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Abstract 
Social experiences are an important predictor of disease susceptibility and survival 

in humans and other social mammals. Chronic social stress is thought to generate a pro-
inflammatory state characterized by elevated antibacterial defenses and reduced investment 
in antiviral defense. Here, we manipulated long-term social status in female rhesus macaques 
to show that social subordination alters the gene expression response to ex vivo bacterial and 
viral challenge. As predicted by current models, bacterial lipopolysaccharide polarizes the 
immune response such that low status corresponds to higher expression of genes in NF-κB-
dependent pro-inflammatory pathways and lower expression of genes involved in the 
antiviral response and type I interferon (IFN) signaling. Counter to predictions, however, low 
status drives more exaggerated expression of both NF-κB and IFN-associated genes after 
cells are exposed to the viral mimic Gardiquimod. Status-driven gene expression patterns are 
not only linked to social status at the time of sampling, but also to social history (i.e., past 
social status), especially in unstimulated cells. However, for a subset of genes, we observed 
interaction effects in which females who fell in rank were more strongly affected by current 
social status than those who climbed the social hierarchy. Together, our results indicate that 
the effects of social status on immune cell gene expression depend on pathogen exposure, 
pathogen type, and social history – in support of social experience-mediated biological 
embedding in adulthood, even in the conventionally memory-less innate immune system.  
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INTRODUCTION 
 
         The social environment, both in early life and in adulthood, has a profound and often 
long-lasting impact on health and mortality in humans and other social mammals (1-5). This 
relationship is thought to arise in part through changes in gene regulation, which mediate the 
genomic response to physiological signals of social stress (e.g., glucocorticoids, adrenaline, 
noradrenaline; (6, 7)). Gene expression signatures of social status and social adversity have 
now been reported in multiple studies, encompassing clinical and population-based samples 
in humans, and studies of both experimental and natural populations in other social animals 
(6, 8-19) (see also (20-25) for evidence in social insects and other social vertebrates). 
Because this work has concentrated most extensively on peripheral white blood cells, it 
provides a direct window into how social experiences are reflected in the regulation of the 
immune system (26-28). 
 

Several broad patterns have emerged from these studies. First, high social adversity, 
including social isolation, early life insults, and low social status in adulthood, tends to 
predict higher expression of genes in pro-inflammatory pathways. This observation dovetails 
with associations between chronic social stress and elevated levels of protein biomarkers of 
inflammation, including those produced by peripheral blood cells (e.g., interleukin-6; (13, 
29, 30)). Second, high social adversity tends to predict lower expression of genes that 
function in the innate immune defense against virus, especially genes involved in type I 
interferon (IFN) signaling. In most cases, this pattern has been shown based on data in 
unstimulated cells (6); however, in bacterial lipopolysaccharide (LPS)-stimulated cells, 
induction of type I IFN-associated gene expression responses are also attenuated in low status 
(compared to high status) rhesus macaques (18). Third, these findings are explained in part 
by socially patterned differences in the use of immune defense-modulating transcription 
factors. For example, genes that are more highly expressed in low status female rhesus 
macaques are enriched near accessible binding sites for the transcription factor complex 
nuclear factor kappa-B (NF-κB), a master regulator of inflammation. In contrast, genes that 
are more highly expressed in high status females fall near accessible binding sites for 
interferon regulatory factors, which coordinate type I IFN-mediated responses (18, 31). 

 
These observations have led some authors to propose social environment-mediated 

trade-offs between antibacterial defense, associated with NF-κB-driven pro-inflammatory 
signaling, and antiviral defense, associated with the type I IFN response (6, 32). Such a model 
argues that high social adversity shifts investment in the immune system towards resistance 
against bacterial pathogens and wound healing (possibly in anticipation of physical insults), 
at the cost of increased susceptibility to viral pathogens. This in turn accounts for both social 
gradients in conditions linked to chronic inflammation, such as cardiovascular disease, and 
social gradients in viral infections. Consistent with this hypothesis, psychosocial stress 
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predicts reactivation rates of latent herpesvirus in mice and humans (33, 34) and rates of 
respiratory virus infection for experimentally exposed human subjects (35, 36). Similarly, 
low status cynomolgus macaques males housed in a controlled environment experience both 
increased susceptibility to experimentally administered adenovirus and elevated rates of 
coronary artery stenosis (35, 37, 38). 

 
Nevertheless, it remains unclear whether social patterning of viral susceptibility is 

directly related to social patterning of gene expression in peripheral blood cells. In particular, 
increased susceptibility to virus has been suggested to occur because the trade-offs induced 
by social adversity lead to insufficient production of antiviral gene transcripts (32). This logic 
is largely based on lower expression levels for key antiviral genes (e.g., MX1, OAS family 
genes, interferon regulatory factors) measured at baseline. However, exposure to immune 
stimulants can radically change the transcriptional landscape of immune cells, and social 
environmental effects on gene expression have been shown to specifically depend on the 
cellular environment. For example, in rhesus macaque females, social status has more 
pronounced effects on gene expression after exposure to LPS, but weaker effects on gene 
expression after exposure to glucocorticoids (18, 31). Because no study to date has evaluated 
the effects of social adversity on gene expression after both bacterial and viral challenge, it 
is therefore unclear whether chronic social stress in fact attenuates the gene regulatory 
response to virus, consistent with a trade-offs model. In addition, although increased 
expression of inflammation-related genes and decreased expression of type I IFN-related 
genes have been associated with social adversity in both adulthood and early life (9, 13, 18, 
39) but see (40), we do not yet understand how the timing of social experiences affects the 
response to either pathogen type.   

