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Abstract  1 

Primary motor cortex (M1) has lateralized outputs, yet M1 neurons can be active during 2 

movements of either arm. What is the nature and role of activity in the two hemispheres? When 3 

one arm moves, are the contralateral and ipsilateral cortices performing similar or different 4 

computations? When both hemispheres are active, how does the brain avoid moving the “wrong” 5 

arm? We recorded muscle and neural activity bilaterally while two male monkeys (Macaca 6 

mulatta) performed a cycling task with one or the other arm. Neurons in both hemispheres were 7 

active during movements of either arm. Yet response patterns were arm-dependent, raising two 8 

possibilities. First, the nature of neural signals may differ (e.g., be high versus low-level) 9 

depending on whether the ipsilateral or contralateral arm is used. Second, the same population-10 

level signals may be present regardless of the arm being used, but be reflected differently at the 11 

individual-neuron level. The data supported this second hypothesis. Muscle activity could be 12 

predicted by neural activity in either hemisphere. More broadly, we failed to find signals unique 13 

to the hemisphere contralateral to the moving arm. Yet if the same signals are shared across 14 

hemispheres, how do they avoid impacting the wrong arm? We found that activity related to the 15 

two arms occupied distinct, orthogonal subspaces of population activity. As a consequence, a 16 

linear decode of contralateral muscle activity naturally ignored signals related to the ipsilateral 17 

arm. Thus, information regarding the two arms is shared across hemispheres and neurons, but 18 

partitioned at the population level.  19 
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Introduction 20 

The outputs of motor cortex (M1) are lateralized: most spinal projections influence the 21 

contralateral musculature. M1 lesions thus produce contralateral motor deficits (Liu and Rouiller, 22 

1999; Murata et al., 2008; Passingham et al., 1983; Vilensky and Gilman, 2002). Similarly, 23 

electrical microstimulation activates contralateral musculature (Kwan et al., 1978; Sessle and 24 

Wiesendanger, 1982). The degree to which computations within M1 are lateralized versus shared 25 

across hemispheres remains less clear. The corpus callosum interconnects M1 across 26 

hemispheres, yielding the potential for extensive cooperation (Gould et al., 1986; Jenny, 1979; 27 

Jones and Wise, 1977). Callosally mediated interactions are readily revealed by paired-pulse 28 

TMS protocols and can involve net facilitation or suppression (Ferbert et al., 1992; Hanajima et 29 

al., 2001; Meyer et al., 1995). An obvious role for inter-hemispheric cooperation is coordination 30 

of bimanual movement (Donchin et al., 1998; Kermadi et al., 1998). Yet there is evidence that 31 

unimanual movements also involve sharing of information across hemispheres. 32 

Most physiological studies of unimanual movements have focused on activity contralateral to the 33 

moving limb, on the grounds that contralateral activity is most functionally relevant and likely to 34 

be most prevalent. Yet studies investigating ipsilateral activity have found that it can be robust. 35 

Ipsilateral activity is minimal for tasks performed primarily with the digits (Matsunami and 36 

Hamada, 1981; Tanji et al., 1988; Aizawa et al., 1990) but prevalent during movements of the 37 

upper arm, such as reaching to remove food from a drawer (Kermadi et al., 1998; Kazennikov et 38 

al., 1999), or performing center-out reaching movements (Donchin et al., 2002; Steinberg et al., 39 

2002; Cisek et al., 2003; Ganguly et al., 2009). 40 

While the presence of ipsilateral activity is established, the nature of that activity is less clear. 41 

Few studies have directly compared neural response patterns when the same movement is 42 

performed by one arm versus the other. In premotor areas, delay-period responses can encode 43 

information about an upcoming reach (Cisek et al., 2003) or grasp (Michaels and Scherberger, 44 

2018) independently of which arm would subsequently move, suggesting that preparatory 45 

activity is largely effector independent. However, activity during movement was more effector-46 

dependent, for both premotor cortex and M1 (Cisek et al., 2003). Steinberg and colleagues 47 

(2002) reported similar single-neuron directional tuning regardless of which arm was moving, 48 

yet also found evidence for effector-dependent population-level encoding of direction.  49 
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If responses are effector-independent (i.e. similar regardless of the moving arm) then the 50 

relationship between hemispheres is necessarily simple: both contain the same information, 51 

encoded in the same manner. In contrast, if there exist strongly effector-dependent responses, 52 

that would raise additional questions. Are ‘lower-level’ signals (e.g., those describing muscle 53 

activity) more prevalent in the contralateral hemisphere? More generally, which signals are 54 

shared across hemispheres? How is neural activity structured such that only one arm moves even 55 

if both hemispheres are active? 56 

We investigated these questions using a novel ‘cycling’ task, performed with either the left or 57 

right arm. We recorded neural activity from both hemispheres simultaneously. In separate 58 

sessions we recorded muscle activity bilaterally. Single neurons responded robustly regardless of 59 

which arm performed the task. Yet responses were strongly effector-dependent: for a given 60 

neuron, response patterns pertaining to the two arms were essentially unrelated. Despite 61 

profoundly effector-dependent single-neuron responses, we found no evidence that certain 62 

signals were present in one hemisphere but not the other. For example, muscle activity could be 63 

decoded equally well from contralateral or ipsilateral neural activity. More broadly, the 64 

population response across hemispheres appeared isomorphic; any signal present in one could 65 

also be found in the other. Thus, activity in a given hemisphere contains similar information 66 

during movement of one arm versus the other, yet that information is distributed very differently 67 

across single neurons. This might appear to yield a paradox: how can M1 be robustly active 68 

without driving the contralateral arm? A solution emerged when we examined the correlation 69 

structure between neurons, which changed dramatically depending on which arm was used. As a 70 

result, arm-specific signals were partitioned into orthogonal dimensions, allowing a simple 71 

decoder to naturally separate signals related to the two arms. 72 

73 
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Materials and Methods 74 

Terminology 75 

We adopt the following terminology. For neurons in a given hemisphere, we refer to the 76 

contralateral arm as the “driven arm” (reflecting the strong connections to the contralateral spinal 77 

cord). We refer to the ipsilateral arm as the “non-driven arm.” Thus, for a neuron recorded from 78 

the right hemisphere, the left arm is the driven arm and the right arm is the non-driven arm. For 79 

the muscles, the driven arm is the arm upon which the muscle acts. Similarly, for a given arm, 80 

the contralateral cortex is referred to as the “driving cortex,” while the ipsilateral cortex is 81 

referred to as the “non-driving cortex.”  82 

Behavior 83 

All animal procedures were approved by the Columbia University Institutional Animal Care and 84 

Use Committee. Data were collected from two male monkeys (Macaca mulatta) while they 85 

performed a cycling task for juice reward. Experiments were controlled and data collected under 86 

computer control (Real-time Target Machine: Speedgoat, Liebfeld, Switzerland). While 87 

performing the task, each monkey sat in a custom primate chair with the head restrained via 88 

surgical implant. A screen displayed a virtual environment through which the monkey moved. 89 

The monkey grasped a custom pedal with each hand, with the hands lightly restrained with tape 90 

to keep them in a consistent position on the pedals. The pedal itself was also designed to 91 

encourage a consistent hand position, and included a handle and a brace that reduced wrist 92 

motion. Pedals turned a crank-shaft attached to a motor (Applied Motion Products, Watsonville, 93 

California, USA). A rotary encoder within the motor reported position with 1/8000 cycle 94 

precision. The motor used information regarding angular position and its derivatives to provide 95 

forces yielding virtual mass and viscosity. 96 

Monkeys cycled the pedal to control their position in the virtual environment (Figure 1A). For a 97 

block of twenty consecutive trials, one arm was the “performing arm,” and the other was the 98 

“non-performing arm.” The angular position of the performing arm’s pedal was mapped directly 99 

to linear position in the virtual world. The non-performing arm’s pedal was required to remain 100 

within a window (± 0.05 and ± 0.07 cycles for monkey E and F) centered at the bottom of the 101 
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cycle. Movement outside that window caused trial failure followed by a short time-out. Monkeys 102 

adopted a stereotyped position within the window and moved little from that position while 103 

cycling with the other pedal. The position range explored within a trial averaged 0.006 cycles 104 

(monkey E) and 0.029 cycles (monkey F). Following completion of each twenty-trial block, the 105 

next block was signaled by a 5-second period during which the motor delivered a gentle 106 

“buzzing” to the upcoming block’s performing arm. Blocks were presented in randomized order 107 

