" mutation shown in the second-generation father), it is 

possible to assess their validity both by their absence in the parental (first) generation and by transmission to one 

or more offspring in the third generation. (b) Total numbers of DNMs (both SNVs and indels) identified across 

second-generation CEPH/Utah individuals and stratified by parental gamete-of-origin. Boxes indicate the 

interquartile range (IQR), and whiskers indicate 1.5 times the IQR. Diagrams of phasing strategies for germline 

DNMs are presented in Figure 1—figure supplement 2. 
 

Parent-of-origin and parental age effects on de novo mutation observed in the second 

generation 

 We determined the parental gamete-of-origin for a median of 98.5% of de novo variants 

per second-generation individual (range: 90.3-100%) by leveraging haplotype sharing across 

all three generations in a family (Kong et al. 2012; Jónsson et al. 2017), as well as read tracing 

of DNMs to informative sites in the parents (Fig. 1b, Figure 1—figure supplement 2). The 

ratio of paternal to maternal DNMs was 3.96:1, and 79.8% of DNMs were paternal in origin. 

We then measured the relationship between the number of phased DNMs observed in each 

child and the ages of the child’s parents at birth (Fig. 2a). After fitting Poisson regressions, we 

observed a significant paternal age effect of 1.44 (95% CI: 1.12-1.77, p < 2e-16) additional 

DNMs per year, and a significant maternal age effect of 0.38 (95% CI: 0.21-0.55, p = 1.24e-5) 

DNMs per year (Fig. 2a). These confirm prior estimates of the paternal and maternal age 

effects on de novo mutation accumulation, and further suggest that both older mothers and 

fathers contribute to increased DNM counts in children (Figure 2—figure supplement 1) 

(Jónsson et al. 2017; Goldmann et al. 2016; Rahbari et al. 2015; Wong et al. 2016).  
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We next compared the paternal and maternal fractions of phased autosomal DNMs 

identified in the second generation across eight mutational classes (Fig. 2b). In maternal 

mutations, there was an enrichment of C>T transitions in a non-CpG context (p = 7.65e-6, Chi-

squared test of independence), and we observed an enrichment of T>G transversions in 

paternal mutations (p = 4.93e-3, Chi-squared test of independence). Maternal and paternal 

enrichments of C>T and T>G, respectively, have been reported in recent studies of de novo 

mutation spectra, though the mechanisms underlying these observations are currently unclear 

(Goldmann et al. 2016; Jónsson et al. 2017). We additionally stratified second-generation 

individuals by the ages of their parents at birth and found no significant differences in the 

mutational spectra of children born to older or younger parents, though we may be 

underpowered to detect these differences in our dataset (Figure 2—figure supplement 2). 

 
Figure 2. Effects of parental age and sex on autosomal DNM counts and mutation types in the second 
generation. 
(a) Numbers of phased paternal and maternal de novo variants as a function of parental age at birth. Poisson 

regressions (with 95% confidence bands, calculated as 1.96 times the standard error) were fit for mothers and 

fathers separately using an identity link. Germline mutation rates, as a function of both paternal and maternal 

ages, are presented in Figure 2—figure supplement 1. (b) Mutation spectra in autosomal DNMs phased to the 

paternal (n=3,584) and maternal (n=880) haplotypes. Asterisks indicate significant differences between paternal 
and maternal fractions at a false-discovery rate of 0.05 (Benjamini-Hochberg procedure), using a Chi-squared test 

of independence. P-values for each comparison are: C>G: 0.719, T>G: 4.93e-3, T>A: 8.60e-2, T>C: 8.02e-2, 

C>A: 0.159, C>T: 7.65e-6, indel: 8.01e-2, CpG>TpG: 0.835. Mutation spectra stratified by parental ages are 

presented in Figure 2—figure supplement 2. 
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Evidence for inter-family variability of parental age effects on offspring DNM counts 

A recent study of three two-generation pedigrees with multiple offspring suggested that 

the effect of paternal age on DNM counts in children may differ between families (Rahbari et 

al. 2015). Given the large numbers of offspring in the CEPH/Utah pedigrees, we were 

motivated to perform an investigation of parental age effects on mutation counts within 

individual families. To measure these effects in the CEPH dataset, we first generated a high-

quality set of de novo variants observed in the third generation, excluding recurrent (mosaic) 

DNMs shared by multiple third-generation siblings, likely post-zygotic DNMs (Methods), and 

"missed heterozygotes" in the second generation (0.4% of heterozygous variants). The 

“missed heterozygotes” represent apparent DNMs in the third generation that were, in fact, 

likely inherited from a second-generation parent who was incorrectly genotyped as being 

homozygous for the reference allele (Methods). In total, we detected 24,975 de novo SNVs 

and small indels in 350 individuals in the third generation (Supplementary File 3). Of these, 

we were able to confidently determine a parental gamete-of-origin for 5,336 (median of 21% 

per third-generation individual; range of 8-38%) using read tracing, and assign 4,201 (78.7%) 

of these to fathers. Given the comparatively low phasing rate in the third generation, we 

focused our age effect analysis on the relationship between paternal age only and the total 

number of autosomal DNMs in each individual, regardless of parent-of-origin. Taking all third-

generation individuals into account, we estimate the slope of the paternal age effect to be 1.72 

DNMs per year (95% CI: 1.58-1.85, p < 2e-16). Within a given family, maternal and paternal 

ages are perfectly correlated; therefore, the paternal effect approximates the combined age 

effects of both parents. 

When inspecting each family separately, we observed a wide range of paternal age 

effects among the CEPH/Utah families (Fig. 3). To test whether these observed effects varied 

significantly between families, we fit a Poisson regression that incorporated the effects of 

paternal age, family membership, and an interaction between paternal age and family 

membership, across all third-generation individuals in CEPH/Utah pedigrees. As a small 

number of the CEPH/Utah pedigrees comprise multiple three-generation families 

(Supplementary File 1), we assigned each unique set of second-generation parents and their 

third-generation children a distinct ID, resulting in a total of 40 families (Figure 3—figure 
supplement 1). Overall, the effect of paternal age on offspring DNM counts varied widely 

across pedigrees, from only 0.19 (95% CI: -1.05-1.44) to nearly 3.24 (95% CI: 2.24-4.24) 

additional DNMs per year. A goodness-of-fit test supported the use of a "family-aware" 
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regression model when compared to a model that ignores family membership, even after 

accounting for variable sequencing coverage across third-generation samples (median 

autosomal base pairs covered = 2,582,875,060; ANOVA: p = 9.36e-10). Moreover, we found 

that the interaction between paternal age and family membership improved the fit of the linear 

model (p = 0.043, Supplementary Table 1), suggesting that inter-family variability involves 

differences in paternal age effects (i.e., the slopes of each regression). We note that the 

confidence intervals surrounding the slope point estimates for some CEPH/Utah families are 

quite wide, likely due to the small number of third-generation individuals in each family, as well 

as some stochastic noise in the DNM counts attributed to each child (Figure 3d). Nonetheless, 

family rankings based upon the effect of paternal age on DNM counts are stable and relatively 

insensitive to outliers (Figure 3—figure supplement 2). 