 
To address these gaps, we turned to an animal model for social subordination-induced 

chronic stress: dominance rank in female rhesus macaques. This model takes advantage of 
the highly hierarchical social structure of female macaques, in which low rank predicts 
increased harassment and reduced social control, and combines it with the ability to 
manipulate rank via controlled introduction into newly formed social groups (earlier 
introduced females are higher ranking) (41, 42). Using this study design, we previously 
showed that social status effects on blood cell gene expression are pervasive, cell type-
specific, and dependent on the cellular environment: most relevant to this study, they can be 
substantially altered by bacterial stimulation (18). Importantly, we also demonstrated that 
serial manipulations of dominance rank are possible. Specifically, by rearranging group 
composition a second time and placing females of previously similar rank into the same 
social group, the same individuals can be observed when they occupy two distinct positions 
in the social status hierarchy. Because pre- and post-rearrangement social status are 
completely uncorrelated, this approach provides an ideal setting to investigate the relative 
contributions of past versus present social environment to immune gene regulation. 
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To do so here, we measured genome-wide gene expression levels in 45 adult female 
rhesus macaques: members of nine, five-member social groups that had undergone two serial 
rank manipulations spaced ~1 year apart (18, 43, 44). We generated genome-wide expression 
profiles in blood at baseline, and in blood samples stimulated with bacterial and viral ligands. 
Finally, we took advantage of historical dominance rank data from the same females to 
evaluate whether, and for what genes and pathways, immune gene regulation in adulthood is 
influenced by biological embedding—when social experience leads to systematic, stable 
biological changes with the potential to influence health (45, 46). Together, our analyses 
provide new insight into how social subordination-induced chronic stress — both past and 
present — differentially affects the molecular response to distinct pathogen types.  
 
 
RESULTS 
 
 Pathogen exposure- and pathogen type-dependent effects of social status on gene 
expression 
 

We experimentally manipulated the dominance ranks of 45 adult female rhesus 
macaques by sequentially introducing them into newly constructed social groups of five 
females each (Fig. 1A, n=9 social groups, SI Appendix, Dataset S1), as described in (18). We 
maintained these groups for ~1 year (February 2013 - March 2014: Phase I). We then 
rearranged group composition by performing a second series of sequential introductions, in 
this case designed so that females from the same or adjacent ranks in Phase I were co-housed 
in their new groups. We followed the rearranged groups for another 10 months (April 2014 
- February 2015: Phase II). As expected from this experimental paradigm (42), earlier 
introduction predicted higher social status in both phases, as measured by a continuous Elo 
rating score (Pearson’s r between order of introduction and Elo score: Phase I: −0.57, p = 4.1 
x 10-5; Phase II: -0.68, p =3.3 x 10-7). Importantly, once dominance ranks were established, 
they remained highly stable throughout each study phase, and individual Elo scores were 
completely uncorrelated between phases (r=0.06, p=0.68, SI Appendix, Fig. S1). 
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Fig. 1. Social status effects on gene expression within and across conditions. (A) 
Schematic representation of group formation in Phase I, mid-study rearrangement, and re-
organization into new hierarchies in Phase II. (B) Principal components analysis of gene 
expression data across all three conditions. The combination of PC1, PC4 and PC5 separates 
unstimulated negative controls (NC, blue) from samples stimulated with either LPS (green) 
or Gard (yellow). (C) Number of rank-associated genes (FDR<5%) that are more highly 
expressed in high ranking females (top bars) or low ranking females (bottom bars), within 
each condition.   
 

To characterize the effects of social status on the immune response to bacterial versus 
viral challenge, including the contribution of social history, we obtained blood samples from 
each study subject in Phase II of the study. We generated three gene expression profiles per 
animal, from: (i) a control (untreated) sample, with blood cultured in cell culture media only 
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(negative control, NC); (ii) a sample cultured in cell culture media spiked with LPS, a Toll-
like receptor 4 (TLR4) agonist that mimics infection by Gram-negative bacteria; and (iii) a 
sample cultured in cell culture media spiked with Gardiquimod (Gard), a Toll-like receptor 
7 (TLR7) agonist that mimics infection by a single-stranded RNA virus. We incubated 
samples from each individual for 4 hours in parallel, lysed the white blood cell fraction, and 
generated RNA-sequencing data from the matched non-stimulated and stimulated 
conditions. To confirm successful immune stimulation, we performed a principal component 
analysis (PCA) on the correlation matrix of normalized gene expression levels for all 
conditions, after controlling for relatedness, age, and the potential confounding effects of 
batch and tissue composition (Fig. 1B; SI Appendix, Material and Methods). We observed 
distinct clusters corresponding to the control, LPS-stimulated, and Gard-stimulated samples, 
with treatment effects most clearly reflected along PC1 (r=0.61, p=6.5 x 10-10 for the 
separation between control versus LPS samples) and PC4 (r=0.76, p=1.7 x 10-17 for the 
separation between control versus Gard samples). As expected, genes up-regulated after 
stimulation were significantly enriched for immunological and inflammatory processes 
canonically associated with bacterial and viral defense (see SI Appendix, Dataset S2).  

