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Abstract 

The devastating effects and incurable nature of hereditary and sporadic retinal diseases such as 

Stargardt disease, age-related macular degeneration or retinitis pigmentosa urgently require the 

development of new therapeutic strategies. Additionally, the prevalence of retinal toxicities is 

becoming more and more an issue of novel targeted therapeutic agents. To date, (ophthalmologic) 

drug development largely relies on animal models. Inadequate translatability of results from animal 

models to humans, however, limits advances in drug development and discovery. Hence, the 

establishment of more relevant human tissue-based in vitro models is of upmost importance. The 

discovery of self-forming retinal organoids (ROs) derived from human embryonic stem cells (hESCs) or 

human induced pluripotent stem cells (hiPSCs) is a promising approach to model the complex stratified 

retinal tissue. Yet, ROs lack vascularization and cannot recapitulate the important physiological 

interactions of matured photoreceptors and the retinal pigment epithelium (RPE). In this study, we 

present the retina-on-a-chip (RoC), a novel microphysiological model of the human retina integrating 

more than seven different essential retinal cell types derived from hiPSCs in a vasculature-like 

perfusion and enabling, for the first time, the recapitulation of the interaction of mature photoreceptor 

segments with RPE in vitro. We show that this interaction enhances the formation of outer segment 

like-structures and the establishment of in vivo-like physiological processes such as outer segment 

phagocytosis and calcium dynamics. In addition, we demonstrate the applicability of the RoC for drug 

testing, by reproducing the retinopathic side effects of the anti-malaria drug chloroquine and the 

antibiotic gentamicin. The developed hiPSC-based RoC has the potential to promote drug development 

and provide new insights into the underlying pathology of retinal diseases.  
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Introduction 

Retinal diseases such as Stargardt disease, age-related macular degeneration, diabetic retinopathies 

or retinitis pigmentosa are amongst the leading causes of vision loss in humans [1, 2]. Unfortunate for 

patients suffering from those diseases, there are currently no cures available [3, 4]. Moreover, the 

complex neuro-retinal organization and the vast blood supply make retinal tissue susceptible for side 

effects of compounds delivered intravitreally or systemically [5, 6]. Retinal toxicities are a major issue 

for a wide range of therapeutic substances and especially for targeted anticancer agents since many 

of the targets are also expressed in ocular tissues[6]. Although animal models that are used to explore 

new therapeutic options and assess retinal toxicities resemble the human (patho-)physiology of vision 

in certain aspects, they fail to reflect fundamental characteristics including trichromacy or a fovea 

centralis, responsible for high visual acuity (Fig 1). In vitro cell culture assays, on the other hand, are 

typically based on non-physiological 2D cell cultures, which cannot reflect the complex architecture 

and cell-cell interactions as well as the blood perfusion. More complex approaches such as retinal 

explants from human donors provide a full featured model; however, the limited availability and 

culturability as well as inter-donor variabilities make it unsuited for drug development and testing. The 

invention of physiologically relevant in vitro models capable of mimicking the human retinal biology is 

hence of crucial importance. Recent progress in the generation of 3-dimensional (3D) organoids 

derived from human pluripotent stem cells (hPSC) (derived from both induced (hiPSC) as well as 

embryonic (hESC) stem cells) enabled the reflection of distinct types of tissues, such as subsystems of 

the central nervous system including the retina. Retinal organoids (ROs), also called “eyes in the dish” 

resemble rudimentary optic vesicle-like structures with a retinal layering similar to in vivo conditions 

[5, 6]. These ROs contain most relevant retinal cell types in a physiological layering such as ganglion 

cells, amacrine cells, horizontal cells, bipolar cells, Müller glia as well as rods and cones. Nevertheless, 

hPSC-ROs are still facing a variety of drawbacks limiting predictive research on e.g. human retinal 

development, function or drug response. Some of the major hurdles are (i) the functional maturation 

of differentiated cells, (ii) lack of essential cell types (e.g. microglia), (iii) lack of a physiological interplay 

of the various retinal cell types especially of photoreceptors and retinal pigment epithelia (RPE), as 

well as (iv) a missing vascularization (reviewed in [9, 10]). Due to the lack of a physiological perfusion, 

the delivery of compounds to ROs is uncontrolled and entirely artificial. Here, general limitations of 

static cell culture apply including non-physiological cell-to-media ratio, uncontrolled shear forces 

during media exchanges, as well as highly variable conditions between media exchanges. In recent 

years, the short comings of conventional static cell culture has led to the emergence of 

microphysiological systems (MPS), specifically Organ-on-a-Chip (OoC) platforms. MPSs have evolved 

to a powerful alternative for classical cell culture and animal models by providing physiological 

microenvironments embedded in a vascular-like microfluidic perfusion [11, 12]. This new and 
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promising technology has the potential to revolutionize drug development and usher into a new era 

of personalized medicine. Over the past years, a variety of MPSs have been developed, mimicking, for 

instance, cardiac [7], lung [15], renal [16], and hepatic tissue [11]. In the context of ophthalmologic 

research, a variety of approaches have been introduced that represent partial layers of the cornea [9] 

or the retina [20 – 24]. So far, however, no MPS has been able to successfully recapitulate the complex 

3D architecture of the human retina. 

 

Figure 1:  Advantages and limitations of retinal models for drug development and mechanistic 

research. 

In this study, we developed a physiologically relevant 3D in vitro model of the human retina by 

combining hiPSC-ROs with hiPSC-derived RPE in a retina-on-a-chip (RoC). This novel microphysiological 
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platform enables enhanced inner and outer segment formation and preservation, a direct interplay 

between RPE and photoreceptors as well as a precisely controllable vasculature-like perfusion. In order 

to provide a high-content platform for basic and applied research, we established a toolbox comprising 

in situ analysis approaches as well as terminal endpoints enabling the monitoring of functionality as 

well as molecular mechanisms. To demonstrate the applicability for drug screening, the system was 

exposed to the drugs chloroquine and gentamicin, which are known to have retinopathic side effects 

[25 – 29].  
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Results 

Retinal organoids show rod and cone diversity and simple inner and outer segment formation 

ROs derived from hiPSCs harbor all known major retinal subtypes such as ganglion cells, bipolar cells, 

horizontal cells, amacrine cells, Müller glia and photoreceptors ([30], Fig 2, S1). Using immunostaining 

and mRNA qPCR, the presence of the retinal cell types as well as crucial retinal morphological cues 

such as inner and outer photoreceptor segment formation, a tightly formed outer limiting membrane 

(OLM) and a correct layering was verified (Fig 2, S1). In order to reach a suitable maturation, ROs were 

differentiated for 180 days. ROs of that age harbor matured photoreceptors which have simple forms 

of inner and outer segments, situated on the surface of the ROs which can be seen in bright field 

microscopy and by immunostaining of respective markers (Fig 2b-f). Immunostaining of the respective 

organoids demonstrate the presence of a mixed population of rods and cones, identified by specific 

markers (rhodopsin for rods and Arrestin-3 for cones, Fig 2c-e, S1). In order to analyze segment 

formation, we used ROM1 as it has been previously shown as  specific outer segment marker  [31] and 

verified the segment specificity  by co-staining with the rod marker rhodopsin (Fig 2c-d, f). Further, we 

tested the previously described protein PNA Lectin, which was delineated to specifically bind to cone 

photoreceptor segments [32]. Co-staining of rhodopsin with PNA lectin exhibited that not only cone 

but also rod segments in ROs are labelled with PNA lectin (Fig 2e).    
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Figure 2: Characterization of retinal organoids. a) Brightfield image of a day 180 RO in dish culture. b) 