(Figure 1C). Monkeys also executed blocks of trials where both arms cycled together (bimanual 108 

task variant), which are not analyzed in this study.  109 

During each trial, the monkey progressed from an initial target (a stationary white square on the 110 

ground) to a final target. The acceptance window was +/- 0.15 cycles for Monkey E and +/- 0.01 111 

cycles for Monkey F. While stopped, the motor provided slight forces to Monkey F’s performing 112 

arm to enable the pedal to remain in this very stereotyped position with minimal muscle 113 

activation. While holding, the monkey was also required to maintain the performing arm below a 114 

speed threshold: 0.01 cycles/s for Monkey E and 0.0125 cycles/s for Monkey F. At the start of 115 

each trial, the initial target appeared one to two cycles in front of the monkey. The monkey 116 

cycled to and acquired this target. After 1000-2000 ms (monkey E) or 600-1000 ms (monkey F) 117 

the initial target disappeared and the final target appeared seven cycles ahead of the current 118 

position. The monkey cycled to this final target. Once the final target was acquired, the monkey 119 

remained still within the target to receive a juice reward.  120 

Within each twenty-trial block there were four behavioral conditions. These conditions varied in 121 

the starting position of the pedal and the required cycling direction (Figure 1C). The initial target 122 

was located such that the pedal position necessary to acquire that target was either at the top 123 

(top-start) or at the bottom (bottom-start). The final target was a whole number of cycles away, 124 

and was thus acquired with the same pedal position. ‘Forward’ and ‘backward’ conditions 125 

differed in the cycling direction necessary to progress through the virtual environment. During 126 

forward cycling, the hand moved away from the body at the top (much as the foot does when 127 

pedaling a bicycle). During backward cycling, the hand moved towards the body at the top. 128 

Cycling direction was cued by the color of the landscape in the virtual world: green for forward, 129 

orange for backward. Each of the four combinations of starting position and cycling direction 130 
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was performed in sub-blocks of 5 trials. Sub-block order was identical for each block (Figure 131 

1C). 132 

Surgical Procedures and neural recording 133 

Monkeys were anesthetized and a headcap was implanted under sterile conditions. A 19-mm 134 

diameter cylinder (Crist Instruments) was placed above the primary motor cortex of each 135 

hemisphere, guided by structural MRI performed prior to surgery. The skull remained intact 136 

under the cylinder, covered with a thin layer of dental acrylic. Prior to recording, monkeys were 137 

anesthetized and a 3.5-mm diameter burr hole was drilled by hand through the dental acrylic and 138 

skull, leaving the dura intact. Over the course of the experiment, multiple burr holes were opened 139 

at different locations. Following recording, burr holes were closed with dental acrylic, allowing 140 

the skull to heal. 141 

After opening a burr hole, we first recorded neural activity using conventional single electrodes 142 

(Frederick Haer Company) to assess whether neurons in that location were task-modulated. We 143 

performed intracortical microstimulation and muscle palpations to confirm that recordings were 144 

within the arm region of M1. We then recorded neural activity with 24-channel V-Probes 145 

(Monkey E), or 32-channel S-Probes (Monkey F) (Plexon Inc, Dallas, Texas, USA). We lowered 146 

one probe into each hemisphere each day, removing the probe at the end of that session. Probes 147 

were moved to different locations within each burr hole on each recording day. Neural signals 148 

were processed and recorded using a Digital Hub and 128-channel Neural Signal Processor 149 

(Blackrock Microsystems, Salt Lake City, Utah, USA). Threshold crossings from each channel 150 

were recorded and spike-sorted offline (Plexon Offline Sorter). Unit isolation was assessed based 151 

on separation of waveforms in PCA-space, inter-spike interval histograms, and waveform 152 

stability over the course of the session. Analyses consider stable, well-isolated single and multi-153 

unit isolations. Multi-unit isolations consisted of identifiable spikes (i.e., not merely threshold 154 

crossings) from two (or occasionally more) neurons that could not be distinguished with 155 

confidence. All example firing rates shown in figures are from single units. We recorded 263 156 

units in the left hemisphere and 270 units in the right hemisphere for monkey E, and 338 units in 157 

the left hemisphere and 279 units in the right hemisphere for monkey F.  158 
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EMG recording 159 

On a separate set of days from the neural recordings, we recorded intramuscular EMG signals 160 

from the following muscles: Biceps brachii (long and short head), triceps brachii (medial, long, 161 

and lateral heads), deltoid (anterior, lateral, and posterior head), latissimus dorsi, pectoralis, 162 

trapezius, and brachioradialis. Pairs of hook-wire electrodes were inserted ~1cm into the belly of 163 

the muscle being recorded at the beginning of each session and removed at the end of the 164 

session. On each session, 1-3 EMG recordings were made per arm. Electrode voltages were 165 

amplified, bandpass filtered (10-500 Hz) and digitized at 1000 Hz (Monkey E) or 30000 Hz 166 

(Monkey F). Recordings were not considered further if they contained significant movement 167 

artifact or weak signals. Offline, EMG records were high-pass filtered at 40 Hz, rectified, and 168 

smoothed with a 25-ms Gaussian. This produced a measure of intensity versus time, which was 169 

then averaged across trials.  170 

Trial Averaged Firing Rates 171 

The spike times of each neuron on each trial were converted to a firing-rate by convolving spikes 172 

with a 25-ms Gaussian. To produce trial-averaged firing rates, we first aligned all trials on a 173 

common time: the moment when the first half-cycle was completed. This nicely aligned behavior 174 

across trials during the first cycle of each trial. However, because trials lasted multiple seconds, 175 

small differences in cycling speed could accumulate and cause considerable misalignment of 176 

behavior across trials (Figure 2A). The resulting misalignment of spikes (Figure 2B) would, if 177 

averaged without further alignment, yield an unrepresentative average firing rate (the same 178 

problem would impact averages of muscle activity and kinematic variables). Thus, the time-base 179 

on each trial was adjusted such that each cycle lasted 500 ms (excluding the first and last half-180 

cycles), matching the typical 2 Hz cycling speed (Figure 2C). This procedure altered the time-181 

base of individual trials very modestly, yet maintained appropriate alignment across trials 182 

(Figure 2D), and produced trial-averaged estimates of the firing rate (Figure 2E) that are 183 

representative of what occurred on single trials. 184 

Figure 2D shows spike rasters to illustrate improved alignment of neural activity. However, we 185 

stress that spikes were always converted to rates before modification of the time-base. Thus, the 186 
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alignment procedure did not alter the values of the estimate of firing rate; it simply slightly 187 

modified when those values occurred. 188 

Most analyses of firing rates employed the middle cycles (2-5), excluding the first cycle and the 189 

last two cycles. This focused analysis on the steady-state response, rather than on responses 190 

associated with starting, stopping, or holding. This aided interpretation in two ways. First, 191 

muscle activity in the non-performing arm was particularly weak during middle cycles (in 192 

contrast, modest activity was occasionally observed when stopping). Focusing on middle cycles 193 

largely sidesteps concerns that activity ipsilateral to the performing arm is related to muscle 194 

activity in the non-performing arm. Second, we wished to focus key analyses on the rhythmic 195 

pattern of firing rate modulation, rather than on overall changes in net firing rate when moving 196 

versus not moving. As one example, when predicting muscle activity from neural activity, it is 197 

relatively ‘easy’ to capture the generally elevated activity level during movement, resulting in 198 

high 𝑅" values even if predictions fail to capture cycle-by-cycle activity patterns. We wished to 199 

avoid this, and to consider predictions successful only if they accounted for rhythmic response 200 

aspects. 201 

Single-neuron analyses 202 

We wished to compare, for each neuron, the strength of modulation when the driven versus non-203 

driven arm performed the task. By modulation, we mean the degree to which a neuron’s firing 204 

rate varied within cycles, between cycles, and/or between conditions (forward versus backward, 205 

and top-start versus bottom-start). We compiled a single firing rate vector, 𝒓$%&'() , concatenating 206 

the firing rate vectors across the four conditions where the driven arm performed the task. 207 

𝒓$%&'()  was thus of size 𝑐𝑡 where 𝑐 is the number of conditions and 𝑡 is the number of times 208 

during the middle cycles of one condition. We defined 𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛$%&'() as the standard 209 

deviation of 𝒓$%&'() , which captures the degree to which the average firing rate varies across 210 

time and condition. 𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛)4)5$%&'() was computed analogously. 211 

To assess the degree to which a neuron was more strongly modulated when the driven versus 212 

non-driven arm performed the task, we computed an arm preference index: 213 

𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛$%&'() −𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛)4)5$%&'()
𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛$%&'() +𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛)4)5$%&'()

 214 
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This arm preference index is zero if a neuron is equally modulated regardless of the arm used, 215 

approaches one if modulation is much larger when using the driven arm, and approaches 216 

negative one if modulation is much larger when using the non-driven arm. 217 

Firing-rate impact of small movements of the non-performing arm 218 

We wished to control for the possibility that neural responses, when the non-driven arm performs 219 

the task, might be related to small movements of the non-performing arm. For each trial, we 220 

computed the mean (absolute) speed of the non-performing arm. For each condition, we divided 221 

trials into those with speeds greater versus slower than the median. We did not apply this 222 

analysis if there were fewer than 8 trials for that condition. This could occur if a neuron was well 223 

isolated for only part of a recording session.   224 

After dividing, we recomputed the mean firing rate for each of the two pools of trials, yielding 225 

one firing rate when the non-performing arm moved modestly, and another when it was virtually 226 

stationary. For each timepoint, we asked whether these two firing rates were more different than 227 

expected given sampling error. This was accomplished via a bootstrap in which trials were 228 

divided randomly, rather than based on speed. We performed 1000 such random divisions. 229 