 
Consistent with previous findings (18, 19, 34), we also observed a strong signature of 

dominance rank. Specifically, dominance rank (Elo score) was significantly correlated with 
PC3 of the full gene expression matrix within all three conditions (Pearson’s r = 0.75 (NC); 
r = 0.75 (LPS), r = 0.69 (Gard), p<6.0 x 10-7 for all conditions; SI Appendix, Fig. S2). This 
observation translated to gene-level analyses, where dominance rank drove the expression of 
3,675, 5,322 and 2,694 genes (FDR<5%) in the control, LPS, and Gard conditions, 
respectively (Fig. 1C, SI Appendix, Dataset S3). Strikingly, the number of rank-associated 
genes in the LPS condition was 1.5 - 2x higher than in the Gard or control conditions. Thus, 
although rank effects are amplified after activation of the bacterial-sensing TLR4 pathway, 
this pattern does not appear to be a universal feature of immune activation. Indeed, the 
number of genes for which the intensity of the response (i.e., gene expression in LPS/Gard 
conditions, relative to paired control samples) depended on dominance rank was almost five-
fold lower in the viral Gard condition than for the bacterial LPS-stimulated samples (851 vs 
4,111; FDR < 0.05; Fig. 2A). Further, while 73% of rank effects on the LPS response were 
directionally biased towards larger responses in low status females, neither low nor high 
status systematically predicted stronger responses to Gard. Instead, rank effects on the 
response to Gard were almost perfectly balanced: 49.5% of rank-dependent genes exhibited 
a stronger response in low status animals, while 51.5% exhibited a stronger response in high 
status animals (Fig. 2B). 

 
 
 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 18, 2019. ; https://doi.org/10.1101/552356doi: bioRxiv preprint 

https://doi.org/10.1101/552356
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Contrasting effects of dominance rank in cells challenged with a bacterial versus 
viral mimic. (A) More genes show a rank-dependent response (stimulated condition 
compared to paired control sample) after challenge with LPS than with Gard. LPS challenge 
also leads to asymmetric responses, in which the response is more commonly stronger in 
low-ranking females (left bar) than in high-ranking females (right bar); no such asymmetry 
is observed after Gard challenge. (B) Distribution of effect sizes among genes for which the 
absolute magnitude of the response to LPS (green) and Gard (yellow) depends on dominance 
rank. After LPS stimulation, most genes respond more strongly in low status females, but 
rank effects on the response to Gard are more balanced. (C) Polarization of rank effects in 
the union of the top ten Gene Ontology categories, per condition, that were most significantly 
enriched among genes up-regulated by LPS/Gard stimulation. For each category, darker 
squares correspond to stronger statistical support for enrichment in the LPS response (green) 
and Gard response (yellow), respectively, for genes upregulated relative to controls. 
Horizontal violin plots are colored based on the proportion of rank-associated genes in each 
category that are more highly expressed in high-ranking individuals, separately for the LPS 
and Gard conditions. Positive x-axis values: genes that are more highly expressed in high-
ranking females; negative x-axis values: genes that are more highly expressed in low-ranking 
females. The gray shaded box highlights gene categories for which the distributions of rank 
effects significantly differ between LPS and Gard conditions (Wilcoxon test: Benjamini-

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 18, 2019. ; https://doi.org/10.1101/552356doi: bioRxiv preprint 

https://doi.org/10.1101/552356
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Hochberg FDR-corrected p<9x10-3). (D) Rank effects on gene expression in the LPS (x-axis) 
versus Gard (y-axis) conditions, for genes in the Gene Ontology category “type I interferon 
signaling pathway” that were rank-associated in the LPS condition, Gard condition, or both. 
Labeled genes in the lower right quadrant are cases in which rank effects are directionally 
reversed in LPS versus Gard-stimulated samples. They include key master regulators of the 
response to virus such as STAT1, which is more highly expressed in high status females in 
control and LPS conditions, but more highly expressed in low status females in the Gard 
condition (STAT1 plot y-axis: normalized, log-transformed gene expression). In (C) and (D), 
all genes affected by rank at an FDR of 20% or less are plotted (the overall pattern is 
qualitatively unchanged at a more stringent FDR threshold). 
   