Finally, when compared to a multiple regression that includes the effects of both 

paternal and maternal age, a model that takes family membership into account remained a 

significantly better fit (ANOVA: p = 2.12e-5). The high degree of correlation between paternal 

and maternal ages makes it difficult to tease out the individual contributions of each parent to 

the observed inter-family differences. Nonetheless, these results suggest the existence of 

substantial variability in parental age effects across CEPH/Utah families, which could involve 

both genetic and environmental factors that differ among families.  
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Figure 3: Parental age effects on autosomal germline mutation counts vary significantly among 
CEPH/Utah families  
Illustrations of pedigrees exhibiting the smallest (family 24_C, panel a) and largest (family 16, panel b) paternal 

age effects on third-generation DNM counts demonstrate the extremes of inter-family variability. Diamonds are 

used to anonymize the sex of each third-generation individual. The method used to separate CEPH/Utah 

pedigrees into unique groups of second-generation parents and third-generation children is presented in Figure 
3—figure supplement 1. Third-generation individuals are arranged by birth order from left to right. The number of 

autosomal DNMs observed in each third-generation individual is shown within the diamonds, and the age of the 
father at the third-generation individual’s birth is shown below the diamond. The coloring for these two families is 

used to identify them in panels c and d. (c) The total number of autosomal DNMs is plotted versus paternal age at 

birth for third-generation individuals from all CEPH/Utah families. Regression lines and 95% confidence bands 

indicate the predicted number of DNMs as a function of paternal age using a Poisson regression (identity link). 

Families are sorted in order of increasing slope, and families with the least and greatest paternal age effects are 

highlighted in blue and red, respectively. (d) A Poisson regression (predicting autosomal DNMs as a function of 

paternal age) was fit to each family separately; the slope of each family’s regression is plotted, as well as the 95% 
confidence interval of the regression coefficient estimate. The same two families are highlighted as in (a). A 

dashed black line indicates the overall paternal age effect (estimated using all third-generation samples). Families 

are ordered from top to bottom in order of increasing slope, as in (a). A random sampling approach was used to 

assess the robustness of the per-family regressions to possible outliers; the results of these simulations are 

shown in Figure 3-figure supplement 2. 

 

Identifying gonadal, post-primordial germ cell specification (PGCS) mosaicism in the second 

generation  

 Generally, studies of de novo mutation focus on variants that arise in a single parental 

gamete. However, if a de novo variant arises during or after primordial germ cell specification 

(PGCS), that variant may be present in multiple resulting gametes and absent from somatic 

cells (Rahbari et al. 2015; Acuna-Hidalgo et al. 2015; Campbell, Yuan, et al. 2014; Tang et al. 

2016; Jónsson et al. 2018; Campbell et al. 2015; Biesecker and Spinner 2013). These variants 

can therefore be present in more than one offspring as apparent de novo mutations.  In each 

family, we searched for post-PGCS germline mosaic variants by identifying high-confidence 

DNMs that were shared by 2 or more third-generation individuals, and were absent from the 

blood DNA of any parents or grandparents within the family (Fig. 4a). Given the large number 

of third-generation siblings in each CEPH/Utah family, we had substantially higher power to 

detect germline mosaicism that occurred in in the second generation than in prior studies. In 

total, we identified 720 single-nucleotide germline mosaic mutations at a total of 303 unique 

sites, which were subsequently corroborated through visual inspection using the Integrative 
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Genomics Viewer (IGV) (Supplementary File 4) (Thorvaldsdóttir, Robinson, and Mesirov 

2013). Of the phased shared germline mosaic mutations, 124/260 (47.7%) were paternal in 

origin; thus, the mutations that occurred following PGCS likely occurred irrespective of any 

parental sex biases on mutation counts. Overall, approximately 3.1% (720/23,399) of all single-

nucleotide DNMs observed in the third generation likely arose during or following PGCS in a 

parent’s germline, confirming that these variants comprise a non-negligible fraction of all de 

novo germline mutations.  

The mutation spectrum for non-shared germline de novo variants was significantly 

different than the spectrum for shared germline mosaic variants (Fig. 4b). Specifically, we 

found enrichments of CpG>TpG and C>A mutations, and a depletion of T>C mutations, in 

shared germline mosaic variants when compared to all unshared germline de novo variants 

observed in the third generation (Fig. 4b). An enrichment of CpG>TpG mutations in germline 

mosaic DNMs, which was also seen in a recent report on mutations shared between siblings 

(Jónsson et al. 2018), is particularly intriguing, as many C>T transitions in a CG dinucleotide 

context are thought to occur due to spontaneous deamination of methylated cytosine (Fryxell 

and Zuckerkandl 2000). Indeed, DNA methylation patterns are highly dynamic during 

gametogenesis; evidence in mouse demonstrates that the early primordial germ cells are 

highly methylated, but experience a global loss of methylation during expansion and migration 

to the genital ridge, followed by a re-establishment of epigenetic marks (at different time points 

in males and females) (Seisenberger et al. 2012; Reik, Dean, and Walter 2001).  

We also tabulated the number of each third-generation individual’s DNMs that was 

shared with one or more of their siblings. As reported in the recent analysis of germline 

mosaicism (Jónsson et al. 2018), we observed that the number of shared germline mosaic 

DNMs does not increase with paternal age (p = 0.647, Fig. 4c, Methods). Thus, a de novo 

mutation sampled from the child of a younger father is more likely to recur in a future child, as 

early-occurring, potentially mosaic mutations comprise a larger proportion of all DNMs present 

among the younger father’s sperm population (Fig. 4d). Conversely, a de novo mutation 

sampled from the child of an older father is less likely to recur, as the vast majority of DNMs in 

that father’s gametes will have arisen later in life in individual spermatogonial stem cells (Fig. 
4d) (Campbell, Stewart, et al. 2014; Jónsson et al. 2018). Consistent with this expectation, we 

observed a significant age-related decrease in the proportion of shared germline mosaic DNMs 

(p = 1.61e-5, Fig. 4e). Although families with large numbers of siblings are expected to offer 

greater power to detect shared, germline mosaic DNMs, we verified that neither the mosaic 
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fraction nor the number of mosaic DNMs observed in third-generation children are significantly 

associated with the number of siblings in a family (Methods). 