Differences were considered significant if they were larger than for 95% of the random divisions.  230 

Normalization 231 

Because the absolute voltages of EMG traces are largely arbitrary, the scale of muscle activity 232 

could be quite different for different muscles. The response of each muscle was therefore 233 

normalized by its range. Neural responses were left un-normalized for single-neuron level 234 

analyses. However, for population-level analyses, responses were normalized to prevent results 235 

from being overly biased toward the properties of a few high-rate neurons. For example, 236 

principal component analysis seeks to capture maximum variance, and a neuron with a firing rate 237 

modulation of 100 spikes/s would contribute 25 times as much variance as a neuron with a 238 

modulation of 20 spikes/s. Reducing that discrepancy encourages principal component analysis 239 

to summarize the response of all neurons. For these reasons, we normalized the firing rate of 240 

each neuron, using the equation 𝐹𝑅94:;)4%< = >?
%@)A((>?)DE

. The addition of 5 to the denominator 241 

produces ‘soft’ normalization, and ensures that we don’t magnify the activity of very low-rate 242 
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neurons. We have used this value previously (e.g., Lara et al. 2018 eLife; Russo et al. 2018 243 

Neuron) as it strikes a reasonable balance between focusing analysis on all neurons, while still 244 

allowing high firing-rate neurons to contribute somewhat more than very low-rate neurons. 245 

Population Predictions 246 

To predict muscle activity from neural activity, we used Partial Least Squares (PLS) regression 247 

(plsregress in MATLAB). For each set of neurons 𝑋 and muscles 𝑌, PLS regression finds 248 

matrices 𝑊,𝑉, that maximize the covariance between 𝑋𝑊 and 𝑌𝑉, under the constraint that 𝑊, 249 

𝑉 are of rank 𝑟 (which must be specified). PLS is similar to Canonical Correlation Analysis, in 250 

that it seeks linear transformations of the data that maximize similarity. However, Canonical 251 

Correlation Analysis maximizes correlation, and can therefore often be biased toward small 252 

dimensions which are coincidentally well-correlated. In contrast, PLS regression maximizes 253 

covariance and thus seeks correlated signals that are also high variance. Once 𝑊 is found, 𝑌 is 254 

predicted from 𝑋𝑊 via standard linear regression. Employing 𝑋𝑊 (which has only 𝑟 columns of 255 

regressors) rather than 𝑋 (which has hundreds of columns) greatly reduces overfitting. An 256 

advantage of PLS regression is that the regularized solution respects not only the correlations in 257 

𝑋 (as for PCA regression) but also the correlations in 𝑌. 258 

All predictions involved the middle cycles (2-5) of movement. We first picked one behavioral 259 

condition (e.g. top-start, forward, right hand performing) as our test condition. We then set the 260 

training condition to be the behavior with the same cycling direction but the opposite starting 261 

pedal position (e.g. bottom-start, forward, right hand performing). We first mean-centered the 262 

data, such that average neural and muscle activity was zero for each condition. We then ran PLS 263 

regression on the training condition to find a rank-𝑟 matrix 𝐵 that predicts muscle activity from 264 

neural activity. To select the optimal rank, we selected one cycle from our test condition to serve 265 

as validation data. We assessed performance on this validation cycle and selected the rank, 𝑟∗, 266 

and the corresponding weight matrix, 𝐵∗, that generated the maximal validation 𝑅". We assessed 267 

prediction performance (generalization) on the remaining cycles of our test data. This procedure 268 

was repeated for each behavior and hemisphere. Generalization performance was assessed based 269 
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on population percent variance explained. We considered 𝑌N%($ = 𝑋𝐵∗, and computed 𝑅" = 1 −270 

PQ5QRSTUPV
W

‖Q‖V
W , where ‖∙‖: indicates the Frobenius norm. 271 

We used a similar procedure to assess how well neural activity could be predicted from neurons 272 

in the same or opposite hemisphere. We randomly divided driving-cortex neurons into two 273 

halves: 𝑋$%&'&)A  and 𝑌$%&'&)A . We also considered a random subpopulation of non-driving cortex 274 

neurons, 𝑋)4)5$%&'&)A , selected to have the same number of columns (neurons) as 𝑋$%&'&)A . 275 

Using PLS regression, we calculated generalization performance, 𝑅$%&'&)A" , when predicting 276 

𝑌$%&'&)A  from 𝑋$%&'&)A. We similarly computed 𝑅)4)5$%&'&)A"  when predicting 𝑌$%&'&)A  from 277 

𝑋)4)5$%&'&)A . We used the same train/validate/test procedure described above, assessing 278 

generalization performance on a held-out condition. We repeated this process with 125 different 279 

random divisions per condition, yielding a total of 1000 values of 𝑅$%&'&)A"  and 𝑅)4)5$%&'&)A"  per 280 

monkey. 281 

Dimensionality Reduction 282 

Dimensionality reduction was performed via principle components analysis (PCA). We typically 283 

ran PCA on neural data from a sub-set of behavioral conditions. We concatenated neurons’ soft-284 

normalized FRs from the desired conditions to generate a data matrix A of size (𝑐 × 𝑡, 𝑛), where 285 

c was the number of conditions, t was the number of timepoints included per condition, and n 286 

was the number of neurons. We applied PCA to A to obtain matrices X and V such that 𝑋 = 𝐴𝑉, 287 

where X is the projection of the data onto the principal components (PCs) and V contains the 288 

weights from neurons to PCs. To project other behavioral conditions into the same space, we 289 

could construct a new data matrix 𝐴′ using these conditions’ FRs. We then multiply by V, such 290 

that the new projections 𝑋′ are defined by 𝑋] = 𝐴′𝑉. 291 

Trajectory Tangling 292 

We assessed trajectory tangling as described in(Russo et al., 2018). To parallel the other analyses 293 

of population activity, trajectory tangling was computed for the middle cycles. Neural activity 294 

(or muscle activity) was reduced to the top eight dimensions using PCA. We then calculated 295 

tangling, 𝑄(𝑡), at each time point: 296 
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𝑄(𝑡) = max
b]

‖�̇�; − �̇�;e‖"

‖𝑥; − 𝑥;e‖" + 𝜀
 297 

where 𝑥; is the neural state at time 𝑡, �̇�; is the temporal derivative of the neural state, ‖∙‖ is the 298 

Euclidean norm, and 𝜀 is a small constant that prevents division by zero (here, set to 10% of the 299 

total neural variance across the top eight dimensions). 𝑄(𝑡) is large if the neural state at time 𝑡 is 300 

close to the neural state at a different time, but the two states have very different derivatives.  301 

Trajectory tangling was computed across all times for a given set of conditions – e.g. all 302 

conditions where the right arm performed the task. Thus, 𝑡 indexes across all times and 303 

conditions for one arm. Trajectory tangling was computed separately for each hemisphere, and 304 

for the muscle population in each arm. For a given quantity (e.g., muscle activity) the two 305 

distributions (one per arm) for that monkey were combined and the cumulative density was 306 

computed. 307 

Predicting non-performing arm EMG 308 

Above we described our methodology for assessing how well neural activity in a given 309 

hemisphere predicts muscle activity in the arm performing the task. We used a similar 310 

methodology to address a related but different question: whether a unified linear decoder, based 311 

on activity across both hemispheres, can predict muscle activity both when that arm performs the 312 

task (and robust EMG needed to be decoded) and when the other arm performs the task (and 313 

near-zero EMG should be decoded). As above, we used PLS regression and focused on the 314 

middle cycles. For this analysis, we predict EMG activity using all neurons, regardless of 315 

hemisphere. 316 

We first assessed generalization performance using a ‘train-moving’ decoder, which was trained 317 

using only conditions where the relevant arm performed the task, and was then asked to 318 

generalize to conditions where the arm did not move. This is a potentially challenging form of 319 

generalization, as the decoder must predict EMG activity in a situation (arm not moving) very 320 

different from the situation in which it was trained (arm moving). We also computed 321 

generalization performance of a ‘train-both’ decoder, trained using a set of conditions that 322 

included the relevant arm performing and not performing the task. Generalization was to left-out 323 

conditions of each type.  324 
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For the train-moving decoder, we used the following division of training, validation, and testing, 325 

conditions: Training: Direction 1, Start Position 1, Arm moving. Validation: Direction 1, Start 326 

Position 2, Arm moving (one cycle). Testing: Direction 1, Start Position 2, Other arm moving. 327 

For the train-both decoder, we used the following division of training, validation, and testing: 328 

Training: Direction 1, Start Position 1, Arm moving and Direction 1, Start Position 1, Other arm 329 

Moving. Validation: Direction 1, Start Position 2, Arm moving (one cycle). Testing: Direction 1, 330 

Start Position 2, Other arm moving.   331 
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Results 332 

Behavior 333 

Two monkeys (E and F) were trained on a cycling task that could be performed with either arm 334 

(Figure 1A). Left and right hands each grasped a pedal. Monkeys performed blocks of left-hand 335 

and right-hand trials. Cycling the correct pedal produced motion through the virtual environment. 336 