To investigate the hypothesis that social status-induced stress mediates trade-offs 
between antibacterial and antiviral responses, we restricted our analysis to genes belonging 
to the Gene Ontology categories that were most enriched among genes up-regulated by LPS, 
Gard, or both. As we showed in previous analyses (18), genes involved in immune defense, 
inflammation and cytokine signaling are biased towards higher expression in low-ranking 
females, in LPS condition samples (Fig. 2C). In contrast, genes involved in viral defense-
associated type I IFN signaling are biased towards higher expression in high-ranking 
females, in the same condition (Fig. 2C). A trade-offs model would predict a similar 
dichotomy after challenge with a viral mimic. Surprisingly, this is not what we observed: in 
the Gard condition, low status predicted increased expression of both pro-
inflammatory/cytokine signaling-associated and type I IFN-associated genes. For example, 
for rank-associated genes in the Gene Ontology category “type I interferon signaling” 57% 
of genes measured in the LPS condition were more highly expressed in high status females. 
However, for rank-associated genes in the same category, measured in the Gard condition, 
only 25% were more highly expressed in high status females. Consequently, status-related 
effects for type I IFN genes differ significantly between LPS and Gard conditions (Wilcoxon 
test, p=6.4 x 10-4). This pattern holds for key viral defense genes such as OAS2 and OAS3, 
which are involved in inhibition of viral replication; the IFN-inducible genes IFIT2, IFIT3, 
MX1  and MX2; and STAT1, a master regulator of interferon-mediated defense (Fig. 2D). It 
also extends to measures of the response to immune challenge (i.e., the change in gene 
expression levels between control and challenged cells): genes involved in type I IFN 
signaling tend to be more strongly up-regulated in high status females after LPS challenge, 
but more strongly up-regulated in low status females after Gard challenge (SI Appendix, Fig. 
S3) 

  
Previous studies suggest that social environmental effects on gene expression arise 

through socially structured differences in immune defense-associated transcription factor 
(TF) binding (e.g., (10, 13, 18)). We therefore investigated the TFs that might account for 
rank effects on gene expression during the immune response to bacteria (LPS condition) or 
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virus (Gard condition). To do so, we identified predicted TF binding sites in gene promoter 
regions that are also accessible to TF binding (i.e., in open chromatin regions identified using 
previously collected ATAC-seq data from rhesus macaque peripheral blood mononuclear 
cells (18)). As previously reported (18), genes that were more highly expressed in low status 
animals were enriched for NF-κB binding sites in the LPS condition. In contrast, genes that 
were more highly expressed in high status animals were enriched for predicted TF binding 
sites for interferon regulatory factors (IRF1, IRF2, and IRF7) and STAT1— the master-
regulators of anti-viral responses (Fig. 3). Strikingly, that dichotomy disappeared when 
samples were stimulated with a viral mimic. In the Gard condition, the promoter regions of 
genes that were more highly expressed in low status animals were enriched for TF binding 
sites for virtually all immune-associated TFs, including NF-κB, several IRFs, and STAT1 
(Fig. 3). These results corroborate our enrichment analyses for the gene expression data alone 
(Fig. 2C), and suggest that differences in TF activity account for the distinct patterns of social 
status-associated gene expression after LPS versus Gard stimulation. 

 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Transcription factor binding sites enriched near rank-associated genes differ 
between LPS and Gard-challenged cells. In the LPS condition, (A) Predicted NF-κB and 
NF-κB subunit (RelA/RelB/p50/p65) binding sites are enriched in the promoter regions of 
genes that are upregulated by LPS and more highly expressed in low-ranking females, while 
(B) predicted interferon regulatory factor (IRF) and STAT1 binding sites dominate the 
enriched categories for genes that are upregulated by LPS but more highly expressed in high-
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ranking females. This polarization disappears in the Gard condition, where (C) Predicted NF-
κB, NF-κB subunit, IRF, and STAT1 binding sites are all enriched in the promoter regions 
of genes that are upregulated by Gard and more highly expressed in low-ranking individuals, 
with (D) no clear signature of immune-related TF binding site enrichment among genes that 
are upregulated by Gard but more highly expressed in high-ranking individuals. Promoter 
regions are defined as the 5 kb upstream of each gene transcription start site; in each category, 
enrichment analyses included all rank-associated genes that passed an FDR cutoff of 20%. 
Error bars show the 95% confidence interval for the log2(odds ratio), and those TFs shown 
in yellow indicate significant enrichment at an FDR threshold of 10% (p<1.3 x 10-3).  
 
Social history effects on immune gene regulation 
  

Although the gene expression data were generated in Phase II, we also collected 
behavioral data that allowed us to quantify rank in Phase I, prior to the mid-study rank 
rearrangement (samples were collected 9.01±0.60 s.d. months after Phase I groups were 
dissolved and 7.65±0.50 s.d. months after each animal was introduced into her Phase II 
group). We took advantage of this study design to investigate whether past social status 
affected immune cell gene expression independently from social status at the time of 
sampling (“current rank”), in support of biological embedding. Strikingly, we identified a 
strong global signature of past social status on gene expression levels as well: past Elo score 
was correlated with PC2 within each condition (control: Pearson’s r = -0.76, p=2.4 x 10-9; 
LPS: r = -0.58, p=8.0 x 10-5; Gard: r = -0.44, p=3.8 x 10-3; SI Appendix, Fig. S2) .  