 
Figure 4. Identification of post-PGCS germline mosaicism in the second generation 
(a) Mosaic variants occurring during or after primordial germ cell specification (PGCS) were defined as DNMs 

present in multiple third-generation siblings, and absent from progenitors in the family. (b) Comparison of 

mutation spectra in autosomal single-nucleotide germline mosaic variants (red, n=288) and germline de novo 

variants observed in the third generation (non-shared) (blue, n=22,644). Asterisks indicate significant differences 

at a false-discovery rate of 0.05 (Benjamini-Hochberg procedure), using a Chi-squared test of independence. P-

values for each comparison are: C>G: 6.84e-2, T>G: 0.169, T>A: 0.236, T>C: 1.51e-2, C>A: 4.31e-3, C>T: 0.385, 

CpG>TpG: 2.26e-6. (c) For each third-generation individual, we calculated the number of their DNMs that was 

shared with at least one sibling, and plotted this number against the individual’s paternal age at birth. The red line 

shows a Poisson regression (identity link) predicting the mosaic number as a function of paternal age at birth. (d) 

We fit a Poisson regression predicting the total number of germline single-nucleotide DNMs observed in the third-

generation individuals as a function of paternal age at birth, and plotted the regression line (with 95% CI) in blue. 
In red, we plotted the line of best fit (with 95% CI) produced by the regression detailed in (c). (e) For each third-
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generation individual, we divided the number of their DNMs that occurred during or post-PGCS in a parent (i.e., 

that were shared with a sibling) by their total number of DNMs (germline + germline mosaic), and plotted this 

fraction of shared germline mosaic DNMs against their paternal age at birth. 

 

Identifying gonosomal mosaicism in the second generation  

We further distinguished germline mosaicism from mutations that occurred before 

primordial germ cell specification, but likely following the fertilization of second-generation 

zygotes. De novo mutations that occur prior to PGCS can be present in both blood and germ 

cells; we therefore sought to characterize these “gonosomal” variants that likely occurred early 

during the early post-zygotic development of second-generation individuals (Besenbacher et 

al., 2015; Campbell et al., 2015; Campbell, Stewart, et al., 2014; Campbell, Yuan, et al., 2014; 

Rahbari et al., 2015, Feusier et al. 2018; Harland et al. 2017; Jónsson et al. 2018). We 

assumed that these gonosomal mutations would be genotyped as heterozygous in a second-

generation individual, but exhibit a distinct pattern of “incomplete linkage” to informative 

heterozygous alleles nearby (Methods, Fig. 5a) (Feusier et al. 2018; Harland et al. 2017; 

Jónsson et al. 2018). If these variants occurred early in development, and were present in both 

the blood and germ cells, we could also validate them by identifying third-generation 

individuals that inherited the variants with a balanced number of reads supporting the 

reference and alternate alleles (Fig. 5a).  
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Figure 5. Identification of gonosomal mutations in the second generation 
(a) Gonosomal post-zygotic variants were identified as DNMs in a second-generation individual that were 
inherited by one or more third-generation individuals, but exhibited incomplete linkage to informative 
heterozygous sites nearby. (b) Comparison of mutation spectra in single-nucleotide gonosomal DNMs that 
occurred on the paternal (n=249) or maternal (n=226) haplotypes. No significant differences were found at a 
false-discovery rate of 0.05 (Benjamini-Hochberg procedure), using a Chi-squared test of independence. P-values 
for each comparison are: C>G: 3.05e-2, T>G: 0.972, T>A: 0.858, T>C: 0.148, C>A: 3.31e-2, C>T: 2.66e-2, indel: 
0.247, CpG>TpG: 0.932. (c) Comparison of mutation spectra in autosomal single-nucleotide germline DNMs 
observed in the second-generation (non-gonosomal) (n=4,542) and putative gonosomal mutations (n=475) in the 
second generation. Asterisks indicate significant differences at a false-discovery rate of 0.05 (Benjamini-Hochberg 
procedure), using a Chi-squared test of independence. P-values for each comparison are: C>G: 0.517, T>G: 
0.800, T>A: 2.32e-3, T>C: 0.255, C>A: 0.129, C>T: 0.805, indel: 0.446, CpG>TpG: 0.212. (d) Numbers of phased 
gonosomal variants as a function of parental age at birth. Poisson regressions (with 95% confidence bands) were 
fit for the mutations phased to the maternal and paternal haplotypes separately using an identity link. Diagram of 
an identification strategy for post-zygotic gonosomal DNMs (using only two generations) is presented in Figure 5-
figure supplement 1. 
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In total, we identified 475 putative autosomal gonosomal DNMs, which were also 

validated by visual inspection (Supplementary File 5). In contrast to single-gamete germline 

DNMs observed in the second-generation, gonosomal mutations appeared to be sex-balanced 

with respect to the parental haplotype on which they occurred; 52% (249/475) of all gonosomal 

DNMs occurred on a paternal haplotype, as compared to ~80% of germline DNMs observed in 

the second generation. Similarly, no significant enrichment of particular gonosomal mutation 

types was observed on either parental haplotype at a false discovery rate of 0.05 (Fig. 5b), 
though we found that T>A transversions are enriched in gonosomal DNMs when compared to 

single-gamete germline DNMs observed in the second generation (p = 2.32e-3) (Fig. 5c). 

Unlike single-gamete germline DNMs, there were no significant effects of parental age on 

gonosomal DNM counts (maternal age, p = 0.132; paternal age, p = 0.225) (Fig. 5d). 

However, a recent study found tentative evidence for a maternal age effect on de novo 

mutations that arise in the early stages of zygote development (Gao et al. 2019). As noted in 

this previous study, we are likely underpowered to detect a possible maternal age effect using 

the numbers of second-generation individuals in the CEPH/Utah dataset. Overall, our results 

demonstrate that over 9% (475/5,017) of all candidate autosomal germline mutations observed 

in the second generation were, in fact, post-zygotic in these second-generation individuals. 

Perhaps most importantly, approximately 6% of candidate de novo mutations detected in the 

second generation with an allele balance >= 0.2 (303/5,017) were determined to be post-

zygotic, and present in both somatic and germ cells. This suggests that a fraction of many 

germline de novo mutation datasets are comprised of truly post-zygotic DNMs, rather than 

mutations that occurred in a single parental gamete. 

We note that our analysis pipeline may erroneously classify some gonosomal and 

shared germline mosaic DNMs. Namely, our count of gonosomal DNMs may be an 

underestimate, since our requirement that the second-generation individual be heterozygous 

precludes the detection of post-zygotic mosaic mutations at very low frequency in blood. Also, 

blood cells represent only a fraction of the total somatic cell population, and we cannot rule out 

the possibility that mosaicism apparently restricted to the germline may, in fact, be present in 

other somatic cells that were not sampled in this study (Biesecker and Spinner 2013).  

 

Discussion 
 Using a cohort of large, multi-generational CEPH/Utah families, we have identified a 

high-confidence set of germline de novo mutations that are validated by transmission to the 
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following generation. We determined the parental gamete-of-origin for nearly all of these DNMs 

observed in the second generation and produced estimates of the maternal and paternal age 

effects on the number of DNMs in offspring. Then, by comparing parental age effects among 

pedigrees with large third generations whose birth dates span as many as 27 years, we found 

that families significantly differed with respect to these age effects. Finally, we identified 

gonosomal and shared germline mosaic de novo variants which appear to differ from single-

gamete germline DNMs with respect to mutational spectra and magnitude of the sex bias. 