Success required that the non-performing arm be kept still. On each trial, monkeys cycled from 337 

one target to another, located seven cycles away (Figure 1B). Targets were positioned so that 338 

cycling started and ended either at the top of the cycle (‘top start’) or at the bottom of the cycle 339 

(‘bottom start’).  340 

Each combination of starting position and cycling direction was performed for five consecutive 341 

trials. The order of the four combinations was consistent within each 20-trial block (Figure 1C). 342 

Monkeys performed an average of 29 and 21 trials per condition per day (monkey E and F, 343 

respectively). Monkeys cycled quickly, with a median angular speed of 2.2 Hz and 1.8 Hz 344 

(monkey E and F; Figure 1D,E). In contrast, the non-performing hand moved very little (leftmost 345 

distributions in Figure 1D,E). Mean angular speed for the non-performing arm was 0.0016 346 

cycles/s and 0.024 cycles/s (monkey E and F). 347 

Neural and muscle responses 348 

We examined the average firing rate of neurons recorded in each hemisphere of M1 (1150 total 349 

isolations across two hemispheres and both monkeys). Firing rates were computed after 350 

temporally aligning behavior across trials (Figure 2). Neural responses were typically rhythmic 351 

(Figure 3E-H), and could be nearly sinusoidal (Figure 3E) or could contain additional higher-352 

frequency structure (Figure 3G). For comparison, we recorded the activity of the major muscles 353 

in both arms (48 total recordings). The temporal features of muscle responses (Figure 3A-D) in 354 

many ways resembled those of single-neuron responses. However, muscles and neurons were 355 

quite different in the degree to which responses were restricted to movements of a single arm. 356 

Muscles exhibited robust activity only when their driven arm performed the task (Figure 3A-D). 357 

E.g., the left anterior deltoid (Figure 3A) was active when the left arm performed the task (blue) 358 

but not when the right arm performed the task (red). While expected, this direct confirmation is 359 
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important because of the possibility that muscles might have been active in ways that didn’t 360 

move the pedal (e.g., co-contraction). Such activity could potentially have been substantial, 361 

complicating interpretation of neural activity. A few muscles exhibited weak activity when the 362 

task was performed by their non-driven arm (Figure 3A,C). However, this typically occurred 363 

only at the end of movement, consistent with tensing to aid stability during stopping. 364 

In contrast to the muscles, neurons were typically active throughout the movement, regardless of 365 

whether the task was performed with their driven or non-driven arm. A few neurons were active 366 

only when cycling with the driven arm (Figure 3E), and on rare occasions a neuron was active 367 

only when cycling with the non-driven arm (Figure 3H). However, most neurons were active in 368 

both situations (Figure 3F,G). Furthermore, neural responses could be quite different when 369 

cycling with the driven versus non-driven arm. Neural response patterns could change in both 370 

phase (Figure 3F) and structure (Figure 3G) depending on which arm performed the task. 371 

Single-neurons are active during movements of either arm 372 

To quantify the arm preference of individual neurons, we compared firing-rate modulation when 373 

the task was performed with the driven versus non-driven arm. Modulation was assessed as the 374 

standard deviation of the firing rate across timepoints, which captures the degree to which 375 

activity evolves with time. Average modulation was computed once across all conditions where 376 

the driven arm performed the task, and again across all conditions where the non-driven arm 377 

performed the task. We analyzed only the middle cycles of movement (excluding the first cycle 378 

and the last two cycles). This allowed us to quantify the “steady state” performance of the 379 

neurons, without starting and stopping transients, and aided comparison with the muscles. We 380 

computed an ‘arm preference index’: the difference in modulation for the driven versus non-381 

driven arm, divided by the sum. This index ranges from -1 to 1, with the extremes indicating 382 

complete preference for the non-driven and driven arms respectively. An arm preference index of 383 

zero indicates that a neuron was equally responsive regardless of the arm being used. 384 

To establish a baseline for comparison, we computed the arm preference index for each muscle. 385 

Arm preference indices were typically high for the muscles, confirming that muscles were active 386 

primarily when the task was performed with their driven arm. A few muscles showed weak 387 

activation regardless of the arm being used, resulting in lower indices. However, most muscles 388 
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had robust responses, and were much more active when the task was performed with the driven 389 

arm. For both monkeys, the median arm preference index was near unity (Figure 4A E: 0.86; F: 390 

0.98; blue dots) and the modal response occurred at unity. 391 

In contrast, neurons rarely had arm preference indices near unity (Figure 4B). Instead, the 392 

distribution of arm preference indices was centered slightly above zero (median = 0.07 and 0.31 393 

for the two monkeys). Thus, neural responses were much more likely than muscle responses to 394 

be similar in magnitude regardless of which arm performed the task. Furthermore, many neurons 395 

had arm preference indices < 0, indicating stronger modulation when the non-driven arm 396 

performed the task (Monkey E: 201/533 neurons; Monkey F: 107/617 neurons). 397 

Thus, neurons can be quite active even when the task is performed with their non-driven arm. 398 

Might such responses be related to small movements of the driven arm? This explanation is 399 

unlikely a priori. As described above, movements of the non-performing arm were small (Figure 400 

1D,E) and corresponding muscle activity was weak (Figure 4A). In principle, neural responses 401 

related to weak muscle activity might be magnified via normalization or some other non-402 

linearity. However, such magnification would need to be very strong. To match the median 403 

neural arm preference indices, muscle activity in the non-performing arm would need to be 404 

magnified by a factor of 12 (monkey E) and 52 (monkey F). Furthermore, magnification cannot 405 

account for the finding that neurons commonly had negative arm preference indices, while 406 

muscles rarely (monkey E) or never (monkey F) did.  407 

We performed an additional control to ask whether neural responses, when the non-driven arm 408 

performed the task, were influenced by small movements of the driven arm. Such movements 409 

varied across trials (Figure 5A), allowing us to divide trials into those with movements larger 410 

than the median (very modest movement, red) versus lower than the median (nearly stationary, 411 

black). Average firing rates were very similar in these two cases, as illustrated for one example 412 

neuron in Figure 5B. Differences were significant at only a few moments (black dots, p < 0.05 413 

via bootstrap across 1000 resamples). Those differences were small, and occurred at roughly the 414 

rate (5%) expected by chance. Across all neurons, 5% of data-points showed significant 415 

differences (Figure 5C,D). This equals the percentage expected by chance, and is thus consistent 416 

with no reliable impact of small movements. Applying this same analysis to the (weak) muscle 417 

activity in the non-moving arm revealed significant differences at double the chance rate (10% of 418 
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data-points) and peaking at four times the chance rate near the end of the movement (21% of 419 

data-points).  420 

In summary, muscles were silent or at most weakly active when the task was performed with 421 

their non-driven arm. The weak activity that was present was statistically coupled to small 422 

movements of the driven arm. In contrast, neural responses were typically robust during 423 

movements of the non-driven arm, were present throughout the movement (not just at the end) 424 

and were not statistically linked to small movements of the driven arm. Prior studies have found 425 

that neurons can be active when a task is performed with their non-driven arm, although to 426 

varying degrees (Cisek et al., 2003; Donchin et al., 1998; Kermadi et al., 1998; Tanji et al., 427 

1988). The present findings replicate the finding of weakly lateralized responses in motor cortex, 428 

and largely rule out potential explanations based on small residual movements of the driven arm. 429 

Neural response patterns are limb-dependent  430 

One plausible explanation for weakly lateralized responses is that neural activity encodes higher-431 

level, limb-independent features of movement. For example, activity might encode hand 432 

velocity, movement goal, or some other quantity, regardless of which limb is moving. 433 

Preparatory activity in the more anterior rostral premotor cortex (Cisek et al., 2003) can exhibit 434 

largely limb-independent responses. Might this also be true in motor cortex during movement? 435 