 
On the level of individual genes, social history effects were detectable in all three 

conditions, but were by far more apparent in the unstimulated, control condition than in the 
LPS or Gard conditions (Fig. 4A). For example, at an FDR of 10%, we identified 3,735 past 
rank-associated genes in the control condition, compared to 1,712 and 141 in the LPS and 
Gard conditions, respectively (Fig. 4A). This pattern is highly robust across statistical 
thresholds (SI Appendix, Fig. S4). Genes associated with past rank were also enriched for 
distinct biological functions (SI Appendix, Dataset S2). For example, in the unstimulated 
controls, genes that were more highly expressed in high status animals at the time of sampling 
were strongly enriched for viral transcription (FDR-corrected p=2.8 x 10-11) and viral gene 
expression (FDR-corrected p=5.5 x 10-11). However, genes associated with past rank were 
not overrepresented in either category. Similarly, genes that were more highly expressed in 
females with a past history of high status were uniquely enriched in categories involved in 
the epigenetic regulation of gene expression, including  chromatin organization (FDR-
corrected p=4.8 x 10-11), and histone modification (FDR-corrected p=3.6 x 10-7) (SI 
Appendix, Fig. S5, Dataset S2).   
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To investigate the relative contribution of social history versus current rank at a more 
granular scale, we developed a gene-specific measure of plasticity (Θ) in each condition. We 
defined Θ as the square root of the ratio between the variance in gene expression explained 
by current rank, and the total variance explained by both past and current rank (SI Appendix, 
Materials and Methods). Θ values range from 0 to 1, where values close to 1 imply a high 
degree of plasticity and little evidence of memory, and values close to 0 imply a high degree 
of memory and little plasticity in response to changes in social status. Overall, we identified 
a much greater contribution of social history to gene expression levels in the unstimulated 
control samples than in either of the stimulated conditions (control: median Θ for the top 
1000 rank-associated genes in NC = 0.52;  LPS = 0.87; Gard = 0.74; Wilcoxon test p<2.2 x 
10-16 for all pairwise comparisons; Fig 4B; see also SI Appendix, Fig. S6 for comparisons 
using different numbers of rank-associated genes). In agreement with this observation, social 
status effects on the response to LPS and Gard (i.e., the interaction between Elo score and 
control versus stimulated treatment) were dominated by the effects of current rank. We 
identified 4,111 and 851 genes for which the response to LPS and Gard, respectively, 
depended on dominance rank at the time of sampling (FDR<5%), but no cases in which these 
responses depended on past rank. Thus, although there is a strong signature of social history 
on gene expression levels in an unperturbed state, this signature gives way to the effects of 
current social conditions when cells enter an immune-challenged state. 

 
Finally, females with the same social status in Phase II could come from different 

social histories: some climbed the social hierarchy, some fell, and others maintained a 
consistent position. We therefore tested if past and current rank combined non-additively to 
influence gene expression. In the control condition, where the effects of social history are 
most pronounced, we identified 1,079 genes in which past and current rank interacted to 
influence gene expression (FDR<5%). Interaction effects were strongly directionally biased: 
specifically, for 88% of these genes, a history of past low status predicted reduced sensitivity 
to current dominance rank (Fig. 4C and 4D). Thus, females who fell in rank were strongly 
affected by their current, lower rank in Phase II, whereas females who achieved higher status 
in Phase II were proportionally more affected by their lower status in Phase I.  
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Fig. 4. Social history effects on immune gene regulation. (A) Number of past rank-
associated genes (FDR<10%) that are more highly expressed in high past-ranking females 
(top bars) or low past-ranking females (bottom bars), within each condition.  Past rank effects 
are more common in the unstimulated control samples than in LPS- or Gard-stimulated 
samples. (B) Distribution of plasticity scores (Θ) for each condition, for the top 1000 rank-
associated genes (based on total variance in gene expression explained by the combination 
of past and current rank: see also SI Appendix, Materials and Methods, Fig. S6). Plasticity 
scores are systematically lower in the unstimulated control samples (NC) than in the LPS or 
Gard conditions, indicating that immune stimulation proportionally weakens social history 
effects, relative to current rank effects. (D) In an example of a current rank x past rank 
interaction, current rank effects (x-axis) on expression of the transcription factor FOSL1, 
which is implicated in regulation of the type I IFN response (47), are strongest in females 
who were previously high rank and weakest in females who were previously low rank 
(interaction=0.54, FDR-corrected p=0.01). (E) Predicted current rank effects, based on model 
fits for each gene on the full data set (see SI Appendix, Materials and Methods), for low past 
rank and high past rank females (based on the mean Elo scores for the lowest ranking and 
highest ranking females in Phase I groups, respectively). Distributions show estimated effect 
sizes across 1,079 genes for which we identified a significant current rank-past rank 
interaction effect in the control condition. Current rank effects were systematically larger in 
females who were previously high-ranking than in females who were previously low-ranking 
(Wilcoxon test p<2.2x10-16).   
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DISCUSSION 
 