Understanding family differences in both mutation rates and parental age effects could 

enable the identification of developmental, genetic, and environmental factors that impact this 

variability. The fact that there were detectable differences in parental age effects between 

families is striking in light of the fact that the CEPH/Utah pedigrees comprise ostensibly healthy 

individuals, and that at the time of collection they resided within a relatively narrow geographic 

area (Malhotra et al. 2005; Dausset et al. 1990). We therefore suspect that our results 

understate the true extent of variability in mutation rates and age effects among families with 

diverse inherited risk for mutation accumulation, and who experience a wide range of 

exposures, diets, and other environmental factors. Supporting this hypothesis, a recent report 

identified substantial differences in the mutation spectra of segregating variants in populations 

of varied ancestries, suggesting that genetic modifiers of the mutation rate may exist in 

humans, as well as possible differences in environmental exposures (Harris and Pritchard 

2017; Mathieson and Reich 2017). Another explanation (that we are unable to explore) for the 

range of de novo mutation counts in firstborn children across families is variability in the age at 

which parents enter puberty. For example, a father entering puberty at an older age could 

result in less elapsed time between the start of spermatogenesis and the fertilization of his first 

child’s embryo. Compared to another male parent of the same age, his sperm will have 

accumulated fewer mutations by the time of fertilization. Of course, this hypothesis assumes 

that for both fathers, three parameters are identical: the mutation rate at puberty, the yearly 

mutation rate increase following puberty, and age at fertilization of the first child’s embryo. 

Moreover, we note that replication errors are unlikely to be the sole source of de novo germline 

mutations (Gao et al. 2019). Overall, the potential sources of inter-family variability in mutation 

rates remain mysterious, and we anticipate that future studies will be needed to uncover the 

biological underpinnings of this variability. 

Our observation of germline mosaicism, a result of de novo mutations that occur during 

or post-PGCS, has broad implications for the study of human disease and estimates of 
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recurrence risks within families (Jónsson et al. 2018; Campbell, Yuan, et al. 2014; Biesecker 

and Spinner 2013; Forsberg, Gisselsson, and Dumanski 2017; Krupp et al. 2017). If a de novo 

mutation is found to underlie a genetic disorder in a child, it is critical to understand the risk of 

mutation recurrence in future offspring. We estimate that ~3% of germline de novo mutations 

originated as a mosaic in the germ cells of a parent. This result corroborates recent reports 

(Rahbari et al. 2015; Jónsson et al. 2018) and demonstrates that a substantial fraction of all 

germline DNMs may be recurrent within a family. We also find that the mutation spectrum of 

shared germline mosaic DNMs is significantly different than the spectrum for single-gamete 

germline DNMs, raising the intriguing possibility that different mechanisms contribute to de 

novo mutation accumulation throughout the proliferation of primordial germ cells and later 

stages of gametogenesis. For instance, the substantial epigenetic reprogramming that occurs 

following primordial germ cell specification may predispose cells at particular developmental 

time points to certain classes of de novo mutations, such as C>T transitions at CpG 

dinucleotide sites (Gao et al. 2019). 

Recurrent DNMs across siblings can also manifest as a consequence of gonosomal 

mosaicism in parents (Biesecker and Spinner 2013; Jónsson et al. 2018). Although it can be 

difficult to distinguish gonosomal mosaicism from both single-gamete germline de novo 

mutation and germline mosaicism, we have identified a set of putative gonosomal mosaic 

mutations that are sex-balanced with respect to the parental haplotype on which they occurred, 

and do not exhibit any detectable dependence on parental age at birth. Both of these 

observations are expected if gonosomal mutations arise after zygote fertilization, rather than 

during the process of gametogenesis. We do, however, find that T>A transversions are 

enriched in gonosomal DNMs, as compared to DNMs that occurred in the germline of a parent. 

Overall, we estimate that approximately 10% of candidate germline de novo mutations in our 

study were, in fact, gonosomal mutations that occurred during the early cell divisions of the 

offspring, rather than in a single parental gamete. Prior work in cattle has estimated the 

fraction of mosaic DNMs that occur during early cell divisions to be even higher, suggesting 

that these mosaic mutations make up a large fraction of DNMs that are reported to have 

occurred in a single parental gamete (Harland et al. 2017). 

These results underscore the power of large, multi-generational pedigrees for the study 

of de novo human mutation and yield new insight into the mutation dynamics that exist among 

parental age and sex, as well as family of origin. Given that we studied only 33 large 

pedigrees, the mutation rate variability we observe is very likely an underestimate of the full 
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range of variability worldwide. We therefore anticipate future studies of multi-generational 

pedigrees that will help to dissect the relative contributions of genetic background, 

developmental timing, and myriad environmental factors. 
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Methods 
 
Genome Sequencing 

Whole-genome DNA sequencing libraries were constructed with 500 ng of genomic 

DNA isolated from blood, utilizing the KAPA HTP Library Prep Kit (KAPA Biosystems, Boston, 

MA) on the SciClone NGS instrument (Perkin Elmer, Waltham, MA) targeting 350bp inserts. 

Post-fragmentation (Covaris, Woburn, MA), the genomic DNA was size selected with AMPure 

XP beads using a 0.6x/0.8x ratio. The libraries were PCR amplified with KAPA HiFi for 4-6 
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cycles (KAPA Biosystems, Boston, MA). The final libraries were purified with two 0.7x 

AMPureXP bead cleanups. The concentration of each library was accurately determined 

through qPCR (KAPA Biosystems, Boston, MA). Twenty-four libraries were pooled and loaded 

across four lanes of a HiSeqX flow cell to ensure that the libraries within the pool were equally 

balanced. The final pool of balanced libraries was loaded over an additional 16 lanes of the 

Illumina HiSeqX (Illumina, San Diego, CA). 2x150 paired-end sequence data was generated. 

This efficient pooling scheme targeted ~30X coverage for each sample.    

  

DNA Sequence Alignment 

Sequence reads were aligned to the GRCh37 reference genome (including decoy 

sequences from the GATK resource bundle) using BWA-MEM v0.7.15 (Li 2013). The aligned 

BAM files produced by BWA-MEM were de-duplicated with samblaster (Faust and Hall 2014). 

Realignment for regions containing potential short insertions and deletions and base quality 

score recalibration was performed using GATK v3.5.0 (DePristo et al. 2011). Alignment quality 

metrics were calculated by running samtools "stats" & "flagstats" (Li et al. 2009) on aligned and 

polished BAM files.  

 

Variant calling 

Single-nucleotide and short insertion/deletion variant calling was performed with GATK 

v3.5.0 (DePristo et al. 2011) to produce gVCF files for each sample. Sample gVCF files were 

then jointly genotyped to produce a multi-sample project level VCF file.  