Magnified area of a) highlighting inner and outer segment-like structures. c) Day 180 ROs 

cryosectioned and immunostained for the rod marker rhodopsin (red), the outer segment marker 

ROM1 (green) and phalloidin (white) visualizing the outer limiting membrane. d) Day 180 ROs 

sectioned and immunostained for the rod marker rhodopsin (red) and the outer segment marker 

ROM1 (green). e) Day 180 ROs sectioned and immunostained for the rod marker rhodopsin (green) 

and PNA Lectin (red). f) 3D visualization of a whole-mount staining of d180 RO stained for rhodopsin 

(green) and PNA Lectin (red). Bars indicate a) 250 µm b) 50 µm c) 100 d-f) 20 µm. Blue: DAPI.  
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Microphysiological Retina-on-a-Chip 

To recapitulate the complex in vivo anatomy of the human retina in vitro (Fig 3a), we developed a 

microfluidic platform that enables the culture of hiPSC-derived RPEs and ROs in a defined physiological 

structure (Fig 2b). Each RoC features four identical micro-tissues connected via a microchannel and is 

comprised of two transparent and biocompatible polymer layers. The top layer features the 

compartments for the ROs and RPE, whereas the bottom layer provides a channel for a vasculature-

like perfusion enabling a constant supply of nutrients and compounds. Both layers are separated by a 

thin porous membrane mimicking the endothelial barrier and shielding the tissues from shear forces 

while simultaneously enabling the exchange of nutrients and metabolites (Fig 3b). The tissue 

compartments are accessible from above for the initial seeding process and sealed during the 

subsequent culture process to avoid evaporation and contamination. A stable tissue comprising ROs 

and RPE is achieved by first seeding hiPSC-derived RPE cells at a defined density into each tissue 

compartment (Fig 3c) and subsequent culture for 24 hours (Fig 3d). This step was followed by injection 

of ROs embedded in a hyaluronic acid-based hydrogel (representing the major component of the 

interphotoreceptor matrix between REPE and PRC) into the tissue compartments (Fig 3e). This led to 

the formation of a thin hydrogel layer, generating a defined distance between RPE cells and outer 

limiting membrane of the ROs. Thereby, a direct contact and, thus, an uncontrolled outgrowth of cells 

from the ROs during culture was successfully avoided. ROs and RPE were cultured in the system for at 

least 3 days prior to further functionality assessment or experimentation.   
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Figure 3:  Microfluidic RoC. a) Schematic representation of the human retinal composition and cell 

types in vivo. b) Photo (left) of the RoC and (right) representation of the RO photoreceptor and RPE 

interaction. c) RPE cells are seeded into the device, d) forming a densely packed monolayer after 24 

hours of culture. e) ROs and the hyaluronic acid-based hydrogel are directly loaded from the top into 

the well and onto the RPE. Bars indicate c) 500 µm, d) 80 µm, e) 400 µm. 

 

Specific marker expression and polarization of retinal pigment epithelial cells in the RoC 

A polarized and functional RPE is crucial for the survival of photoreceptors in vivo and a vital part of 

the visual cycle shuttling retinoic acid between RPE and photoreceptor outer segment [33, 34]. 

Therefore, the RPE in the RoC was thoroughly tested for its marker expression and polarization (Fig 4, 

S2). Expression of RPE markers PAX6 and MITF can be observed after 7-14 days in the chip (Fig 4a-b). 

Mature RPE inside the chip displayed cobble stone-like morphology and tight junction formation 

visualized by ZO-1 staining (Fig 4c). The melanosome and pigmentation marker Melanoma gp100 (also 

called PMEL17 or Silver locus protein) [35, 36] was highly expressed in chip-cultured RPE (Fig 4d) 

indicating a strong pigmentation. A conclusive evidence for the maturation and proper functionality of 

RPE is its state of polarization [34, 37].  Electron microscopy analysis revealed not only the strong 

pigmentation of the RPE but also the presence of apical microvilli as well as a basal membrane already 
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after 7 days of on-chip culture (Fig 4e). Further, we showed the polarized expression of ezrin, an apical 

microvilli marker [38] (Fig 4f). Finally, polarized RPE displayed basal secretion of VEGF-A, which could 

be measured on-chip by using a double-channel chip in which basal and apical medium could be 

collected separately (Fig 4g). The VEGF-A concentration was higher in the basal channel than in the 

apical (70 vs 40 pg/chip in 24 hours). Taken together, the RPE in the RoC is strongly pigmented and 

polarized, and expresses RPE markers.  

 

Figure 4: Specific marker expression and polarization of retinal pigment epithelial cells in the RoC (a-

d) Evaluation of RPE cells cultured for 14 days in the RoC by immunostaining of relevant RPE markers: 

a) RPE cells stained for MITF (green), b) PAX6 (green), c) ZO-1 (green) and d) Melanoma gp100 (green), 

ZO-1 (red). e) Electron microscopic image of polarized RPE cells. RPE display apical microvilli (top row) 

and a basal membrane (bottom row). f) Apical microvilli formation shown with immunohistochemistry 

staining for ezrin (green). g) Fluoresencent quantification of VEGF-A secretion using ELISA comparing 

medium collected from a basal and apical channel in a specialized version of the RoC (n=3 chips). Bars 

indicate a-d) (left) 50 µm, e) 2 µm, f) 20 µm. Blue: DAPI. Error Bars: S.E.M. p= p-value (Two-sided 

student’s t-test). 
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Enhanced outer segment formation in the RoC 

The close proximity and the precisely orchestrated interaction of photoreceptors and the RPE layer is 

fundamental for vision, ensuring the phagocytosis and processing of shed photoreceptor outer 

segments (POS) as well as a supply of nutrients and oxygen [25]. The RoC device allows the 

establishment of a defined interaction site between the segment structures of the RO and RPE cells 

without impairing neither structure nor viability of the organoid (Fig S3-4). Live cell imaging in the chip 

was enabled by transducing RPE cells with an IRBP-GFP viral vector and by marking the surface 

structures of the organoids with PNA lectin coupled to Alexa Fluor® 568 prior to on-chip culture (Fig 

5a). By measuring the distance between lectin-marked segment tips and GFP-labelled RPE, we found 

a distance of approximately 5 µm ± 3.19 µm over different experiments (Fig 5c). Subsequently, 

immunostaining using rhodopsin (rod outer segments) and phalloidin (cytoskeleton of the RPE and the 

RO including tight junctions) revealed that the segment structures and RPE cells are in close apposition 

on- chip (Fig 5b).  

To further study the mechanically delicate interaction site between ROs and RPE in cryosections, we 

performed immunofluorescence analysis using a specifically tailored chip version (Fig 5d). After 7 days 

of on-chip culture, the close proximity of RPE and RO was preserved and no indication of cell outgrowth 

or general loss of integrity of the continuous OLM, labeled by the actin-cytoskeleton marker phalloidin, 

was observed (Fig 5d). Further, the hydrogel-filled space between the RPE monolayer and the RO was 

strongly invaded by rhodopsin and ROM1 (outer segment marker)-positive clusters indicating an 

increased and cumulated presence of inner and outer segment-like structures (Fig 5d). A detailed 

analysis of the interaction site via electron microscopy confirmed the formation of numerous inner 

segments with clusters of mitochondria as well as the maintenance of the OLM (Fig 5e). The distance 

of outer segment tips and RPE microvilli in this exemplary image is around 5 µm (Fig 5e), which is in 

accordance with the data shown above.  