The two arms performed very similar movements in our task. Thus, limb-independence should 436 

be reflected by similar neural responses regardless of the performing arm. Instead, neural 437 

responses were strongly limb-dependent. Responses often differed in phase (Figure 3F) and/or 438 

structure (Figure 3G) depending on which arm performed the task.  439 

To provide quantification, for each neuron we computed the correlation between the firing rate 440 

patterns when the driven versus non-driven arm performed the task (Figure 4C). Analysis 441 

considered only the middle cycles (2-5). This ensured that high correlations indicate similar 442 

response patterns, not simply firing rates that rise non-specifically during movement. On average 443 

the correlation was near zero (median correlation: 0.16 and 0.08 for Monkey E and F). Strongly 444 

correlated responses were very much the minority: only 18/533 (E) and 9/617 (F) neurons had 445 

correlations >= 0.75. Thus, for a given neuron, there was remarkably little relationship between 446 

responses when the task was performed with the driven versus non-driven arm. We used a 447 
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shuffle manipulation to estimate the distribution of correlations if there were in fact no 448 

relationship. Each neuron’s response was matched with that of another random neuron, yielding 449 

a distribution of correlations expected by chance given the range of response patterns present in 450 

the data (green). The empirical distribution (black) was only modestly more positive than the 451 

chance distribution.  452 

Might correlations appear artificially low if responses are weak or noisy? While sampling error 453 

will inevitably reduce correlations, this is unlikely to be the source of the low correlations we 454 

observed. Cycling evoked particularly strong neural responses with correspondingly small 455 

standard errors of the mean firing rate (Figure 3E-H, envelopes show SEM). We further 456 

addressed this concern by computing, for each neuron, the correlation between the firing rate for 457 

the top-start versus bottom-start conditions. Behavior was very similar for these two conditions 458 

during the middle cycles (after aligning phase), and correlations should thus be high. This was 459 

indeed the case (Figure 4C, orange distributions), confirming that sampling error did not impede 460 

the ability to measure high correlations. 461 

These results rule out the hypothesis of a representation that is predominantly effector-462 

independent. Individual-neurons showed very different responses depending on which arm 463 

performed the task – almost as different as if there were no relationship between the activity 464 

patterns associated with the two arms. 465 

Correlations between neurons are limb-dependent 466 

Consider two neurons that have similar response patterns when the task is performed with the 467 

driven arm (Figure 6A-D plots four such example pairs). What occurs when the task is 468 

performed with the non-driven arm? From the analysis above, we know that the response pattern 469 

of each neuron will change. Does this occur in a coordinated fashion, such that the two neurons 470 

remain correlated with one another? This would be consistent with the idea that neurons with 471 

related responses ‘encode’ related features, and continue to do so in new contexts. In fact, this 472 

property was rarely observed. We did occasionally observe neurons that were strongly correlated 473 

when the driven arm performed the task, and remained strongly correlated when the non-driven 474 

arm performed the task (Figure 6A). Yet it was also common for correlations to invert (Figure 475 
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6B), for strong correlations to disappear (Figure 6C), or for neurons to undergo very different 476 

changes in response magnitude (Figure 6D). 477 

We computed correlation matrices to quantify such effects across the population. To aid 478 

visualization, we ordered neurons to group responses that were similar when the task was 479 

performed with the driven arm, resulting in a block structure (Figure 6E-F, left). We asked 480 

whether this correlation structure remained similar when the task was performed with the non-481 

driven arm. Note that it is possible for the correlation matrix to remain identical, even if every 482 

neuron changes its response, so long as correlated neurons remain correlated. Instead, the 483 

correlation structure was dramatically altered. As a result, the original ordering no longer groups 484 

neurons with similar response properties (right column of Figure 6E-F).  485 

This change in correlation structure was not due to correlations being largely spurious, as could 486 

occur if estimated firing rates were noisy. To investigate this possibility, we asked whether the 487 

correlation structure differed between conditions where cycling started at the top of the cycle 488 

rather than at the bottom. The correlation structure was very similar in these two cases (compare 489 

middle and left columns of Figure 6E-F). This finding rules out the possibility that correlations 490 

are unstable simply because they are spurious, and demonstrates that not just any change in the 491 

task results in a change in the correlation structure. Changing the starting position had relatively 492 

little impact, while changing the performing arm had a dramatic impact. 493 

Each matrix in Figure 6E-F corresponds to a given condition (a starting position and cycling 494 

direction). We wished to summarize, across all such conditions, the degree to which correlations 495 

are or aren’t preserved when the task is performed with one arm versus the other. To do so, for 496 

each condition and each pair of neurons we plotted their firing-rate correlation when the non-497 

driven arm performed the task versus their correlation when the driven arm performed the task 498 

(Figure 6G). This is equivalent to plotting the values of the non-driven-arm correlation matrix 499 

(right column of Figure 6E,F) versus the corresponding values of the driven-arm correlation 500 

matrix (left column). Preserved correlations would yield diagonal structure. In fact, there was 501 

little tendency for correlated neurons to remain correlated, or for anti-correlated neurons to 502 

remain anti-correlated. The ‘meta-correlation’ was 0.1 and 0.05 (monkey E and F). Thus, if two 503 

neurons responded similarly when the driven arm performed the task, this said little regarding 504 

whether those neurons would respond similarly when the non-driven arm performed the task.  505 
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Population activity is isomorphic across hemispheres 506 

The above results demonstrate that both individual-neuron responses and their correlation 507 

structure are very different depending on which arm is employed to perform the task. One 508 

potential explanation is that very different signals are present: perhaps muscle-like signals when 509 

employing the driven arm versus more abstract signals when employing the non-driven arm. An 510 

alternative explanation is that many of the same signals are present, yet are reflected differently 511 

at the level of individual neurons. We have argued that motor cortex carries both muscle-like 512 

signals and non-muscle-like signals fundamental to the underlying computations (Churchland et 513 

al., 2012; Russo et al., 2018). However, those experiments examined only the driving cortex; it 514 

remains unknown which signals are shared with the non-driving motor cortex. 515 

We first asked whether muscle-like signals are present in both hemispheres. We trained a 516 

regularized linear decoder to predict performing-arm muscle activity based on neural activity. 517 

We assessed generalization to a held-out condition, repeating this procedure for each condition. 518 

Both the driving and non-driving cortex accurately predicted muscle activity (Figure 7A). Across 519 

all conditions, generalization 𝑅" was high for both the driving and non-cortex (Figure 7B, 520 

generalization performance computed across all muscles). Generalization performance was lower 521 

for the non-driving cortex, but this was a small effect and was significant for only one monkey (p 522 

= 0.15 and p = 0.016 for monkey E and F, two-sided Wilcoxon signed rank test across 8 523 

conditions). We thus saw no evidence that signals related to muscle activity were absent in the 524 

non-driving cortex. 525 

Might other signals be restricted to the driving cortex? Rather than attempting to infer specific 526 

candidate signals, we developed a method to address this question generically (Figure 7C, top). 527 

We randomly divided driving-cortex neurons into two groups. Because the division is random 528 

and the number of neurons large, each group should reflect approximately the same set of 529 

signals. Thus, one group should be able to accurately predict activity in the other group. This was 530 

indeed the case (Figure 7C, ‘Driving Predicts’). We next generated a size-matched group of 531 

neurons from the non-driving cortex, and asked whether their activity could be used to predict 532 

activity in the driving cortex. If all signals are present in both hemispheres, it should be possible 533 

to predict driving-cortex activity based on non-driving cortex activity. Conversely, if a major 534 

signal is missing in the non-driving hemisphere, prediction would be compromised. 535 
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Driving cortex activity was predicted almost as well, based on activity in the opposite 536 

hemisphere, as it had been based on activity within the same hemisphere (Figure 7C, thin lines 537 

show results for 1000 random divisions). For Monkey E, the difference was non-significant (p = 538 

0.16, bootstrap test across 1000 resamples). For Monkey F, the difference was significant but 539 

small: a loss of 5% of the variance explained (p = 0.001, bootstrap across 1000 resamples). Thus, 540 

we saw no evidence for large signals that are present in the driving cortex but absent in the non-541 

driving cortex. 542 

Neural trajectory tangling is low for both hemispheres 543 

We recently described a major difference between M1 population activity and downstream 544 

muscle activity (Russo et al., 2018). Only M1 avoids ‘trajectory tangling,’ defined as the 545 

occurrence of similar population states with very different derivatives. Trajectory tangling 546 

becomes high if the population trajectory crosses itself, or if the trajectory for one condition 547 

traverses near that for another condition but travels in a different direction. Pattern-generating 548 

recurrent networks are noise-robust only if trajectory tangling is low, suggesting an explanation 549 

for why low trajectory tangling was observed in M1. It is unknown whether the non-driving 550 

cortex participates (via callosal connections) in pattern generation. We therefore wondered 551 

whether the non-driving cortex would show similarly low trajectory tangling. Notably, it is 552 

possible for a cortical area to be active during cycling yet have high trajectory tangling; this was 553 

true of proprioceptive primary somatosensory cortex (Russo et al., 2018). 554 

We computed the tangling index (as used in Russo et al. 2018) for every time during the middle 555 

cycles, across all conditions. We did so for population activity in the driving and non-driving 556 

cortex, and also for the muscle populations, and compared the resulting distributions. The 557 

muscles often showed high trajectory tangling, revealed by a long right tail in the cumulative 558 

distributions (Figure 8A,B, black lines). The driving cortex displayed consistently low trajectory 559 

tangling: cumulative distributions (blue) plateaued early. This replicates prior results: trajectory 560 

tangling is much lower for the driving cortex than for the downstream muscle population. 561 

Notably, this is true even though single-neuron and single-muscle responses are superficially 562 

similar. 563 
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Trajectory tangling was also low for the non-driving cortex (red). For monkey E, tangling was 564 

slightly higher in the non-driving versus driving cortex (468 ± 201 versus 420 ± 153; mean ± 565 

S.D.) while the opposite was true for monkey F (374 ± 105 versus 430 ± 146). Thus, trajectory 566 

tangling is similarly low for both cortices, with only small and inconsistent differences. 567 

Critically, for both the driving and non-driving cortex, neural trajectory tangling was much lower 568 

than muscle trajectory tangling. The latter averaged 2296 ± 1766 for Monkey E and 4392 ± 2950 569 

for Monkey F. Taken together with the results above, we found little hemispheric difference 570 

regarding either the major signals or the organization of population trajectories. 571 