 

Sample quality control and filtering 

 We used peddy (Pedersen and Quinlan 2017) to perform relatedness and sample 

sequencing quality checks on all CEPH/Utah samples. We discovered a total of 10 samples 

with excess levels of heterozygosity (ratio of heterozygous to homozygous alternate calls > 

0.2). Many of these samples were also listed as being duplicates of other samples in the 

cohort, indicating possible sample contamination prior to sequencing. We therefore removed 

all 10 samples with a ratio of heterozygous to homozygous genotypes exceeding 0.2 from 

further analysis. In total, we were left with 593 first-, second-, and third-generation samples 

with high-quality sequencing data.  
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Identifying DNM Candidates 

We identified high-confidence de novo mutations from the joint-called VCF in the 

second and third generations as follows, using cyvcf2 (Pedersen and Quinlan 2017). For each 

variant, we required that the child possessed a unique genotyped allele absent from both 

parents; when identifying de novo variants on the X chromosome, we required male offspring 

genotypes to be homozygous. We required the aligned sequence depth in the child and both 

parents to be >= 12 reads; Phred-scaled genotype quality (GQ) to be >= 20 in the child and 

both parents, and no reads supporting the de novo allele in either parent. We removed de 

novo variants within low-complexity regions (Li 2014; Turner et al. 2017), and any variants that 

were not listed as “PASS” variants by GATK HaplotypeCaller. Finally, we removed DNMs with 

likely DNM carriers in the cohort; we define carriers as samples that possess the DNM allele, 

other than the sample with the putative DNM and his/her immediate family (i.e., siblings, 

parents, or grandparents). We adapted a previously published strategy (Jónsson et al. 2017) to 

discriminate between “possible carriers” of the DNM allele (samples genotyped as possessing 

the de novo allele), and “likely carriers” (a subset of “possible carriers” with depth >= 12, allele 

balance >= 0.2, and Phred-scaled genotype quality >= 20). We removed putative DNMs for 

which there were any “likely carriers” of the allele in the cohort. We then separated the 

candidate variants observed in the second-generation into true and false positives based on 

transmission to the third generation. For each candidate second-generation variant, we 

assessed whether the DNM was inherited by at least one member of the third generation; to 

limit our identification of false positive transmission events, we required third-generation 

individuals with inherited DNMs to have a depth >= 12 reads at the site and Phred-scaled 

genotype quality >= 20. We defined “transmitted” second-generation variants as variants for 

which the median allele balance across transmissions was >= 0.3. One CEPH/Utah family 

(family ID 26) contains only 4 sequenced grandchildren (Supplementary File 1); therefore, we 

did not include the two second-generation individuals from this family in our analysis of DNMs 

observed in the second-generation, as we lacked power to detect high-quality transmission 

events. 

Because we were unable to validate DNMs observed in the third generation by 

transmission, we applied a more stringent set of quality filters to all third-generation DNMs. We 

required the same filters as applied to all second-generation DNMs, but additionally required 

that the allele balance in each DNM was >= 0.3. We further required that there were no 

possible carriers of the de novo allele in the rest of the cohort. For each DNM in the third 
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generation, we assessed if any of the third-generation individual’s grandparents were 

genotyped as possessing the DNM allele; if so, we removed that DNM from further analysis 

(see section entitled “Estimating a missed heterozygote rate”). Finally, we removed a total of 

319 candidate germline DNMs in the third generation after finding evidence that these were, in 

fact, post-zygotic mutations (see section entitled “Identifying gonosomal mutations”). 

 

Determining the parent of origin for single-gamete germline DNMs 

To determine the parent of origin for each de novo variant in the second generation, we 

phased mutation alleles by transmission to a third generation, a technique which has been 

described previously (Jónsson et al. 2017; Kong et al. 2012; Goldmann et al. 2016; Rahbari et 

al. 2015) (Figure 1—figure supplement 2a). We searched 200 kbp upstream and 

downstream of each DNM for informative variants, defined as alleles present as a 

heterozygote in the second-generation individual, observed in only one of the two parents, and 

observed in each of the third-generation individuals that inherited the DNM. For each of these 

informative variants, we asked if the informative variant was always transmitted with the DNM; 

if so, we could infer that the heterozygous variant was present on the same haplotype as the 

DNM (assuming recombination did not occur between the DNM and the flanking informative 

variants), and assign the first-generation parent with the informative variant as the parent of 

origin (Figure 1—figure supplement 2a). For each second-generation DNM, we identified all 

transmission patterns (i.e., combinations of a first-generation parent, second-generation child, 

and set of third-generation grandchildren that inherited both the informative variant and the 

DNM). We only assigned a confident parent-of-origin at sites where the most frequent 

transmission pattern occurred at >= 75% of all informative sites.  

We additionally phased de novo variants in the second generation, as well as all DNMs 

in the third generation, using "read tracing" (also known as "read-backed phasing") (Jónsson et 

al. 2017; Goldmann et al. 2016). Briefly, for each de novo variant, we first searched for nearby 

(within 1 read fragment length, 500 bp) variants present in the proband and one of the two 

parents. Thus, if the de novo variant was present on the same read as the inherited variant, we 

could infer haplotype sharing, and determine that the de novo event occurred on that parent’s 

chromosome (Figure 1—figure supplement 2b). Similarly, if the de novo variant was not 

present on the same read as the inherited variant, we could infer that the de novo event 

occurred on the other parent’s chromosome.  
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We were also able to determine the parent-of-origin for many of the shared germline 

mosaic variants by leveraging haplotype sharing across three generations (Jónsson et al. 

2018). If all third-generation individuals with a post-PGCS DNM shared a haplotype with a 

particular first-generation grandparent, we assigned that first-generation grandparent’s child 

(i.e., one of the two second-generation parents) as the parent of origin.  

 In the second generation, the read tracing and haplotyping sharing phasing strategies 

were highly concordant, and the parent-of-origin predictions agreed at 98.8% (969/980) of all 

DNMs for which both strategies could be applied.  

 

Calculating the rate of germline mutation 

Given the filters we employed to identify high-confidence de novo mutations, we needed 

to calculate the fraction of the genome that was considered in our analysis. To this end, we 

used mosdepth (Pedersen and Quinlan 2018) to calculate per-base genome coverage in all 

CEPH/Utah samples, excluding low-complexity regions (Li 2014) and reads with mapping 

quality < 20 (the minimum mapping quality threshold used by GATK HaplotypeCaller in this 

analysis). For each second- and third-generation child, we then calculated the number of all 

genomic positions that had at least 12 aligned sequence reads in the child’s, mother's, and 

father's genome (excluding the X chromosome). In the second generation, the median number 

of callable autosomal base pairs per sample was 2,582,336,232. For each individual, we then 

divided their count of autosomal de novo mutations by the resulting number of base pairs, and 

divided the result by 2 to obtain a diploid human mutation rate per base pair per generation. 

The median second-generation germline SNV mutation rate was calculated to be 1.143 x 10-8 

per base pair per generation. We then adjusted this mutation rate based on our estimated false 

positive rate (FPR) and our estimated “missed heterozygote rate” (MHR; see section entitled 

“Estimating a missed heterozygote rate”) as follows: 

 
adj_mu = mu * (1 - FPR / 1 - MHR) 

 

adj_mu = 1.143e-8 * (1 – 0.045 / 1 – 0.004) 

 

Assessing age effect variability between families 

 Using the full call set of de novo variants in the third generation (excluding the recurrent, 

post-PGCS DNMs and likely post-zygotic DNMs) we first fit a simple Poisson regression model 
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that calculated the effect of paternal age on total autosomal DNM counts in the R statistical 

language (v3.5.1) as follows: 

 
glm(autosomal_dnms ~ dad_age, family=poisson(link=”identity”)) 

 

 This model returned a highly significant effect of paternal age on total DNM counts (1.72 

DNMs per year of paternal age, p < 2e-16), but was agnostic to the family from which each 

third-generation individual was “sampled.” Importantly, a number of third-generation individuals 

in the CEPH/Utah cohort share grandparents, and may therefore be considered members of 

the same family, despite having unique second-generation parents (Figure 3—figure 
supplement 1). For all subsequent analysis, we defined a “family” as the unique group of two 

second-generation parents and their third-generation offspring (Figure 3—figure supplement 
1). In the CEPH/Utah cohort, there are a total of 40 “families” meeting this definition. 