Convergent evidence from humans, wild animal populations, and experimental 
animal models indicates that social interactions are reflected in the regulation and activity of 
the immune system (6, 7, 11, 26-28, 48). Our findings join those of others to suggest that 
social adversity is particularly relevant to the inflammatory response, one of the first lines of 
defense in the innate immune system (49). Because biomarkers of inflammation in turn 
predict disease and mortality outcomes (50), these findings suggest that social regulation of 
immune gene expression may partly mediate social gradients in health. However, contrary 
to current predictions based on data collected in unstimulated conditions, low status females 
did not mount attenuated gene regulatory responses to viral challenge (6, 32). Instead, they 
show a stronger up-regulation of genes involved in the regulation of type I IFN when 
comparing Gard to control samples. Further, for these genes, the status-dependent 
polarization of gene expression patterns observed following exposure to a bacteria-
associated challenge disappears following exposure to a virus-associated challenge.  

 
These results suggest that baseline patterns of immune gene expression provide 

limited insight into the gene regulatory response to actual immune stimuli. Thus, while the 
gene expression signature of social stress may be somewhat conserved across different types 
of social adversity, and potentially across species, it does not appear to be highly conserved 
across pathogen environments. Our findings are consistent with previous reports that social 
status interacts with LPS and glucocorticoid exposure (18, 31), and that genetic effects on 
gene expression can also be altered by local cellular conditions (i.e., gene-environment 
interactions, e.g., (51-54)). However, while prior work has primarily shown environment or 
genotype-dependent differences in the presence or magnitude of effects, here we observed a 
more striking pattern: directional shifts in the effects of social status, specifically for genes 
involved in the antiviral response. This reversal of effects suggests that social status-sensitive 
regulatory elements involved in the response to LPS are, at least to some degree, distinct 
from social status-sensitive regulatory elements involved in the response to Gard — a 
hypothesis that requires further experimental validation.  

 
Our findings also highlight a novel way in which social environmental effects on 

gene regulation depend on context. Specifically, we identified thousands of genes for which 
gene expression levels in peripheral blood cells depend not only on current social status, but 
also on the effects of past social status. Social history effects were themselves dependent on 
other factors, however, with much more extensive effects in unstimulated cells than immune-
challenged cells, and in females with a history of low status than for females with a history 
of high status. These observations are consistent with several possibilities. First, a history of 
high social status (i.e., low social adversity) could confer increased plasticity in response to 
environmental change (e.g., subsequent losses of status). Second, historical exposure to 
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social subordination-induced stress could blunt responses to future high-quality 
environments. Third, social history effects may dissipate over time, but at a faster pace for 
formerly high status females. Given that the effects of current rank dominate after immune 
stimulation, external environmental challenges might hasten this process. Longitudinal, 
repeated measures of gene expression will be needed to differentiate between these 
possibilities.  

 
Regardless of the explanation, our observations clearly highlight the importance of 

social history to immune gene expression patterns measured many months later. They 
therefore extend the concept of biological embedding to adulthood, in keeping with the 
observation that the molecular mechanisms thought to mediate the embedding process early 
in life (e.g., DNA methylation, histone marks) remain environmentally sensitive across the 
life course. The mechanism of memory in this case may differ from cases of biological 
embedding that persist over years or decades. For example, memory T cells, which can 
represent up to 40% of total circulating T cells in adulthood (55), can survive in the body for 
years, raising the possibility that slow turnover of some PBMC subsets could be responsible 
for the social history effects we observed. However, recent evidence suggests that even short-
lived cells in the innate immune system—which canonically has been thought to lack 
memory—can be epigenetically altered by environmental experience (56).  

 
 Indeed, there is very strong evidence that both early life social adversity and social 
adversity in adulthood shape health and fitness outcomes (2, 57, 58). If temporally separate 
exposures independently tap into the same gene regulatory mechanisms, then the genome 
can be viewed as a mosaic, in which some loci retain more of a long-term signature of social 
history than others. This perspective is consistent with studies of organism-level traits. For 
example, in nonhuman primate models of social stress, behavioral signatures of status are 
highly plastic with changes in dominance rank, whereas the development of coronary artery 
plaques are explained by the combination of present and past social status (59, 60). A key 
contribution of genomic approaches rests in their ability to compare levels of plasticity across 
thousands of traits simultaneously. Such studies promise to reveal which pathways are more 
important for encoding memory versus sensing the current environment—an important step 
towards understanding the molecular mechanisms that affect resilience and recovery.  
 