Neural activity occupies different dimensions for movements of different arms 572 

If similar signals are present regardless of which arm moves, how does the brain avoid moving 573 

the wrong arm? In confronting this question, we took inspiration from recent work suggesting 574 

that only some neural dimensions in motor cortex are ‘muscle potent’; activity in those 575 

dimensions produces output that will influence the muscles. Other dimensions are ‘muscle null’; 576 

activity in those dimensions has no direct outgoing impact on muscle activity (Druckmann and 577 

Chklovskii, 2012; Kaufman et al., 2014). The presence of output-null dimensions is natural (and 578 

typically inevitable) when patterns are generated by a recurrent network with more internally-579 

connected neurons than output neurons. We wondered whether this principle might apply to the 580 

present case. We considered all recorded neurons, across both hemispheres, as a unified 581 

population. We asked whether signals related to the movement of each arm are partitioned in a 582 

manner that could allow signals related to one arm to naturally avoid impacting the other arm. 583 

We used principal component analysis (PCA) to find neural dimensions that best explain 584 

activity. We applied PCA once for conditions where the right arm performed the task (‘right-585 

performing’ conditions) and again for conditions where the left arm performed the task (‘left-586 

performing’ conditions). A ‘right-arm’ space was defined by the PCs found for the right-587 

performing conditions. A ‘left-arm’ space was defined analogously. We were interested in what 588 

occurred in the right-arm space when the left arm performed the task, and vice versa. 589 

Importantly, in both cases PCA considered the responses of the same unified population of 590 

neurons (all recorded neurons across both hemispheres).  591 
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The right-arm space captured (by construction) population activity when the right arm performed 592 

the task. This can be appreciated in Figure 9A,C by the large near-circular trajectories for the 593 

right-performing conditions (red). The rapid rise in cumulative variance accounted for (Figure 594 

9B,D, red) reveals that a small number of right-arm PCs successfully captured most of the 595 

variance for the right-performing conditions. In contrast, the right-arm space did not effectively 596 

capture variance for the left-performing conditions. Left-performing neural trajectories are small 597 

when projected onto the right-arm PCs, with little clear structure (Figure 9A,C, blue). The 598 

cumulative percent variance accounted for (left-performing conditions projected onto the right-599 

arm PCs) rose slowly (Figure 9B,D, blue). Analogous results were found when analyzing the 600 

left-arm space (Figure 9E-H).  601 

Thus, relatively little variance was captured when activity for left-performing conditions was 602 

projected onto the right-arm space, and vice versa. Averaged across all such conditions, the top 5 603 

PCs explained 7 ± 1% (monkey E) and 2 ± 0.5% (monkey F) of the variance (mean ± std. 604 

computed across conditions). This was in contrast to the large amount of variance captured when 605 

conditions were projected onto the top 5 PCs of their ‘own’ space: 80 ± 2% (monkey E) and 80 ± 606 

2% (monkey F). This asymmetry was not simply due to projecting onto a space built from the 607 

same data versus other data. For example, the top 5 PCs based on top-start conditions captured 608 

almost as much variance during bottom-start conditions (63 ± 4% for monkey E and 66 ± 2% for 609 

monkey F) as during top-start conditions (79 ± 2% and 79 +/- 2%). 610 

Thus, neural responses related to the two arms occupy nearly orthogonal subspaces. Dimensions 611 

that robustly capture activity when one arm performs the task do not continue to do so when the 612 

other arm performs the task. This could occur trivially if neurons fall into two groups: neurons 613 

that respond only when the right arm performs the task, and neurons that perform only when the 614 

left arm performs the task. However, as documented above, no such separation was present. The 615 

distribution of arm preference indices was unimodal with a median near zero (Figure 4B) 616 

indicating that most neurons responded regardless of which arm performed the task. The 617 

orthogonality of dimensions is instead related to the finding that the correlation structure depends 618 

strongly on which arm performs the task (Figure 6). As such, this is intrinsically a population-619 

level finding that could not have been inferred from analyses focused on individual neurons. 620 
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Linear decoders naturally separate signals related to the two arms 621 

The separation of activity into orthogonal subspaces may allow descending control of one arm to 622 

naturally ignore signals related to the other arm. To test the plausibility of this hypothesis, we 623 

trained linear decoders to predict, based on the activity of the entire neural population, muscle 624 

activity for a given arm. The decoder was trained only using conditions where that arm 625 

performed the task. For example, the decoder was trained to predict muscle activity in the right 626 

arm while the right arm performed the task. Restricted to this situation, decoders performed well, 627 

predicting a median of 91% (Monkey E) and 93% (Monkey F) of the variance on held-out 628 

conditions. Examples of predicted muscle activity (Figure 10A,D, orange traces at top) are 629 

shown for one muscle for each monkey. We then assessed generalization to conditions where the 630 

other arm performed the task. For example, a decoder that fit right-arm muscle activity (trained 631 

only on right-performing conditions) was asked to generalize and predict right-arm muscle 632 

activity during left-performing conditions. Does the prediction stay relatively flat, accurately 633 

capturing the absence of muscle activity? Or does the decoder become contaminated by signals 634 

related to the performing arm?  635 

Decoders accurately generalized, and predicted little modulation of muscle activity in the non-636 

performing arm. For the two example muscles shown, the predicted muscle activity was 637 

relatively flat, in agreement with the lack of modulation of the empirical muscle activity (Figure 638 

10A,D, bottom, compare orange and black traces). This was true across muscles and conditions: 639 

decoded muscle activity was only weakly modulated for conditions when the task was performed 640 

with the other arm (Figure 10 B,E, orange), even though the decoder was not trained on such 641 

conditions and even though the neural activity upon which the decoder was based was similarly 642 

modulated regardless of the performing arm. The ability of the decoder to ignore such activity 643 

was inherited from the orthogonality of subspaces described above. When trained using right-644 

arm conditions, decoders naturally employ right-arm dimensions. Because those dimensions are 645 

largely unoccupied when the left arm performs the task, the decode shows minimal modulation.  646 

Due to these properties, decoders naturally produce predicted muscle activity with positive arm-647 

preference indices (Figure 10C, orange histograms). These distributions are right-shifted relative 648 

to those for the neural activity upon which decoding was based (red histogram). Thus, the 649 
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structure of population activity ensures that a decoder, trained to extract activity related to one 650 

arm, will naturally tend to ignore activity related to the other arm.  651 

Yet while decoders tended to naturally ignore activity related to the ‘wrong’ arm, this feature 652 

was imperfect: small amounts of residual modulation were still present (Figure 10A,D, orange 653 

trace at bottom) leading to arm-preference indices smaller than those of the muscles. Of course, 654 

one would expect improved ability to segregate activity if a decoder is trained to do so: i.e., to 655 

predict muscle activity both when the muscle is strongly modulated (when the relevant arm 656 

performs the task) and also when it is not (when the other arm performs the task). This was 657 

indeed the case (Figure 10, green). Note that these decoders still had to generalize to left-out 658 

conditions; they simply had the benefit of training data that included both left- and right-659 

performing conditions.  660 

There is thus no paradox in the absence of muscle activity in the non-performing arm, despite 661 

robust neural activity across both hemispheres. Signals related to the two arms are separated into 662 

different neural subspaces. As a result, even simple linear decoders naturally separate signals 663 

related to one arm versus the other.   664 
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Discussion 665 

We found that neural signals related to movements of the right and left arms are anatomically 666 

intertwined. Signals were mixed across hemispheres; when one arm moved, neurons in both 667 

hemispheres were modulated. Signals were also mixed across neurons; most neurons responded 668 

when both their driven and their non-driven arm performed the task. Individual neurons 669 

responded very differently depending on which arm was moving. Yet at the level of the 670 

population, both hemispheres contained similar information. Surprisingly, we did not find signals 671 

that were strongly present in the driving cortex but absent in the non-driving cortex. This was 672 

true even for muscle-like signals, which could be decoded similarly well from either hemisphere.  673 

Despite this intermixing, signals corresponding to the two arms were highly separable at the 674 

level of neural dimensions. Activity related to the left arm occupied a set of dimensions nearly 675 

orthogonal to the dimensions occupied by activity related to the right arm. As a result, even 676 

simple linear decoders could read out commands for one arm while ignoring commands for the 677 

other arm.  678 

Separation of information across dimensions is a common feature of cortical activity 679 

Our results contribute to an increasingly broad set of studies reporting that neural activity related 680 

to different computations or task parameters is often separated across neural dimensions, instead 681 

of at the level of brain areas or individual neurons. During reaching, dimensions carrying 682 

preparatory activity are orthogonal to dimensions carrying muscle-related signals (Kaufman et 683 

al., 2014), and more generally to all dimensions occupied by movement-related activity (Elsayed 684 

et al., 2016). Activity related to the timing of movement initiation and activity related to which 685 

movement is being generated also occupy orthogonal dimensions (Kaufman et al., 2016). In 686 

sensory decision making, different aspects of the task (e.g., stimulus versus task time, color 687 

versus direction of the stimulus, or auditory versus visual cues) are integrated in different neural 688 

dimensions in prefrontal cortex (Machens et al., 2010; Mante et al., 2013) and parietal cortex 689 