 

To test for significant variability in paternal age effects between families, we fit the following 

model: 

 
glm(autosomal_dnms ~ dad_age * family_id, 

family=poisson(link=”identity”)) 

 

Which can also be written in an expanded form as: 

 
glm(autosomal_dnms ~ dad_age + family_id + dad_age:family_id, 

family=poisson(link=”identity”)) 

 

To assess the significance of each term in the fitted model, we performed an analysis of 

variance (ANOVA) as follows: 

 
m = glm(autosomal_dnms ~ dad_age + family_id + dad_age:family_id, 

family=poisson(link=”identity”)) 

 
anova(m, test=”Chisq”) 
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The results of this ANOVA are shown in Supplementary Table 1. In summary, this 

model contained the fixed effect of paternal age, as well as different regression intercepts 

within each “grouping factor” (i.e., family ID). Additionally, this model includes an interaction 

between paternal age and family ID, allowing for the effect of paternal age (i.e., the slope of 

the regression) to vary within each grouping factor.   

To account for variable sequencing coverage across CEPH/Utah samples, we 

additionally calculated the callable autosomal fraction for all third-generation individuals by 

summing the total number of nucleotides covered by >= 12 reads in the third-generation 

individual and both of their second-generation parents, excluding low-complexity regions and 

reads with mapping quality < 20 (see section entitled “Calculating the rate of germline 

mutation”).  

 

Since we only consider the effect of paternal age on the mutation rate, we can model the 

mutation rate (mu) as: 

 
mu = Bp * Ap + B0 

 

Where Bp is the paternal age effect, Ap is the paternal age, and B0 is an intercept term. 

 

Therefore, the number of DNMs in a sample is assumed to follow a Poisson distribution, with 

the expected mean of the distribution defined as: 

 
E(# DNMs) = mu * callable_fraction 

 

E(# DNMs) = (Bp * Ap + B0) * callable_fraction 

 

E(# DNMs) = (Bp * Ap * callable_fraction) + (callable_fraction * B0) 

 

As our analysis only considers the effect of paternal age on total DNM counts, we can thus 

scale Ap (paternal age at birth) by the callable_fraction, generating a term called 

dad_age_scaled, and fit the following model, which takes each sample’s callable fraction 

into account: 
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glm(autosomal_dnms ~ dad_age_scaled + autosomal_callable_fraction + 

0, family=poisson(link=”identity”)) 

 

Then, we can determine whether inter-family differences remain significant by comparing the 

above null model to a model that takes family into account: 

 
glm(autosomal_dnms ~ dad_age_scaled * family_id + 

autosomal_callable_fraction + 0, family=poisson(link=”identity”)) 

 

After running an ANOVA to compare the two models, we find that the model incorporating 

family ID is a significantly better fit (ANOVA: p = 9.359e-10). 

 

We previously identified significant effects of both maternal and paternal age on DNM counts 

(Figure 2a). Therefore, to account for the non-negligible effect of maternal age on DNM 

counts, we fit a final model that incorporated the effects of both maternal and paternal age, as 

well as family ID, on total DNM counts as follows: 

 
glm(autosomal_dnms ~ dad_age + mom_age + family_id, 

family=poisson(link=”identity”)) 

 

We then performed an ANOVA on the model, and found that a model incorporating a family 

term is a significantly better fit than a model that includes the effects of paternal and maternal 

age alone (p = 2.12e-5) 

 

Identifying post-PGCS mosaic mutations 

To identify post-PGCS mosaic variants, we searched the previously generated callset of 

single-nucleotide DNMs in the third generation (“Identifying DNM candidates”) for de novo 

single-nucleotide mutations that appeared in 2 or more third-generation siblings. As a result, all 

filters applied to the germline third-generation DNM callset were also applied to the post-PGCS 

mosaic variants. We validated all putative post-PGCS mosaic variants by visual inspection 

using the Integrative Genomics Viewer (IGV) (Thorvaldsdóttir, Robinson, and Mesirov 2013). 

In a small number of cases (32), we found evidence for the post-PGCS mosaic variant in one 
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of the two second-generation parents. Reads supporting the post-PGCS mosaic variant were 

likely filtered from the joint-called CEPH/Utah VCF output following local re-assembly with 

GATK, though they are clearly present in the raw BAM alignment files. We removed these 32 

variants, at which an second-generation parent possessed 2 or more reads of support for the 

mosaic DNM allele in the aligned sequencing reads.  

 

Assessing age effects on post-PGCS DNMs 

 To identify a paternal age effect on the number of post-PGCS DNMs transmitted to 

third-generation children, we tabulated the number of each third-generation individual’s DNMs 

that was shared with at least one of their siblings. We then fit a Poisson regression as follows, 

regressing the number of mosaic DNMs in each third-generation individual against their 

father’s age at birth: 

 
glm(mosaic_number ~ dad_age, family=poisson(link=”identity”)) 

 

 We did not find a significant effect of paternal age (p = 0.647). 

 

 Using the predicted paternal age effects on germline DNM counts and post-PGCS DNM 

counts, we determined that the fraction of post-PGCS DNMs should decrease non-linearly with 

paternal age (Fig. 4e). Therefore, to assess the effect of paternal age on the fraction of each 

third-generation individual’s DNMs that occurred post-PGCS in a parent, we fit the following 

model: 

 
lm(log(mosaic_fraction) ~ dad_age) 

 

 We found a significant effect of paternal age on the post-PGCS mosaic fraction (p = 

1.61e-5). 

 

 As we may be more likely to identify shared, post-PGCS DNMs in families with larger 

numbers of third-generation siblings, we additionally tested whether the fraction of post-PGCS 

DNMs in each child was dependent on the number of their siblings in the family by performing 

a correlation test as follows: 
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cor.test(mosaic_fraction, n_siblings) 

 

 We did not observe a significant correlation between a third-generation individual’s  

number of siblings and the fraction of their DNMs that was shared with a sibling (p = 0.882). 

We also did not observe a significant correlation between a third-generation individual’s 

number of siblings and the total number of their DNMs shared with a sibling (p = 0.426). 