Next, we examined whether the formation and preservation of outer segment-like structures is 

improved in the RoC in comparison to a RO cultured in the chip without RPE and conventional dish 

cultured ROs (Fig 5f). Using electron microscopy, we could find outer segment-like structures in all 

conditions (Fig 5f), displaying distinct disk formation (Fig 5g, exemplarily). However, in the RoC system 

(RoC), the number of outer segment structures was about three times higher than in RO chips without 

RPE (RoC w/o RPE) and in dish cultured ROs (Fig 5h). Interestingly, there was no difference observed 

in the RoC chip without RPE and dish culture, indicating a positive effect of the RPE on the outer 

segment formation and preservation. In summary, the RoC increases the formation of outer segment-

like structures on the RO without disturbing the normal survival and makeup of the organoid structure. 
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Figure 5: RO-RPE interaction enhances outer segment number at the connection site. a) For live-cell 

observation of RoCs, hiPSC-RPE was labeled with pJG-IRBP-GFP viral vector prior co-culture (green); 

hiPSC-derived RO-RPCs were labeled with PNA lectin Alexa Fluor® 568 (red). RO-RPE interaction site is 

illustrated as an orthogonal view b) Orthogonal view of RO (Day 181) and RPE co-cultured for 7 days in 

the RoC and subsequently stained in situ for rhodopsin (green) and phalloidin (red). c) Distance 

between GFP-labelled RPE and PNA lectin-stained segment tips in a) was assessed by measurement 

using orthogonal images (n = 12 chip compartments). d) Representative cryosection from 7 days co-

cultured d260 ROs and hiPSC-RPE. Sections were immunostained with ROM1 (green; outer segment 
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marker), phalloidin (white; cytoskeleton) and rhodopsin (red; rods). e) Electron microscopic image of 

a day 190 organoid facing RPE cultured in the RoC. f) Representative electron microscopic images of 

inner and outer segments on the surface of d181 ROs cultured for 7 days in f1) the RoC , f2) the RoC 

without RPE and f3) dish-cultured ROs. Black arrows indicate outer segments identified by stack 

formation. g) Exemplary high magnification image of an outer segment-like structure containing 

organized membrane disks found in day 181 ROs cultured for 7 days in the RoC with RPE. h) Number 

of segments/100 µm RO circumference comparing RoC, RoC without RPE and dish cultured RO. In the 

RoC, only the RPE facing side was analyzed (n=3 RoC, 4 RoC w/o RPE and 3 dish cultured ROs were 

analyzed). Bars indicate a-b) 40 µm, d) 40 µm, e-f) 5 µm, g) 1µm. Blue: DAPI. IS= inner segment, OS= 

outer segment. Error Bars: S.E.M. *p-value<0.05 

 

Modeling key functionalities of the visual cycle 

To assess whether the ROs and the RPE can reproduce principle retinal functionality on-chip, we first 

assessed the ability of the RO photoreceptors to produce an in vivo like calcium flux. Calcium ions 

(Ca2+) are fundamentally important for the function of photoreceptors and involved in many 

processes ranging from photodetection, transduction and synaptic transfer (reviewed in [25]). To be 

able to monitor calcium transients and investigate photoreceptor metabolism and functionality, we 

established on-chip calcium imaging as an easy to perform read-out method. By loading RO and RPE 

on-chip with the calcium dye fura-2-AM, we were able to image calcium dynamics for individual 

photoreceptors or RPE cell ROIs over an extended timespan (Fig S5).  

Second, we focused on one of the main functions of RPE, the phagocytosis of substances and cell 

remnants in form of membrane stacks produced by the photoreceptors. The general capability of the 

hiPSC-RPE to perform phagocytosis was initially verified using bovine retinal outer segments (Fig S6). 

In the RoC platform, RPE cells were labelled by a promoter-driven GFP to mark cell bodies. By labelling 

the organoids with PNA lectin before the RoC was set up, segment structures were labelled and 

visualized (as described in Fig 5a). Already after 1 day in culture, PNA lectin-positive structures were 

found within the RPE cell bodies, indicating ongoing digestion of segment particles (Fig 6a). The 

composition of these particles was examined by immunostaining for rhodopsin (Fig 6b). This revealed 

that many of the lectin-positive particles found in the RPE cells were positive for rhodopsin. Next, we 

asked whether the particles taken up by the RPE are found in the early endosomes, which, in a later 

step, fuse to phagolysosomes for a full digestion. We labelled RPE cells prior to setting up the RoC with 

a GFP construct visualizing early endosome complexes (Fig 6c, red). After on-chip immunostaining of 
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rhodopsin, specific co-localization of GFP-labelled early endosomes with rhodopsin-positive fragments 

was detected (Fig 6c).  

Finally, we visualized the RPE endosomes in the RoC using electron microscopy. We examined day 7 

RoCs, identifying indigested outer segment-like structures in the RPE (Fig 6d). Here, we found several 

membrane stack-structures in the RPE below the RO. These structures displayed multi-membrane 

formation (red arrow) as well as small round membrane structures, both strongly reminiscent of similar 

features found in outer segment-like structures in ROs (Fig 6d, right). Taken together, this strongly 

indicates a functional indigestion of segment structures by the RPE, which is a major prerequisite for a 

functional visual cycle and therefore a physiological RPE-photoreceptor model.  
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Figure 6: Interaction of RO and RPE in the RoC displays phagocytosis of outer segment-like structures. 

a) Orthogonal view (x-z projection) and 3D reconstruction (bottom) of live-cell-monitored ROs and RPE 

at day 1 of RoC (RoC) culture. RO (red) and RPE (green) marked as described in Fig 5a. Arrow indicates 

PNA lectin stained photoreceptor segment fragment internalization by RPE cells. b) Samples as 

described in a) stained with rhodopsin antibody (red) and PNA Lectin (green). RPE (white). Arrows 

indicate PNA lectin-marked fragments which perfectly co-localize with rhodopsin. Left image shows a 

top-view; right image an orthogonal y-z projection c) Immunofluoresence imaging of RoC (ROs at day 

190 of differentiation).  Previously to the chip culture, RPE cells were labelled with an early endosome-

GFP construct (green). Chips were thereafter immunostained for rhodopsin (red). d) Electron 

microscopic images of day 7 RoC. d1) shows RPE situated underneath the RO. d2) magnification of d1) 

as indicated by the dotted black square. d3) Outer segment-like structure in a day 7 RoC. Red and blue 

arrows indicate segment-disk structures within the RPE (d2) and the corresponding structures found 

in a RO outer segment (d3). Scale bars: a) 10 µm, b) 10 nm, c) 50 µm, d) 500nm Blue: DAPI.  

 

Evaluation of drug-induced retinopathy  

In order to highlight the RoC’s applicability for drug development and toxicology assessment, we 

exposed the system to the anti-malaria drug chloroquine (CQ) and the antibiotic gentamicin (GM), 

which both were previously shown to have pathological side effects on the retina [25 – 29].    