(Raposo et al., 2014). Separating neural activity into separate dimensions for separate 690 

computations may thus be a general strategy used by many brain regions. A potential advantage 691 

of this strategy is that signals are able to interact (e.g., in the case where movements of two limbs 692 
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are coordinated) yet can still be read out separately (Druckmann and Chklovskii, 2012; Kaufman 693 

et al., 2014) 694 

Comparison with prior studies of lateralization in M1 695 

Our finding that individual neurons often respond during movements of either arm is in broad 696 

agreement with prior primate recording studies. A majority of these studies describe intermixing 697 

of right- and left-arm responses in the activity of individual M1 neurons (Cisek et al., 2003; 698 

Donchin et al., 2002, 1998; Kermadi et al., 1998; Steinberg et al., 2002). However, a handful of 699 

these studies report a much smaller percentage of ipsilateral (non-driving) neural responses 700 

(Aizawa et al., 1990; Tanji et al., 1988). These studies examined neural responses in the hand 701 

area of M1 during small finger movements. The hand area of M1 has fewer callosal connections 702 

and fewer ipsilateral projections than the arm area of M1 has (Jenny, 1979; Jones and Wise, 703 

1977; Rouiller et al., 1994). Thus, a likely explanation for varied prior results is that hand-related 704 

neural computations are more divided by hemisphere, while arm-related computations are largely 705 

intermixed. An alternative explanation is that it is simply easier to move one hand while keeping 706 

the other still, resulting in greater neural segregation due to better experimental control over 707 

lateralization of muscle activity. Our results support the first explanation; muscle activity was 708 

weak in the non-driven arm, and the very small movements of that arm had no statistical impact 709 

on neural activity. 710 

Of prior studies, two explicitly compared neural response properties (e.g., preferred directions) 711 

during unimanual movements of each arm. Cisek et al. (2003) found that neurons in M1 had 712 

limb-dependent preferred directions, yet Steinberg et al. (2002) reported preserved preferred 713 

directions. At the same time, Steinberg et al. found that left-arm and right-arm reach directions 714 

could be independently decoded by separate pools of neurons, suggesting some degree of limb-715 

dependence. The present findings indicate that neural responses are strongly limb-dependent. 716 

Responses during performance with one versus the other arm were weakly correlated at the 717 

single-neuron level, and occupied nearly orthogonal subspaces at the population level. 718 
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Possible reasons for ipsilateral motor cortical activity 719 

There exist multiple reasons why motor cortex might be active when the non-driving arm 720 

performs the task. A straightforward possibility is that motor cortex employs an abstract limb-721 

independent representation of movement. However, this hypothesis is unlikely given the strongly 722 

limb-dependent nature of responses. Alternatively, the two cortices may process different but 723 

complementary information. This hypothesis is also unlikely; we found no large signals that 724 

were present in the driving cortex but absent in the non-driving cortex.  725 

It is also possible that activity ipsilateral to the moving arm may relate to uncrossed descending 726 

connections (Kuypers, 1981; Rosenzweig et al., 2009). For example, activity in the right motor 727 

cortex could exist to drive, via uncrossed connections, muscle activity in the right arm when that 728 

arm performs the task. Our results are in principle consistent with this hypothesis. However, 729 

prior studies have found little evidence for a robust relationship between M1 and ipsilateral 730 

muscle activations. Intracortical microstimulation readily produces contralateral muscle 731 

responses (Kwan et al., 1978; Sessle and Wiesendanger, 1982), yet very rarely generates 732 

ipsilateral muscle responses (Aizawa et al., 1990). Intracellular recordings of motoneurons reveal 733 

no monosynaptic evoked potentials from ipsilateral corticospinal tract stimulation and spike-734 

triggered EMG effects are present only for contralateral muscles (Soteropoulos et al., 2011). For 735 

these reasons, we suspect that uncrossed projections are unlikely to be the primary reason that 736 

the non-driving motor cortex is active. 737 

Another possibility is that activity in the non-driving cortex is produced by an efference copy of 738 

signals generated and employed by the driving cortex, which are conveyed to allow coordination 739 

between the limbs. Many – perhaps most – movements require coordination across the midline. 740 

Given the near-ubiquitous need for coordination, it may be that efference copy signals are simply 741 

conveyed by default, and ignored if they are not needed. Our results are consistent with this 742 

possibility, and argue that if it is correct, then the relevant efference copy must be quite 743 

complete. That is, the driving cortex must convey the majority of the signals it generates, rather 744 

than (for example) just the output signals. 745 

A final, and intriguing possibility, is that motor cortical computations are largely distributed 746 

across both hemispheres (Li et al., 2016). In the extreme, neurons in the non-driving cortex 747 

might simply be viewed the way we view most neurons in the driving cortex; they can contribute 748 
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to the computation even if they are one or more synapses from the cortico-spinal neurons that 749 

will convey the output. This hypothesis is appealing because it could explain the finding that all 750 

major signals appear to be shared between hemispheres. More generally, if a randomly chosen 751 

neuron from the non-driving cortex has responses that are nearly indistinguishable from a neuron 752 

chosen from the driving cortex, perhaps our default assumption should be that they are 753 

participating in the same computation. While appealing, it is unclear if this hypothesis can be 754 

reconciled with the finding that motor cortex inactivation principally affects the contralateral 755 

limbs (Glees and Cole, 1950; Liu and Rouiller, 1999; Passingham et al., 1983). If both 756 

hemispheres participate in controlling both arms, one would expect a more bilateral deficit. A 757 

possible, but highly speculative, resolution is that the network is sufficiently robust that it can 758 

still function when many neurons are inactivated, so long as the output neurons can still convey 759 

the necessary commands. 760 

Ipsilateral arm signals in other brain regions 761 

Cortical areas, subcortical areas, and the spinal cord all contribute to the control of dexterous 762 

movements. Indeed, other studies comparing contralateral and ipsilateral movements have found 763 

that not only M1, but also the dorsal premotor cortex (Cisek et al., 2003; Kermadi et al., 2000; 764 

Tanji et al., 1988), ventral premotor cortex (Michaels and Scherberger, 2018), Supplemental 765 

Motor Area (Donchin et al., 2002; Gribova et al., 2002; Kazennikov et al., 1999; Kermadi et al., 766 

2000, 1998; Tanji et al., 1988), Cingulate Motor Area (Kermadi et al., 2000), and the Posterior 767 

Parietal Cortex (Kermadi et al., 2000) all contain neurons which respond to movements of the 768 

ipsilateral arm. Furthermore, there are circuits in the brainstem and spinal cord which 769 

specifically support the generation of coordinated, rhythmic movements like locomotion 770 

(Duysens and de Crommert, 1998). Other brain regions, such as the Anterior Intraparietal Area, 771 

encode movement parameters in a largely effector-independent manner (Michaels and 772 

Scherberger, 2018), suggesting that the relationship of motor and visuo-motor areas to ipsilateral 773 

movements may vary depending on their role in motor computation. In general, movement 774 

generation is the result of the action of a broad, interconnected network of brain and spinal 775 

regions. We focused on M1 because it is the cortical region that, based on anatomy and 776 

microstimulation results, seemed most likely to have a lateralized representation of movement. 777 

Yet even in M1 we failed to find evidence of strongly lateralized activity.  778 
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Summary 779 

Neural signals related to movements of either arm were mixed, both within hemispheres and 780 

within single neurons. However, signals related to the two arms were naturally partitioned into 781 

different neural dimensions. This underscores the computational usefulness of leveraging 782 

different dimensions for different computations; signals can be shared across a wide population 783 

yet still be readily separated by downstream regions. Our results argue that motor cortex shares 784 

highly detailed information cross-cortically, suggesting that control may span both hemispheres 785 