 Finally, our analyses suggest that there is no simple mapping between social 
environmental effects on immune cell gene expression and their effects on disease and 
mortality risk. Notably, although the type I IFN response is often discussed in opposition to 
pro-inflammatory, NF-κB-mediated antibacterial responses, type I IFN signaling itself can 
also be pro-inflammatory (61). High reactivity to both viral and bacterial ligands may 
therefore represent two distinct sources of elevated inflammation in low status individuals. 
Alternatively, because Gardiquimod only models TLR7 stimulation by single-stranded RNA 
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viruses, it remains possible that other types of viral challenges produce responses more 
consistent with social status-mediated trade-offs. For instance, while many of the viruses that 
have been linked to social gradients are single-stranded RNA viruses (e.g., rhinovirus, 
respiratory syncytial virus, coronavirus), others are double-stranded DNA viruses (e.g., 
Epstein-Barr virus, cytomegalovirus, and other herpesviruses) that activate distinct immune 
pathways at the cell surface, in endosomes, and in the cytoplasm (e.g., TLR2, TLR9, and 
AIM2-dependent signaling, respectively) (62).   
 
MATERIAL AND METHODS 
  
Study Population 
  

The primary set of study subjects were 45 adult female rhesus macaques (Macaca 
mulatta) housed in demographically uniform social groups of five each (n = 9 social groups) 
at the Yerkes National Primate Research Center (YNPRC) Field Station. These animals were 
part of a larger, multi-year study investigating social status effects on behavior, physiology, 
and gene regulation in immune cells (18, 43, 44, 60). All study subjects were initially drawn 
from the YNPRC breeding colony, assigned to five-member social groups in January – June 
2013, and behaviorally monitored to assess social status in February 2013 - March 2014 
(Phase I). Group membership was rearranged in March – June 2014 (start of Phase II) by co-
housing females of the same or adjacent ordinal ranks in Phase I in the same Phase II groups. 
This approach allowed us to observe all possible between-phase changes in ordinal 
dominance rank and produced completely uncorrelated individual ranks between phases 
(r=0.06, p=0.68), thus enabling us to separate the effects of rank at sampling from rank social 
history.  
 

In both phases, social groups were formed by sequentially introducing females into 
indoor-outdoor run housing (25 m by 25 m for each area) over the course of 2 - 15 weeks. 
Behavioral data on affiliative and agonistic interactions were collected in both phases using 
focal sampling (345 total hours of observation, 223.5 hours in Phase I and 121.5 hours in 
Phase II) (63). Based on these data, dominance rank values were assigned using Elo ratings, 
a continuous measure of rank in which higher scores correspond to higher status and ratings 
are updated following any interaction in which a winner or loser can be scored (64, 65). All 
blood samples for gene expression analysis were collected in Phase II, 7.65±0.50 s.d. months 
after females were first introduced into their Phase II groups. These rank values were highly 
stable, with an Elo stability index from 0.995 - 1.00 (n=9 groups), where 1 corresponds to a 
hierarchy in which higher-ranking females always win competitive encounters with lower-
ranking females, with no rank reversals (66). 
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Information on group membership, age, and dominance rank for all study subjects is 
provided in SI Appendix, Dataset S1. 

  
Blood Sample Collection and In Vitro Challenges 

  
We set out to test how dominance rank affects the immune response to bacterial 

versus viral stimulation and to investigate social history effects at both baseline and in 
response to pathogen stimulation. To do so, we drew 1 mL of whole blood from each female 
into each of three TruCulture blood collection tubes (Myriad RBM) containing either: (i) cell 
culture media only (negative control: “NC”); (ii) cell culture media plus 1 µg/mL of E. coli-
derived lipopolysaccharide (0111:B4 strain: “LPS” condition); or (iii) cell culture media plus 
1 µg/ml of the TLR7 agonist Gardiquimod (“Gard” condition), a synthetic ligand that mimics 
infection with a single-stranded RNA virus. Samples were incubated in parallel for 4 hours 
at 37°C. We then separated the serum and cellular fractions, lysed and discarded the red cells 
from the cell pellet with red blood cell lysis buffer (RBC lysis solution, 5 Prime Inc.), and 
lysed the remaining white blood cell fraction in Qiazol for storage at -80°C. We extracted 
total RNA from each sample using the Qiagen miRNAEASY kit. Previous analyses of the 
NC and LPS samples are reported in (18). Gard samples were also collected at the same time, 
but gene expression data for these samples were not generated until a later date (see below 
for discussion of possible associated batch effects). Importantly, raw data for all three 
conditions were re-processed and re-normalized in parallel for this analysis.  

 
To control for cellular compositional effects, we also drew an additional blood 

sample in the same draw to measure the proportional representation of ten white blood cell 
subsets: classical monocytes (CD14+/CD16–), CD14+ intermediate monocytes 
(CD14+/CD16+), CD14– non-classical monocytes (CD14–/CD16+), helper T cells 
(CD3+/CD4+), cytotoxic T cells (CD3+/CD8+), double positive T cells (CD3+/CD4+/CD8+), 
CD8– B cells (CD3–/CD20+/CD8–), CD8+ B cells (CD3–/CD20+/CD8+), natural killer T 
lymphocytes (CD3+/CD16+), and natural killer cells (CD3–/CD16+). The antibody-
fluorophor combinations used for flow cytometry are provided in (18), and estimated cell 
type proportions for each sample are provided in SI Appendix, Dataset S1.  
  