After 3 days of on-chip culture, retinal tissue was exposed to two different concentrations of CQ (20 

µg/ml and 80 µg/ml) for 3 additional days. Concentrations were chosen based on previously described 

effects of CQ on cell viability using the RPE cell line ARPE-19 [39], and preliminary experiments using 

hiPSC-RPE for CQ treatment (Fig S7). Subsequent to the treatment, the RoCs were stained with 

propidium iodide (PI) to assess cell death (Fig 7a). Additionally, they were co-stained with the 

lysosomal marker protein LAMP2 (Fig 7c) since lysosomal dysfunction is involved in the 

pathophysiology of CQ [39 – 41]. When RoCs were exposed to 20 µg/ml CQ, no significant impact on 

cell viability (Fig 7b) and only a minor increase in LAMP2 signal (Fig 7c) were observed. However, at a 

concentration of 80 µg/ml, cell viability was clearly impacted as shown by a significantly stronger PI 

staining (Fig 7a,b) compared to controls without CQ treatment. Furthermore, after exposure to 80 

µg/ml CQ, a strong LAMP2 signal was visible (Fig 7c), indicating an enlargement of lysosomes where 

the drug is accumulating and leading to lysosomal dysfunction. The increase in LAMP2 was not limited 

to the RPE but was also very pronounced in the RO (Fig 7c).  

To assess the effect of GM, the antibiotic was added for 6 days to the RoC and to RoC without RPE (Fig 

7d,e). In RoCs without RPE, a significant increase in cell death was observed at a GM concentration of 
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0.5 mg/ml (Fig 7f), further increased in RoCs exposed to a 5-fold higher GM concentration (2.5 mg/ml). 

In the complete RoC (RO and RPE), similar effects became apparent: Both, low and high GM 

concentrations led to a significant increase in PI signal (Fig 7g). Since the quantified PI signal was a 

combined signal of RPE and RO cell death, we asked whether there the RO was affected differently by 

the drug when comparing the conditions with and without RPE (RoC and RoC w/o RPE). For that 

purpose, we substracted the PI signal localized in the RPE from the calculated values of the whole RoC 

in the 0.5 mg/ml treated chips (Fig 7h). Interestingly, we found a significant increase of PI in the 

condition without RPE, but an unchanged PI signal in the RoC-cultured RO.  This is in contrast to the 

results from the RoC without RPE where a robust increase was observed when treating the chip with 

0.5 mg/Ml GM (Fig 7h). This could indicate a barrier or even protective function of the RPE, shielding 

the organoid from the drug and decreasing the toxic effect of the drug on the organoid. 
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Figure 7: The RoC as a pharmacological testing platform. a) Representative bright-field and 

fluorescence images of day d243-260 RO cultured in the RoC with RPE on day 3 after treatment with 

chloroquine (CQ). RoC were either not treated with chloroquine as control (CTRL), treated with 20 

µg/ml CQ or treated with 80 µg/ml CQ for 3 days. On day 3, chips were stained with propidium iodide 

(PI) (red; cell death). b) Quantification of fluorescence intensities of PI staining, relative to controls 

(n=6-11 chip compartments in 3 independent experiments). c) Immunostaining with LAMP2 (green, 

lysosomes) and HOECHST (blue) after 3 days of drug testing of untreated RoCs (CTRL) and RoCs treated 

with 20 µg/ml CQ or 80 µg/ml CQ. d) Representative bright-field and fluorescence images of day d202 

RO cultured in the RoC without RPE. Cells were treated for 6 days with 0.5 mg/ml gentamicin, 2.5 

mg/ml gentamicin or H2O (CTRL). On day 6, RoCs were stained with propidium iodide (PI) (red, cell 

death). e) Representative bright-field and fluorescence images of day d202 RO cultured in the RoC. 

Cells were treated for six days with 0.5 mg/ml gentamicin, 2.5 mg/ml gentamicin or H2O (CTRL). On 

day 6, RoCs were stained with propidium iodide (PI) (red, cell death). f) Quantification of fluorescence 

intensities of the PI signal of RO chip compartments without RPE relative to controls (n=3 chip 

compartments per conditions). g) Quantification of fluorescence intensities of the PI signal in the co-

culture RoC relative to controls (n=9 chips compartments per condition). h) Comparison of the 

fluorescence intensities of PI staining of RO cultured in the RoC with (left bars) and without RPE (right 

bars) treated for 6 days with gentamicin (0.5 mg/ml) relative to their individual controls (CTRL). CQ = 

Chloroquine, GM = Gentamicin. HOECHST (blue; nuclei). Scale bars: 500 µm. Error bars: S.E.M. 

***p<0.001 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 18, 2019. ; https://doi.org/10.1101/552158doi: bioRxiv preprint 

https://doi.org/10.1101/552158
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

Discussion 

Microphysiological OoC platforms have the potential to revolutionize drug development and may 

provide new fundamental insights into development and disease. Over the last decade, bioengineering 

approaches have led to the development of functionally and structurally highly advanced MPSs for a 

variety of organs and tissues. To study degenerative retinal diseases and investigate retinal toxicities, 

an MPS integrating physiologically relevant retinal tissue is of utmost importance. However, it is 

extremely challenging if not almost impossible to recapitulate the complex stratified (and 

interconnected) tissue architecture of the human retina solely using engineering approaches 

commonly applied in the field. To create a 3D RoC, we addressed this challenge by combining the 

biological self-assembly capabilities of ROs with the precisely controllable assembly in microfabricated 

modules provided by engineering strategies. This combination of interdisciplinary approaches enabled 

us to successfully create a complex multi-layer structure that includes all cell types and layers present 

in the ROs as well as a RPE layer. All integrated cell types were thereby derived from the same hiPSCs. 

For the first time, the model successfully recapitulates the precisely orchestrated interaction between 

photoreceptors and RPE in vitro. This interaction is one of the key characteristics of the visual cycle, 

and the RPE is essential for the normal function and survival of photoreceptors, e.g. via an active 

phagocytic uptake of photoreceptor outer segments (POS) [33]. In addition, the microfluidic concept 

of the RoC adds a further important aspect, the vasculature-like perfusion. The precisely controllable 

perfusion enables the generation of a physiological transport (both towards and away from the tissue) 

of nutrients, compounds, and metabolic products, the maintenance of stable, constant conditions over 

long time-periods (e.g. nutrient & metabolites levels/gradients), as well as the capability to probe the 

secretome and metabolome in a time-resolved manner. Moreover, it makes the system amenable for 

the interconnection with further organ-systems enabling the study of e.g. systemic effects. The 

applicability of the RoC for compound screening and toxicological studies was demonstrated by i) the 

successful recapitulation of side-effects of the anti-malaria drug chloroquine and ii) the mimicry of a 

gentamicin-induced retinopathy revealing a protective effect of the RPE barrier. Both the tight barrier 

function of the RPE layer as well as the melanin-binding of GM (known to be protective in ocular 

pigmented vs. albino animals [28]) could be the source of this protective effect.  

In comparison to conventionally employed retinal model system, the introduced RoC features a variety 

of advantages and novel potential: 

Traditional monolayer cell culture assays have been of limited use in retinal research as they solely 

include certain cell subtypes, thereby providing a limited physiological relevance. The more complex 

ROs solved this issue partially [30], but were still limited due to the absence of a functional interaction 

between RPE and photoreceptor outer segments (POS). Attempts in recreating the retinal niche in the 
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past have failed to recapitulate the precise RPE-PR arrangement, and thus, did not yield matured 

photoreceptors with large formations of membrane disk-containing outer segments. The RoC platform 

is able to mimic this particular niche and a physiological interaction of RPE and POS, by embedding ROs 

and RPE in hyaluronic-based hydrogel in specifically tailored microfluidic chambers. This arrangement 

is much more physiological and controlled than previous approaches employing an unpredictable and 

unorganized RPE formation during RO generation. This inter-photoreceptor matrix in the RoC provides 

mechanical stability for the small and fragile developing POS, which would otherwise either be 

damaged or prevented from outgrowth as in conventional suspension cultures. In the RoC, hence, 

numerous outer segments facing towards the RPE were formed. The flexible and highly controlled 

tissue assembly paves the way for the modelling of a variety of disease states, e.g. by combining ROs 

derived from patients suffering from retinal diseases with RPE derived from the same or healthy 

donors. 