 

Identifying gonosomal mutations 

 To identify variants that occurred early in post-zygotic development, we identified de 

novo single-nucleotide variants in the second generation using the same genotype quality and 

population-based filters as described previously (“Identifying DNM candidates”). Then, to 

distinguish single-gamete germline de novo mutations from post-zygotic DNMs (de novo 

mutations that occurred in the cell divisions following fertilization of the second-generation 

individual’s embryo), we employed a previously described method (Harland et al. 2017; 

Feusier et al. 2018; Jónsson et al. 2018) that relies on linkage between DNMs and informative 

heterozygous alleles nearby. In this approach, which is similar in principle to the strategy used 

for phasing germline second-generation DNMs, we first search +/- 200 kbp up- and down-

stream of the de novo allele in the second-generation individual for “informative” alleles; that is, 

alleles that are present in only one first-generation parent, and inherited by the second-

generation child (Figure 5a). Then, we identify all of the third-generation grandchildren that 

inherited the informative alleles. If all of the third-generation individuals that inherited the 

informative alleles also inherited the DNM, we infer that the DNM occurred in the germline of 

the first-generation parent with the informative allele. However, if one or more third-generation 

individuals inherited the informative alleles but did not inherit the DNM, we can infer that the 

DNM occurred sometime following the fertilization of the second-generation sample’s embryo. 

This is because the DNM is not always present on the background haplotype that the second-

generation individual inherited from their informative first-generation parent. Using this 

approach, we do not apply any allele balance filters to putative gonosomal DNMs in the 

second generation, instead relying on linkage to distinguish them from germline DNMs. As with 

germline de novo mutations observed in the second-generation, to limit our identification of 

false positive events, we required third-generation individuals with inherited DNMs to have a 

depth >= 12 reads at the site, Phred-scaled genotype quality (GQ) >= 20, and for the median 

allele balance across transmissions to be >= 0.3.  
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 Additionally, we can use an orthogonal method to distinguish single-gamete germline 

DNMs from post-zygotic DNMs. In this second approach, we identify all heterozygous sites +/- 

500 base pairs (approximately one read length) from a DNM in a child. Then, by assessing the 

linkage of the DNM and heterozygous alleles, we look for evidence of three distinct haplotypes 

in the child (Figure 5-figure supplement 1). If we observe at least two reads supporting a 

third haplotype (i.e., reads that indicate incomplete linkage between the DNM and the 

informative heterozygous allele), we inferred that the DNM occurred post-zygotically in the 

child. We applied this method to all putative germline DNMs identified in the third generation, 

and discovered that 319 of apparent germline DNMs showed evidence of being post-zygotic 

mutations that occurred following the fertilization of the third-generation embryo. We removed 

these DNMs from all analyses of third-generation germline DNMs. 

We validated all putative gonosomal variants in the second generation by visual 

inspection using the Integrative Genomics Viewer (IGV) (Thorvaldsdóttir, Robinson, and 

Mesirov 2013).  

  

Estimating a “missed heterozygote rate” for DNM detection 

 Infrequently, variant calling methods such as GATK may incorrectly assign genotypes to 

samples at particular sites in the genome. When identifying de novo variants, we require that 

children possess genotyped alleles that are absent from either parent; thus, genotyping errors 

in parents could lead us to assign variants as being de novo, when in fact one or both parents 

possessed the variant and transmitted the allele. Given the multi-generational structure of our 

study cohort, we were able to estimate the rate at which our variant calling and filtering pipeline 

mis-genotyped a second-generation parent as being homozygous for a reference allele. To 

estimate this “missed heterozygote” rate in our dataset, we looked for any cases in which one 

or more third-generation individuals possessed a putative de novo variant (i.e. possessed an 

allele absent from both second-generation parents). Then, we looked at the sample’s 

grandparental (first-generation) genotypes for evidence of the same variant. If one or more 

grandparents was genotyped as having high-quality evidence for the de novo allele (depth >= 

12 and Phred-scaled genotype quality >= 20), we inferred that the variant could have been 

“missed” in the second generation, despite being truly inherited. We estimate the missed 

heterozygote rate (MHR) to be 0.4%, by dividing the total number of third-generation DNMs 

with grandparental support by the total number of third-generation DNMs (100/25,075). In a 

small number of CEPH/Utah pedigrees, some members of the first-generation (grandparental) 
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generation were not sequenced (6 grandparents in 5 families, Supplementary File 1). As a 

result these families are underpowered to detect evidence of third-generation DNM alleles in 

the first generation, and our MHR is likely a slight underestimate. 

 

Estimating a false positive rate for de novo mutation detection 

 In a separate set of sequencing runs, a total of 8 first-generation grandparents were re-

sequenced to a greater genome-wide median depth of 60X (Figure 1—figure supplement 
1d). However, when variant calling and joint genotyping was performed on all 603 CEPH/Utah 

samples, the 30X data for these grandparents was used. Therefore, we sought to estimate the 

false positive rate for our de novo mutation detection strategy using the de novo mutation calls 

in the children of these 8 first-generation individuals. For each of the children (second-

generation) of these high-coverage first-generation individuals, we looked for evidence of the 

second-generation DNMs in the 60X alignments from their parents. Specifically, for each 

second-generation DNM, we counted the number of reads supporting the DNM allele in each 

of the first-generation parents, excluding reads with mapping quality < 20 (the minimum 

mapping quality imposed by GATK HaplotypeCaller in our analysis), and excluding bases with 

base qualities < 20 (the minimum base quality imposed by GATK HaplotypeCaller in our 

analysis). If we observed two or more reads supporting the second-generation DNM in a first-

generation parent’s 60X alignments, we considered the second-generation DNM to be a false 

positive. Of the 202 de novo mutations called in the four second-generation children of the 

high-coverage first-generation parents, we find 9 mutations with at least two reads of 

supporting evidence in the 60X first-generation alignments. Thus, we estimate our false 

positive rate for de novo mutation detection to be approximately 4.5% (9/202).  
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Supplementary Information 
 
Supplementary Table 1: Results of ANOVA on fitted “family-aware” model 

Term (independent variable) DoF Deviance Resid. DoF Resid. Deviance Pr(>Chi) 

dad_age 1    635.77 348 502.84 < 2.2e-16 

family_id 39    103.43 309 399.41 9.667e-9 

dad_age:family_id 39     55.34 270 344.07 0.04328 

 

 

 

 

 
Figure 1—figure supplement 1: Distribution of sequencing coverage in CEPH/Utah samples 
(a) The fraction of bases greater than or equal to the specified coverage in the second generation, (b) third 
generation, (c) first-generation parents sequenced to 30X coverage, and (d) first-generation parents re-
sequenced to 60X coverage.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/552117doi: bioRxiv preprint 

https://doi.org/10.1101/552117
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