even if output commands originate primarily from the contralateral hemisphere.  786 
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Figure 1: Behavior. (A) Task schematic. Cycling one of the two pedals produced progress 793 
through a virtual environment. The other pedal had to remain stationary. This schematic 794 
simplifies the physical setup. In particular, pedals employed a handle that ensured consistent 795 
hand posture and a brace that minimized wrist movement. (B) Behavior on two example trials. 796 
After a go cue, the monkey cycled for seven cycles with one hand while holding the other hand 797 
stationary. Red trace: Right hand vertical position. Blue trace: Left hand vertical position. (C) 798 
Task structure. Blocks of right hand, left hand, and bimanual conditions were presented in 799 
pseudorandom order. Within each block of 20 trials, trials were presented in sub-blocks of 5 800 
trials for each combination of cycling direction and starting position. (D) Distributions of cycling 801 
speed for the performing and non-performing hands. The average angular speed was computed 802 
for each trial. Distributions are across trials. Red: Right hand. Blue: Left hand. Dots show 803 
distribution medians. Data are for Monkey E. (E) Same as D but for Monkey F. 804 
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Figure 2: Two-step trial alignment procedure. (A) Vertical hand position on all trials (within one 805 
session) for an example condition. Data are aligned to the first half-cycle of movement. Trials 806 
are colored green to purple based on the average cycling speed for that trial. (B) Raster plot of 807 
spike times for an example neuron, for the same trials as in A. Trials are ordered by average 808 
cycling speed and aligned as in A. (C) Hand position traces after the second alignment step: 809 
adjusting the time-base of each trial so that cycling during the middle 6 cycles matched the 810 
typical 2-hz pedaling speed. (E) Spike times, as in B, after the second alignment step. (F) 811 
Average firing rate calculated after the second alignment step. Black: Mean firing rate. Gray 812 
shading: standard error across trials.   813 
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Figure 3: Activity versus time for four example muscles (A-D) and four example neurons (E-H). 814 
Each panel shows activity for one condition performed with either the driven arm (blue) or the 815 
non-driven arm (red). Each trace plots trial-averaged activity, with flanking envelopes 816 
(sometimes barely visible) showing standard errors. Gray boxes indicate when the pedal was 817 
moving, with tick marks dividing each cycle. All data are from Monkey E.   818 
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Figure 4: Muscle responses are lateralized while neural responses are not. (A) Histograms of 819 
arm preference index for all recorded muscles. Shaded regions indicate preference for the non-820 
driven arm (red) and driven arm (blue). Blue dot indicates median arm preference. (B) 821 
Histograms of arm preference index for all recorded neurons. (C) Histograms summarizing, for 822 
single neurons, similarity of responses when the task is performed with the driven versus non-823 
driven arm. For each neuron, we computed the correlation between those two responses. Black 824 
histograms plot the distribution of such correlations across all neurons. Green trace: expected 825 
distribution if there is no relationship between responses corresponding to the two arms. This 826 
was computed via a shuffle procedure. Orange trace: control demonstrating that high 827 
correlations are observed, as expected, when comparing responses during top-start versus 828 
bottom-start conditions.  829 
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Figure 5: Small movements of the non-performing arm cannot explain modulation of neural 830 
activity within the non-driving cortex. (A) Analysis employed the distribution (across trials) of 831 
the mean angular speed of the non-performing arm. This distribution is shown for one condition, 832 
recorded on one day. Trials were divided into those with mean speed less than (gray) or greater 833 
than (red) the median (vertical dashed line). (B) Firing rate of one example neuron for these two 834 
groups: trials with speeds less than (black) and greater than (red) the median. Envelopes show 835 
standard errors of the mean. Black dots at top indicate times when the two rates were 836 
significantly different (p<0.05). Plotting conventions as in Fig. 3. (C) Percentage of neurons 837 
(black trace) showing a statistically significant difference (p<0.05) in firing rate for trials with 838 
speeds less than versus greater than the median. Differences occurred roughly as often as 839 
expected by chance (red line at 5%). Gray box denotes the time of movement. Each tick mark 840 
delineates a cycle. Data are for monkey E. Analysis is based on 426 neurons. (D) As in C but for 841 
Monkey F. Analysis is based on 479 neurons. 842 
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Figure 6: Correlations 843 
between neurons depend on 844 
which arm is used. (A) 845 
Average firing rates of two 846 
neurons (green and orange 847 
traces) during one condition, 848 
performed with the driven arm 849 
(top pair of traces) and non-850 
driven arm (bottom pair of 851 
traces). Responses are shown 852 
for the middle cycles, which 853 
form the basis of the analysis 854 
below. For this example, the 855 
firing rates of the two neurons 856 
were strongly correlated when 857 
the driven arm performed the 858 
task, and remained so when the 859 
non-driven arm performed the 860 
task. Flanking envelopes show 861 
standard errors of the mean. 862 
(B-D) Responses of three other 863 
pairs of neurons. All pairs 864 
exhibit correlated responses 865 
when the task was performed 866 
with the driven arm. 867 
Correlations disappear or even 868 
invert when the task is 869 
performed with the non-driven 870 
arm. (E) Pairwise correlations 871 
between all neurons recorded 872 
from the left hemisphere of 873 
monkey E. Each panel plots 874 
the correlation matrix for one 875 
condition, indicated at top. 876 
Neuron ordering was based on 877 
data in the left column, and is 878 
preserved across columns. (F) 879 
same but for Monkey F. (G) 880 

Scatterplots of pairwise correlations. Each dot corresponds to a pair of units for a given 881 
condition, and plots the firing rate correlation when using the non-driven arm versus that when 882 
using the driven arm. To aid visualization, a randomly-selected 10% of data points are shown for 883 
this subplot.  884 
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Figure 7: Population activity in the driving 885 
and non-driving hemispheres carries similar 886 
signals. (A) Muscle activity (black) and 887 
predictions of muscle activity based on a 888 
linear decode of neural activity in the driving 889 
(blue) and non-driving (red) cortex. Examples 890 
are shown for two muscles from the two 891 
monkeys. In both cases, data is from a test 892 
condition and illustrates generalization 893 
performance. (B) Quantitative comparison of 894 
performance when predicting muscle activity 895 
from neural activity in the driving versus non-896 
driving hemisphere. Top: Cartoon illustration 897 
of the analysis approach. Performing-arm 898 
muscle activity (blue trace) is a product of 899 
descending connections (black arrows) from 900 
neurons within the driving cortex (blue 901 
circle). It should thus be possible to predict 902 
(blue arrow) that muscle activity from neural 903 
activity recorded from the driving cortex. The 904 
presence or absence of muscle-like signals 905 
within the non-driving cortex (red circle) was 906 
assessed by asking how well such activity 907 
predicted (red arrow) performing-arm muscle 908 
activity. Bottom two panels: prediction 909 
performance for the above comparisons, for 910 
both monkeys. Each line corresponds to one 911 
behavioral condition, and shows the percent 912 
variance (of muscle population activity) 913 
predicted by the driving and non-driving 914 
cortices. (C) Analysis asking whether the 915 
signals carried by the driving cortex are also 916 
present in the non-driving cortex. Top: 917 
Cartoon illustration of the analysis approach. 918 
When the task is performed with a given arm, 919 

neural activity within the corresponding driving cortex is predicted either from the activity of 920 
other neurons either within the driving cortex (blue arrow) or within the non-driving cortex (red 921 
arrow). Bottom two panels: Prediction performance for those two comparisons, for both 922 
monkeys. Each line shows the performance for one random split of the data. After each random 923 
split, the activity of half the neurons in the driving cortex was predicted either based on the other 924 
half, or based on a matched number of neurons from the non-driving cortex. 925 
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Figure 8: Trajectory tangling is similar for the driving and non-driving cortices. (A) Cumulative 926 
distribution of trajectory tangling for the driving cortex (blue), non-driving cortex (red), and 927 
muscle activity (black). Distributions were calculated across all time points and conditions. Data 928 
for monkey E. (B) As in A, for Monkey F. 929 
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Figure 9: Right-arm-related and left-arm-related population activity lie in orthogonal subspaces. 930 
(A) Projection of population activity for right-arm-performing (red) and left-arm-performing 931 
(blue) conditions, with PCs found using only right-arm-performing data. The neural population 932 
includes all recorded neurons across both hemispheres. Analysis considers data from the middle 933 
cycles when cycling forward, for both top-start and bottom-start conditions. Data are for monkey 934 
E. (B) Cumulative variance explained for right-arm-performing (red) and left-arm-performing 935 
(blue) conditions, using PCs found from right-arm-performing data only. (C,D) As above but for 936 
Monkey F. (E-H) As in A-D, but with PCs found using only left-arm-performing data. All data 937 
shown are for analyses performed on forward cycling conditions.  938 
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Figure 10: When decoding muscle activity in a given arm, decoders naturally ignore activity 939 
related to the other arm. (A) Activity of the long head of the triceps, recorded from the right arm 940 
of monkey E. Black trace: Recorded EMG activity. Orange trace: Prediction of a decoder 941 
trained only on right-arm-performing conditions. Green trace: Prediction of a decoder trained on 942 
a subset of both left- and right-arm-performing conditions. Top traces: while the right arm 943 
performed the task. Bottom traces: while the other arm performed the task. Data are for a left-out 944 
condition, to which decoders had to generalize. (B) For Monkey E, EMG modulation while 945 
performing the task versus while the other arm performs the task. Thin lines: individual muscles 946 
and conditions. Thick lines: median modulation. Black: Recorded EMG activity. Orange: 947 
Predictions of a decoder trained only on performing conditions. Green: Predictions of a decoder 948 
trained on both performing and non-performing conditions. (C) For Monkey E, distribution of 949 
arm preference indices for neurons (red), muscles (gray), predictions of a decoder trained only 950 
on performing-arm conditions (orange), predictions of a decoder trained on both performing and 951 
non-performing arm conditions (green). Red histograms and gray histograms differ slightly from 952 
those in Fig. 4A-B as they are computed per condition, given that the present analysis focuses on 953 
generalization performance for left-out conditions. (D-E) As in A-C, for Monkey F. All data 954 
shown is from generalization to held-out conditions.  955 
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