Post-mortem human retinal explants are the sole human models that are currently available and 

achieve a comparable level of complexity. Those ex-vivo models are, however, greatly limited in terms 

of supply, with respect to long-term culture, and due to inter-patient variability. Moreover, they are 

not applicable for studies targeting developmental aspects. The introduced RoC systems is based 

entirely on hiPSCs that are easily expandable and cryo-conservable. This not only avoids the problem 

of limited supply but also provides the capability to create a multitude of genetically identical systems 

and sets the foundation for a scale-up to higher throughput systems, provided an appropriate 

framework and an automated process landscape is established [42]. The hiPSC technology further 

paves the way for the generation of disease-specific as well as patient-specific models opening up 

future applications in disease modeling and personalized medicine. Additionally, hiPSC derived ROs 

exhibit the ability to stay viable for more than a year in vitro. This is a crucial aspect in terms of 

answering developmental aspects, studying disease initialization and progression as well as assessing 

long-term effects or side effects of drugs.  

Both current in vitro and ex vivo models share one major limitation, the lack of a vascularization or 

vasculature-like perfusion. This aspect of the microfluidic RoC adds a further dimension of physiological 

relevance and advantage over the conventional models as described above.  

Animal models are so far the only model systems that feature a blood circulation as well as a structural 

tissue complexity. Yet, besides issues of ethical concerns, results from animal models are often not 

translatable to humans as none of the small animals used in the field of retina research is able to fully 

represent the human retinal system. The human genetic background and recapitulation of human 

retinal tissue structure, hence, provide the potential for the RoC model to overcome those translation 
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hurdles. Animal models, however, still possess structural elements of the visual systems, i.e. optical 

nerve and inner blood-retinal barrier, which cannot be re-created in vitro, so far.  

Taken together, the introduced RoC represents a highly advanced in vitro model, which is not 

hampered by many of the limitations of conventional (in vitro, ex vivo, in vivo) model systems and 

which can be the first step towards the reduction and replacement of animal models in the field of 

ophthalmology. Further development will target challenges of innervation (addition of an optical 

nerve), incorporation of blood-retinal barriers, the integration into multi-organ platforms, as well as 

the generation of disease-specific systems. 

 

Summary 

The scarce availability of physiological relevant in vitro models of the human retina and the limited 

capability of animal models to recapitulate physiological human responses has i) hampered the 

development of potential new drugs to treat degenerative diseases such as Stargardt disease, age-

related macular degeneration or retinitis pigmentosa and ii) prevented the detection of retinal 

toxicities early in the drug pipeline. By combining hiPSC-ROs and -RPE cells in a microphysiological 

environment, the introduced human RoC system provides a physiological relevant model system that 

recapitulates key functionalities of the human retina, which are impaired in patients suffering from 

retinal degeneration. Due to a toolbox of in situ and ex situ analysis options, the platform is extremely 

versatile and features potential applications for drug development, toxicity screening, disease 

modeling, and personalized medicine.  

 

Acknowledgments 

This work was supported in part by the Fraunhofer-Gesellschaft Internal program Attract 601543 (P.L.), 

has received funding from the European Union’s Horizon 2020 research and innovation programme 

under grant agreement No 766884 (P.L.), the DFG (DFG LI 2044/4-1 and DFG LI 2044/5-1 to S.L., 

SCHE701/14-1 to K.S.L.), the MWK BW (33-729.55-3/214 to K.S.L.), and the NC3Rs CrackIT scheme (P.L. 

& S.L.). Hector Fellow Academy grant to W.H.. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 18, 2019. ; https://doi.org/10.1101/552158doi: bioRxiv preprint 

https://doi.org/10.1101/552158
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

Author contributions 

K.A., C.P.,J.H., P.L. and S.L. conceived the strategy for this study; K.A., L.A., V.C, C.P., J.H. , N.S. and J.C. 

designed and performed experiments; K.A., C.P., J.H., J.R., J.C., P.L., K.S.L., M.U., and S.L. wrote the 

manuscript; C.P., J.R. and J.C. designed and fabricated the microfluidic chips; K.A., J.H., M.N., L.A. and 

V.C. performed the generation of retinal organoids and retinal pigment epithelium cells from induced 

human pluripotent stem cells; W.H. performed and analyzed the calcium imaging measurements, S.B. 

performed electron microscopy, K.A., J.H. and J.C. performed drug toxicity studies and analyzed the 

data; All authors discussed the results and commented on the manuscript. 

 

Competing interests 

The authors declare no competing interests.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 18, 2019. ; https://doi.org/10.1101/552158doi: bioRxiv preprint 

https://doi.org/10.1101/552158
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

Materials & Methods 

Fabrication of Retina MPS 

The RoC consists of two Polydimethylsiloxane (PDMS) layers and a porous PET membrane in between, 

bonded to a thin glass slide (170 µm). First, PDMS master molds were fabricated. For the media channel 

mold, SU8-50 photoresist (MicroChem, USA) was spin-coated onto a previously cleaned 4” silicon 

wafer to obtain a height of 100 µm. To create the desired structure, the substrate was exposed to 350 

mJ/cm2 of UV light, followed by development in SU-8 developer (micro resisttechnology GmbH, 

Germany) for 6 minutes. Finally, the wafer was rinsed with isopropanol and blow-dried using nitrogen. 

The second wafer for RO and RPE culture was fabricated in two steps. Initially, a base layer of 25 µm 

for the membrane insert was fabricated by spin-coating a first layer of photoresist SU8-. The exposure 

to UV light in this case was 200 mJ/cm2. Subsequently, the wafer was developed in SU-8 developer for 

4 minutes, rinsed in isopropanol and blow-dried with nitrogen. Next, the wafer was coated with a 

second layer of SU8-3025 to fabricate the tissue channels with a height of 40 µm. The wafer was 

exposed to UV light at 250 mJ/cm2 for 10 seconds and developed for 4 minutes. Afterwards, both 

master molds were silanized with chlorotrimethylsilane (Sigma-Aldrich, Germany). Subsequently, 

Sylgard 184 PDMS (Dow Corning, USA) was mixed at a 10:1 ratio of prepolymer to curing agent and 

molded by using the wafers as negative master mold. The layer for the media supply was made by 

exclusion molding followed by curing overnight at 60°C. The RO/RPE culture layer was fabricated by 

pouring 25 g of the PDMS mixture onto the master mold and curing it overnight at 60°C. Next, the 

PDMS slabs were peeled off the wafers and the media-supply layers were bonded to a glass slide 

previously cleaned by a 30-second exposure to oxygen plasma at 50 Watts. Inlets and outlets were 

punched using a biopsy puncher with a diameter of 0.75 mm. To culture the cells and organoids, four 

chambers were punched out of the PDMS with a biopsy puncher of 2 mm diameter. Semipermeable 

membranes with an diameter of 20 mm, made from PET (Sabeu GmbH, Germany) with a pore diameter 

of 3 µm and a thickness of 10-20 µm, were functionalized using bis-[3-trimethoxysilypropyl]amine 