31 
 

 
Figure 1—figure supplement 2: Determining the parent-of-origin for de novo mutations using 
transmission 
(a) We phased de novo mutations observed in the second generation by transmission to a third generation. We 
first searched +/- 200 kilobase pairs from the de novo allele (shown in red) for informative sites (shown in blue) 
present in one of the two first-generation parents of the second-generation individual. If the second-generation 
individual’s spouse does not possess these informative alleles, we can look in the children of the second-
generation individual to see if they have inherited both the de novo allele and the nearby informative alleles. This 
pattern of inheritance is only possible if the de novo allele and informative alleles are on the same haplotype; 
thus, in this example, we see that the de novo allele is on the maternal grandfather’s haplotype, and is paternal in 
origin. (b) A toy sample of paired-end sequencing reads is shown for each member of a trio (mother, father, and 
child). In this strategy, we identify informative alleles (shown in blue) that are present in one of the two parents, 
and within a read length (500 bp) of the de novo allele in the child (shown in red). Then, we identify individual 
sequencing reads that span the de novo and informative alleles. If the de novo allele is always present in the 
same read as the informative allele, then we can phase the de novo allele to the parent with the informative allele, 
and vice versa. 
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Figure 2—figure supplement 1: Contribution of maternal and paternal age to de novo mutation rates 
For (a) second- and (b) third-generation individuals in the CEPH/Utah cohort, plotted points show the relationship 
between paternal and maternal age at birth. Each point is colored by the autosomal SNV mutation rate in the 
individual; these rates were calculated by dividing the autosomal SNV DNM count in each child by that child’s 
autosomal callable fraction. Colors indicate the magnitude of the mutation rate (blue = lower, red = higher). Black 
lines indicate the trend for a 1:1 relationship between paternal and maternal age. 
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Figure 2—figure supplement 2: Comparison of mutation spectra in children born to older or younger 
parents 
Second-generation children were divided into two groups based on the ages of their parents at birth, and 
autosomal mutation spectra were compared between the two groups. In all panels, no significant differences were 
found at a false-discovery rate of 0.05 (Benjamini-Hochberg procedure), using a Chi-squared test of 
independence. (a) Comparison of DNMs in children born to fathers younger (n=2,182) or older (n=2,360) than the 
median paternal age of 29.2 years. P-values for each comparison are: C>G: 0.304, T>G: 0.140, T>A: 0.306, T>C: 
0.248, C>A: 0.8.81e-2, C>T: 0.444, indel: 6.89e-2, CpG>TpG: 0.810. (b) Comparison of DNMs in children born to 
mothers younger (n=2,225) or older (n=2,317) than the median maternal age of 25.7 years. P-values for each 
comparison are: C>G: 0.580, T>G: 0.659, T>A: 0.554, T>C: 0.697, C>A: 0.918, C>T: 0.990, indel: 0.371, 
CpG>TpG: 0.678. (c) Comparison of DNMs in children born to fathers in the 25th percentile of youngest 
(n=1,120) or oldest (n=1,165) paternal ages (26.4 or 34 years). P-values for each comparison are: C>G: 1.73e-2, 
T>G: 0.428, T>A: 0.872, T>C: 0.979, C>A: 0.943, C>T: 7.77e-2, indel: 0.788, CpG>TpG: 0.706. (d) Comparison 
of DNMs in children born to mothers in the 25th percentile of youngest (n=1,169) or oldest (n=1,121) maternal 
ages (22.5 or 31.4 years). P-values for each comparison are: C>G: 0.327, T>G: 9.92e-2, T>A: 0.841, T>C: 0.975, 
C>A: 0.963, C>T: 0.940, indel: 0.598, CpG>TpG: 0.780. 
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Figure 3—figure supplement 1: Defining unique families in the CEPH/Utah dataset 
The pedigree for a single family (family ID 19) is depicted. In this family, the third-generation individuals are first 
cousins and share a pair of grandparents. However, for the purposes of the inter-family variability presented in 
Figure 3, we defined “families” as the unique groups of second-generation parents and their third-generation 
children. Thus, family ID 19 would be split into two unique families (19_A and 19_B), designated by the red boxes. 
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Figure 3—figure supplement 2: Paternal age effect ranks of CEPH/Utah families are robust to outlier 
samples. For each CEPH/Utah family (i.e., unique set of second-generation and third-generation individuals), we 
randomly sampled 75% of the third-generation individuals in the family, fit a regression predicting autosomal DNM 
counts as a function of paternal age at birth, and calculated the “rank” of that family’s paternal age effect (out of 40 
total families). We then plotted the distribution of ranks across 100 trials for each family. Families’ density plots are 
ordered along the y-axis by the original ranks of each family (as determined using the full dataset, and originally 
shown in Figure 3d, where a rank of 1 corresponds to the smallest age effect, and a rank of 40 corresponds to the 
largest). 
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Figure 5—figure supplement 1: Strategy for identifying post-zygotic DNMs using two generations 
(a) Diagram of an example two-generation pedigree structure that is amenable to the post-zygotic detection 
strategy. In this example, the child has a de novo “T” allele that is <= 500 bp downstream of a heterozygous “G” 
allele. Question marks in the parents indicate that the child could have inherited the “G” allele from either parent; 
unlike the read tracing strategy (Figure 1-figure supplement 2), a particular parent does not need to be 
“informative.” (b) In the child’s reads, only two possible sets of linked haplotypes should be seen, assuming the de 
novo allele occurred in the germline of a parent. The presence of three distinct haplotypes, demonstrating 
incomplete linkage of the de novo and heterozygous alleles, indicates that the de novo “T” allele is post-zygotic. 
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Supplementary File 1: Pedigree structures for all CEPH/Utah families 
All family and sample IDs have been anonymized, and the sexes of third-generation individuals have been 

hidden. 

 
Supplementary File 2: IGV images of 100 randomly selected germline DNMs identified in the second 
generation 
In each image, the first two tracks contain alignments from the first-generation parents, and the third track 

contains the alignments for the second-generation child. Reads with mapping quality < 20 are not included, as 

they were not considered by our variant calling pipeline, and mismatched bases are shaded by quality score 

(more transparent = lower base quality). 

 
Supplementary File 3: IGV images of 100 randomly selected germline DNMs identified in the third 
generation 
In each image, the first two tracks contain alignments from the second-generation parents, and the third track 

contains the alignments for the third-generation child. Reads with mapping quality < 20 are filtered out, as they 

were not considered by our variant calling pipeline, and mismatched bases are shaded by quality score (more 

transparent = lower base quality). 

 
Supplementary File 4: IGV images of all putative post-PGCS mosaic mutations  
In each image, the first two tracks contain alignments from the two second-generation parents in the pedigree. All 
tracks below contain alignments from the third-generation children that share a DNM at the site. Reads with 

mapping quality < 20 are filtered out, as they were not considered by our variant calling pipeline, and mismatched 

bases are shaded by quality score (more transparent = lower base quality). 

 

Supplementary File 5: IGV images of all putative gonosomal mutations identified in the second 
generation. 
In each image, the first two, three, or four tracks contain alignments from the grandparents in the pedigree (i.e., 
paternal grandmother and grandfather, maternal grandmother and grandfather). In some families, one or two of 

the first-generation grandparents were not sequenced (see Supplementary File 1). The two tracks below contain 

alignments from the second-generation individual with the putative gonosomal mutation and that second-

generation individual’s spouse. The remaining tracks below contain alignments from the third-generation 

individuals that inherited the gonosomal mutation. Reads with mapping quality < 20 are filtered out, as they were 

not considered by our variant calling pipeline, and mismatched bases are shaded by quality score (more 

transparent = lower base quality). 
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