(Sigma-Aldrich, Germany). Before assembly, both PDMS layers were cleaned with isopropanol and 

Scotch tape to remove dust particles. Afterwards, both layers were treated with an oxygen plasma at 

50 W for 30 s. Then, the membrane was placed into the inlay of the RO/RPE culture layer. Finally, both 

layers were aligned to each other using a stereo microscope and baked overnight at 60°C to stabilize 

bonding. 
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Cell culture 

iPSC Culture  

All hiPSC cell lines were derived from healthy donors as previously described [43] and tested for stem 

cell markers and germ-layer differentiation potential. hiPSCs were cultured on Matrigel (hESC-

qualified, BD Biosciences, USA)-coated plates with FTDA medium [44]. Cells were passaged every 6-7 

days using Dispase (Stemcell Technolgies, Canada). Differentiated colonies were removed manually by 

scraping. All procedures were in accordance with the Helsinki convention and approved by the Ethical 

Committee of the Eberhard Karls University Tübingen (Nr. 678/2017BO2). Control persons gave their 

written consent. 

Retinal organoid culture 

hiPSC-derived RO were differentiated based on a protocol by Zhong et al. 2014 [8] with some 

modifications. Briefly, for embryoid body (EB) formation, 2.88x106 hiPSCs were detached on day 0 

using TrypLE (ThermoFisher Scientific, USA) and dissociated to single cells. Cells were then mixed with 

PeproGrow (Peprotech, USA) medium, 10 µM Y-27632 (ROCK-inhibitor, Ascent Scientific, USA) and 10 

µM blebbistatin (Sigma-Aldrich, USA) and distributed on 96 untreated v-shaped 96-wells (Sarstedt, 

Germany). For re-aggregation, the plate was centrifuged at 400 g for 4 minutes. On day 1, 80% of the 

medium was removed and replaced with N2 medium (DMEM/F12 (1:1) + Glutamax supplement 

(ThermoFisher Scientific, USA), 24 nM sodium selenite (Sigma-Aldrich, USA), 16 nM progesterone 

(Sigma-Aldrich, USA), 80 µg/ml human holotransferrin (Serologicals, USA), 20 µg/ml human 

recombinant insulin (Sigma-Aldrich), 88 µM putrescin (Sigma-Aldrich, USA), 1x minimum essential 

media-non essential amino acids (NEAA, ThermoFisher Scientific, USA), 1x antibiotics-antimycotics 

(AA, ThermoFisher Scientific, USA)). Medium was changed again on day 4. On day 7, EBs were plated 

on Growth-Factor-Reduced Matrigel (BD Biosciences, USA)-coated 6 well plate at a density of 32 

EBs/well and medium was changed daily. On day 16, medium was switched to a B27-based Retinal 

differentiation medium (BRDM) (DMEM/F12 (3:1) with 2% B27 (w/o vitamin A, ThermoFisher 

Scientific, USA), 1x NEAA and 1x AA). On day 24, eye fields were detached using 10 µl tips and collected 

in 10 cm bacterial petri dishes (Greiner Bio One, Germany) with BRDM, adding 10 µM ROCK-Inhibitor 

Y-27632 for one day. After completed formation, ROs were selected and if necessary detached from 

non-retinal spheres using microscissors. From day 40 onwards, ROs in BRDM were supplemented with 

10% fetal bovine serum (FBS, Thermo Fisher Scientific, USA) and 100 µM taurine (Sigma-Aldrich, USA). 

From day 70-100, BRDM with FBS and taurine was further supplemented with 1 µM retinoic acid 

(Sigma-Aldrich, USA), which was reduced to 0.5 µM during days 100-190 and removed afterwards. 
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Differentiation of retinal pigment epithelial cells 

RPE cells were derived as a product from RO differentiation following (slightly adapted) procedures of 

Zhong et al. and Ohlemacher et al. [8][45]. For this purpose, pigmented areas or spheres were removed 

from ROs using microscissors under an inverted microscope. The pigmented areas were collected in 

1.5 ml Eppendorf tubes (Eppendorf, Germany) and washed once with Dulbecco's phosphate-buffered 

saline (PBS, no calcium, no magnesium, Thermo Fisher Scientific, USA). To dissociate the RPE into single 

cells for adhesion culture, the pigmented spheres were treated with Accumax (Sigma-Aldrich, USA) for 

90 minutes at 37°C and 5% CO2 and resuspended every 30 minutes using a 100 µl pipette. The reaction 

was stopped using BRDM with 10% FBS followed by centrifugation at 1500 rpm for 2 minutes. The 

derived single RPE-cells were plated on 6-well plates or coverslips in 24-well plates, treated with a 

0.01% Poly-L-Ornithine Solution (Sigma-Aldrich, USA) for 30 minutes at room temperature and 20 

μg/ml Laminin (Roche, Switzerland) for 4 hours at 37°C and 5% CO2. For the plating of the cells, BRDM 

was supplemented with 20 µg/ml EGF (Cell Guidance Systems, United Kingdom), 20 µg/ml FGF2 (Cell 

Guidance Systems, United Kingdom), 2 µg/ml heparin (Sigma-Aldrich, USA), and 10 µM Y-27632 (ROCK-

inhibitor, Ascent Scientific, USA) [45][1]. In addition, for the first 24 hours, 10% FBS (Thermo Fisher 

Scientific, USA) was added to achieve adherence of the cells. When cells had reached confluence, 

medium was switched to BRDM without supplementation. 

Transduction of RPE cells 

To generate green fluorescent iPSC-RPE lines, adherent RPE cultures were incubated with lentiviral 

particles generated from pJG-IRPB-eGFP plasmids [46] (Gift from Deepak Lamba, Thomas Reh) in 

BRDM + 10% FBS for one day, washed three times with PBS and further cultivated in BRDM.  

RoC culture 

Individual systems were sterilized via oxygen plasma treatment for 3 minutes at 50 Watts and placed 

into PBS-filled 50 ml tubes to displace the air in the channels. Before seeding hiPSC-RPE cells into the 

MPS, each system was removed from the tube, carefully dried with a paper towel and placed into a 10 

cm dish. Each well was coated for 2 hours with 50 µg/ml Laminin in DMEM/F12 at 37°C and 5% CO2. 

RPE cells were detached and dissociated using Accumax at 37°C and 5% CO2 for 10-40 minutes, 

depending on the adherence and passage of the cells. To remove cell agglomerates, a 70 µm cell 

strainer was used. As a next step, each well was seeded with RPE at a density of 27 000 cells in a volume 

of 4.5 µl BRDM supplemented with 10% FBS. RoC were incubated for at least 2 hours at 37°C and 5% 

CO2 to allow RPE cells to adhere to the semipermeable membrane. The medium was changed every 

day for 1-3 days prior ROs were loaded into the RoCs. ROs were placed onto the RPE covered 

membrane. Hyaluronic acid-based hydrogel HyStem-C (ESI Bio, USA) was prepared according to the 
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manual and added to the well by pipetting. During culture, the chambers were covered by a sterile 

adhesive tape (optical adhesive covers, Thermo Fischer Scientific, USA) to avoid evaporation. BRDM 

supplemented with 100 µM taurine and 10% FBS was supplied at a constant flow rate of 20 µl/h by 

syringe pump.  

Drug Treatment    

RPE and ROs were seeded into the RoC as described above. Subsequently, ROs and RPE were either 

treated for three days with 20 and 80 μg/ml chloroquine (Sigma-Aldrich, USA) in BRDM using a syringe 

pump at a flow rate of 30 µl/h or with 0.5 mg/ml and 2 mg/ml Gentamicin (Sigma-Aldrich, USA) for 6 

days.  For every treatment, control RoCs were also used, without addition of equal amounts of the 

solvent (H2O). After 3 days of treatment, cells in the RoCs were stained using HOECHST (Thermo Fischer 

Scientific, USA) and 3 µM propidium iodide (PI, Sigma Aldrich, USA) to assess cell death. RoCs were 

washed twice with PBS using a syringe and fixed with 4% PFA for immunhistochemical staining of 

LAMP2. 

Phagocytosis Assay using bovine ROS  

Bovine rod outer segments were isolated as previously described [47]. For the phagocytosis assay out-

of-the-chip, hiPSC-RPE was plated on cover slips after coating with 0.01% Poly-L-Ornithine Solution and 

Laminin as described above. For the phagocytosis assay in the RPE-chip, RPE was loaded as described 

above into the Laminin-coated wells. On the next day, hiPSC-RPE on coverslips or in the chip were 

incubated with bovine photoreceptor outer segments (POS) at a density of 10 POS/RPE in BRDM for 

2h at 37°C, then washed with PBS 3x and cultivated for additional 2h in BRDM and then fixed with 4% 

paraformaldehyde (Carl Roth, Karlsruhe, Germany) and 10% sucrose (Carl Roth, Karlsruhe, Germany) 

in PBS for 20 minutes at room temperature for immunohistochemistry.  

ELISA assay VEGF-A secretion 

Specialized double-channel RoCs were generated for apical and basal secretion measurement. These 

chips were identical with the previously described setup, except that an additional channel was 

included (apical channel) connecting the compartments, with an additional inlet and oulet that allows 

media flow above the RPE layer, in additional to the media flow below. These double-channel chips 

were loaded with RPE cells as described and then cultivated for 14 days using a syringe-pump.  

The media from the upper and lower-channel outlet were collected in a tube each day and the 

collected medium was frozen at -20°C. After defrosting, the VEGF-A amount in the conditioned 

medium of day 14 was measured using a VEGF-A Human ELISA Kit (Thermo Fisher Scientific, USA). The 

assay was performed according to the manufacturer’s protocol and absorbance was read at 450nm. 
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The apical and basal media was analyzed from 3 different chips and initial volumina were noted for 

calculation of the total substance quantity per chip on the apical or basal side. 

Live cell labeling of hiPSC retinal organoids 

For live cell labeling of RO photoreceptor segments, ROs were incubated in a reaction tube for 30 

minutes in BRDM containing 20 µg/ml PNA lectin-Alexa Fluor® 568 (Thermo Fisher Scientific, USA) or 

PNA lectin-Alexa Fluor® 647 (Thermo Fisher Scientific, USA) followed by washing with medium four 

times, prior to the transfer into the RoC. 

Live cell endocytosis and phagocytosis assay  

For live cell endocytosis experiments, RPE cells were infected overnight with 10 particles/cell of 

CellLight® Early-Endosomes GFP (BacMam 2.0, Thermo Fisher Scientific, USA) prior to the seeding of 

RPE into the RoC. Endosome labeling could be detected for >5 days.  

Production of agarose RoCs and cryoembedding 

Agarose RoCs were produced from an in-house fabricated mold using 4% Agarose/BRDM + 10% FBS 

containing four separated compartments and a semipermeable membrane (as described in the MPS 

section) at the bottom of each well. RPE and ROs were loaded into the agarose RoCs as already 

described. For fixation, agarose RoCs were fixed in 4% paraformaldehyde in 0.1 M phosphate buffered 

saline (pH 7.4) (Polysciences, Warrington Pa., USA) for 2 hours. ROs from classic dish culture were 

washed with PBS and fixed with 4% paraformaldehyde and 10% sucrose in PBS for 20 minutes at room 

temperature, then kept in PBS at 4°C. 

After rinsing in PBS, agarose RoCs or RO were cryoprotected in graded sucrose/PBS (10% for 30 

minutes, 20% for 1 hour, 30% overnight), embedded in cryomatrix (Tissue-Tek O.C.T. Compound, 

Sakura, Netherlands) and frozen in liquid nitrogen. Cryosections (14 µm) were cut on a Leica CM 3050 

S Cryocut, mounted on Superfrost glass slides, and stored at -20°C. 

Transmission Electron Microscopy:  

For transmission electron microscopy, agarose RoCs with ROs and RPE were fixed in the chambers with 

Karnovsky buffer (2.5% glutaraldehyde, 2% paraformaldehyde, 0.1 M sodium cacodylate buffer, pH 

7.4) (Electron Microscopy Sciences, Germany) for 12 hours at 4°C. After fixation, the samples were 

rinsed three times in 0.1 M sodium cacodylate buffer (pH 7.4, Electron Microscopy Sciences, Germany) 

for a total of 30 minutes, and postfixed in 1% OsO4 (Electron Microscopy Sciences, Germany) for 1.5 

hours at room temperature. After three additional washes in cacodylate buffer and dehydration in 50% 

ethanol, tissues were counterstained with 6% uranyl acetate dissolved in 70% ethanol (Serva, 
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Heidelberg, Germany) followed by graded ethanol concentrations of ethanol (80% and 96% for 15 

minutes each, 100% for two times 10 minutes, acetone 100%, 15 min). The dehydrated samples were 

incubated in a 2:1 and 1:1 mixture of acetone and Epon resin (Serva, Heidelberg, Germany) for 1 hour 

each, on a shaker. Finally, organoids were infiltrated with pure Epon and polymerized by overnight 

incubation at 60°C. The next day, ROs and RPE were punched out of the chambers. Epon punches 

containing RPE-filter and ROs were embedded in fresh resin in flat molds (Science Services, Germany) 

and cured 12 hours at 60°C followed by 2 hours at 90°C. 

Ultrathin sections (50 nm) were cut on a Reichert Ultracut S (Leica, Germany), collected on copper 

grids and counterstained with Reynolds lead citrate. Sections were analyzed with a Zeiss EM 900 

transmission electron microscope (Zeiss, Germany) equipped with a 2k x 2k CCD camera. 

Images were used for quantification of outer segment density using an image analysis software (iTEM, 

Olympus Soft Imaging Solutions, Germany). To calculate the ratio of outer segments per µm organoid 

surface, a line was drawn and measured along the outer limiting membrane of the organoid and outer 

segment structures visible along the line were counted. 

Immunohistochemistry 

For in situ chip staining, whole-mount staining was performed using a blocking solution of 5% or 10 % 

normal donkey serum (Millipore, USA) with 0.2% triton-X (Carl Roth, Karlsruhe, Germany) for 

permeabilization, twice for 1 hour. Primary antibodies were added to the blocking solution for 1 or 2 

days at 4°C, then secondary antibodies were added in blocking solution overnight at 4°C. Next, RoC 

were counterstained with HOECHST 33342 for 10 minutes at room temperature (1:2000, Thermo 

Fisher Scientific, USA). Washing steps to remove residual antibodies were performed with PBS, three 

times for 2 hours at room temperature after incubation of primary and secondary antibodies, as well 

as after HOECHST staining.  

Cryosections from agarose-chips and ROs were rehydrated in PBS for 15 minutes and incubated in a 

blocking solution of 10% normal donkey serum in PBS with 0.2% triton-X for 1 hour. Wholemount ROs 

were incubated in a blocking solution of 10% normal donkey serum in PBS with 0.2% triton-X for 1 

hour. Primary antibodies were diluted in blocking solution and incubated over night at 4°C. Secondary 

antibodies were diluted in 1:1 blocking solution:PBS and incubated for 2 hours at room temperature. 

Mounting was performed with ProLong Gold Antifade Reagent with DAPI (Thermo Fisher Scientific, 

USA). Washing steps to remove residual antibodies were performed with PBS, three times for 3 

minutes at room temperature after primary and secondary antibodies. 
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Cells grown on glass coverslip were washed with PBS and fixed with 4% paraformaldehyde and 10% 

sucrose in PBS for 20 minutes at room temperature, then kept in PBS at 4°C. For blocking and 

permeabilization, cover slips were incubated with 5% normal donkey serum and 0.2% triton-X for 1 

hour. Primary antibodies were diluted in blocking solution and incubated over night at 4°C. Secondary 

antibodies were diluted in blocking solution and incubated for 2 hours at room temperature. Mounting 

was performed with ProLong Gold Antifade Reagent with DAPI (Thermo Fisher Scientific, USA). 

Washing steps to remove residual antibodies were performed with PBS, three times for 5 minutes at 

room temperature after primary and secondary antibodies. 

For LAMP-2 stainings, 0.5% saponin (Millipore, USA) was used instead of Triton-X and washing steps 

were performed using 0.1% saponin in PBS instead of using only PBS. 

Antibodies used were:  

Secondary Antibodies: 

• Donkey anti-Mouse Alexa Fluor® 488/568/647  (1:1000, Thermo Fisher Scientific, USA) 

• Donkey anti-Goat Alexa Fluor® 488/568/647  (1:1000, Thermo Fisher Scientific, USA) 

• Donkey anti-Rabbit IgG (H+L) Alexa Fluor® 488/568/647  (1:1000, Thermo Fisher Scientific, 

USA) 

Primary:  

• Alexa Fluor® 647 Phalloidin (1:500, Thermo Fisher Scientific, USA) 

• AP2α (1:100, sc-12726, Santa Cruz Biotechnology, USA) 

• Arrestin 3 (Cone Arrestin, 1:50, sc-54355, Santa Cruz Biotechnology, USA) 

• BRN3B (1:50, sc-31989, Santa Cruz Biotechnology, USA) 

• CHX10 (1:200, sc-21690, Santa Cruz Biotechnology, USA) 

• CRALBP (1:250, ab15051, Abcam, USA) 

• EEA1 (1:500, 14-9114-80, eBioscience, Thermo Fisher Scientific, USA) 

• EZRIN (1:200, 3145S, Cell Signaling, USA) 

• LAMP2 (1:50, sc18822, Santa Cruz Biotechnology, USA) 

• Melanoma gp100 (1:100, ab787, Abcam, USA) 

• MITF (1:500, X1405M, Exalpha Biologicals, USA) 

• PAX6(1:100, PRB-278P-100, Covance, USA) 

• PKCα (1:500, sc-208, Santa Cruz Biotechnology, USA) 

• Rhodopsin (1:200, sc-57432, Santa Cruz Biotechnology, USA) 

• ROM1 (1:200, 21984-1-AP, Proteintech, USA) 
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• RPE65 (1:100, ab78036 Abcam, USA) 

• S-opsin (1:200, AB5407, Abcam, USA) 

• ZO-1 (1:100, 61-7300, Thermo Fisher Scientific, USA)  

TUNEL Assay 

TUNEL Assay (Click-iT® TUNEL Alexa Fluor® 488 Imaging Assay; Thermo Fisher Scientific, USA) was 

performed according to the manufacturer’s manual. 

Gene expression analysis using Fluidigm qRT-PCR 

Total RNA isolation and gene expression analysis was performed as previously described [48]. For 

quantification of the gene expression of the genes of interest, Taqman® assays were purchased from 

Thermo Fisher Scientific, USA. 

Calcium imaging 

RoCs were incubated overnight with BRDM containing 9-cis-Retinal (Sigma-Aldrich, USA), 0.27 µM 

Fura-2-AM and 0.1% pluronic acid (Invitrogen, USA) at 37°C and 5% CO2. Afterwards, the RoCs were 

perfused with BRDM (5 ml) to wash out the excessive dye. Ratiometric calcium-imaging recordings 

were performed utilizing an upright fluorescence microscope (BX50WI, Olympus, Germany) equipped 

with a 40x water immersion objective (LUMPlan FL, 40X/0.80W, ∞/0, Olympus), a polychromator 

(VisiChrome, Till Photonics, Germany) and a CCD camera (RETIGA-R1, 1360×1024 pixel, 16 bit). During 

the calcium-imaging recordings, stacks (single-plane two-channel) of the Fura-2 fluorescence at the 

focal plane of the ROs photoreceptors were acquired at 10 Hz (λexc= 340 and 380 nm; Olympus U-MNU 

filter set, 30 milliseconds exposure time, 8-pixel binning) using the VisiView software (Till Photonics, 

Germany). The calcium-imaging ratio-stacks were generated by dividing the fluorescence images 

recorded at the excitation wavelengths of F340 and F380 (ImageJ, RatioPlus, https://imagej.nih.gov/). 

To detect the calcium signals in the RoCs, fluorescent-labeled cells were manually encircled by regions 

of interest (ROIs) and the obtained ROIs coordinates were used to extract corresponding calcium traces 

from the ratio-stacks. Average frames of pre- and post-stimulus frames (ImageJ, custom written script) 

substituted ratio frames during the light stimulation period. 

 

Fluorescence intensity quantification 

Fluoresencent signal of propidium iodid signal was quantified using ImageJ (https://imagej.nih.gov/). 

For signal calculation, fluorescencene signal was quantified before and after PI labelling using ROI 

selection and mean intensity pixel values. Signal intensities before PI labelling were considered as 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 18, 2019. ; https://doi.org/10.1101/552158doi: bioRxiv preprint 

https://imagej.nih.gov/
https://doi.org/10.1101/552158
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

background and subtracted from the after PI values. For calculation of the organoid PI mean 

fluorescence intensity in the RoCs (I[RO]), the mean signal intensity for the retina organoid area (I[RO]) 

(including the underlying RPE) was calculated and subtracted from the RoC mean signal intensity 

(I[RoC]). The calculation formula were as followed:   

I[RPE] =(I[RoC]*A[RoC]- I[RO]* A [RO])/( A [RoC]- A [RO])  

I[RO] = I[RoC]- I[RPE] 

A[X]: Area of [X] 

I[X]: Mean Intensity of X 

Microscopy: 

All microscopic images were as indicated in the individual panels either taken by an Imager.M2 

Apotome1 (Carl Zeiss, Germany), LSM 710 Confocal microscope (Carl Zeiss, Germany) or by the EVOS 

FL® Imaging System.  

 

Statistical analysis 

Two-sided student’s t-test was used to analyze differences between samples conditions. Statistical 

anaylsis was performed with GraphPad Prism 5 (San Diego, California). Data are presented as mean ± 

S.E.M. p-value is indicated in the respective graphs.  

 

Data availability 

The authors declare that the main data supporting the findings of this study are available within the 

article and its Supplementary Information files. 
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