RNA-Seq library preparation, low-level data processing, and batch effect correction 

  
Each RNA-sequencing library was prepared from 200 ng of total RNA using the 

NEBNext Poly(A) mRNA Magnetic Isolation Module and the NEBNext Ultra RNA Library 
Prep Kit (New England Biolabs), following the manufacturer’s instructions and selecting for 
~350 bp size fragments. Libraries were amplified via PCR for 13 cycles, barcoded, and 
pooled into sets of 10-12 samples for sequencing on an Illumina HiSeq 2500. Illumina 
adapters and low-quality score (<20) bases were removed from the raw reads using 
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TrimGalore! V.0.2.7 (67). Trimmed reads were mapped to the rhesus macaque genome 
(MacaM v7) using the STAR 2-pass method (68). Following quality control, we retained 
RNA-seq for 125 samples: 42 NC samples, 40 LPS samples, and 43 Gard samples.  

  
Gene-level counts were obtained using STAR (69). Prior to RNA-seq data analysis, 

we first filtered out genes that were very lowly or not detectably expressed in our samples. 
Specifically, we removed genes that exhibited low median RPKM (≤ 2) in all three 
conditions, which resulted in a final set of read counts for 9,088 genes. We then normalized 
gene expression levels across samples using the TMM algorithm (weighted trimmed mean 
of M-values), implemented in the R package edgeR (70). Finally, we log-transformed the 
data using the voom function in R package limma (71, 72). 
   

Gene expression levels can differ across social groups because of unknown 
environmental differences between groups. Additionally, samples from females living in the 
same social group were almost always collected at the same time (i.e., blood samples from 
all five members of the a group were drawn, cultured, shipped, and extracted in parallel). 
Hence, controlling for social group effects simultaneously controls for unmeasured variation 
between groups and most technical batch effects related to sample collection and processing. 
We also controlled for potential flow cell effects to take into account batch effects introduced 
at the sequencing stage. 

 
To correct for batch effects, we implemented a mixed model to estimate the effects 

of social group (i.e., collection batch) and flow cell on gene expression, while taking into 
account dominance rank and other biological covariates of interest. To model past rank, we 
used Elo score evaluated a mean of 3.64 ± 1.06 s.d. months after females were introduced 
into their Phase I groups. Within each condition, we also quantile normalized past Elo scores 
to match the distribution of Elo scores for current rank, standardized the two Elo score 
variables and the two tissue composition variables to mean=0 and standard deviation=1, and 
mean-centered age. For each gene and each condition (NC, LPS, Gard) separately, we fit the 
following model:  
 
Eq. (1): 

𝑦 = 𝜇 + 𝑝𝛽' + 𝑟𝛽) + 𝑎𝛽+ + 𝑡𝛽- + 𝑣𝛽/ + 𝑓𝛽1 × 	𝐼(𝑐 = 2) + 𝑍:𝑢: + 𝜀,	
 
where the normalized expression level, y, is modeled as a function of an intercept,𝜇, and	the 
fixed effects of past rank, p (𝛽' is its coefficient); rank at the time of sampling, r (𝛽) is its 
coefficient); age at the time of sampling, a (𝛽+ is its coefficient); the top two principal 
components of the normalized cell type proportions data, t and v (with coefficients 𝛽- and 
𝛽/, respectively); and flow cell, f (𝛽1  is its coefficient). For the flow cell effect, we only 
modeled an effect for the Gard condition (condition c=2) because Gard samples were 
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sequenced on two flow cells; for LPS and NC conditions, all samples were sequenced on the 
same flow cell. Finally, we modeled a random effect, 𝑢:, of social group membership, which 
captures most sources of batch effects. 𝑍: is an incidence matrix that assign samples to social 
groups. 𝜀 denotes model error. 
 

We fit each model using the lme function in the R package lme4 (73). To obtain batch-
corrected values, we then subtracted the sample-specific estimate of the random effects of 
social group and flow cell from the original gene expression values. We note that this 
procedure only corrects for batch effects within, but not across conditions. The major source 
of batch effects across conditions arises from differences in the timing of library prep and 
sequencing for the Gard samples, relative to the NC and LPS samples (which were prepped 
and sequenced together). Because condition is completely collinear with this source of batch 
effects, we cannot correct for it in our data analysis. Importantly, this issue does not impact 
our estimation of rank effects within NC, LPS, or Gard data sets, which are the effects of 
primary interest for this study. It could, however, impact the identity and magnitude of our 
estimates for genes that are differentially expressed in response to Gard stimulation (i.e., 
when we compare NC to Gard data collected from the same individuals). Reassuringly, gene 
set enrichment analysis shows that genes we identified as responsive to Gard are strongly 
enriched for pathways involved in antiviral responses (e.g., response to cytokine: FDR-
corrected p=2.4x10-6; type I interferon signaling pathway: FDR-corrected p=1.2x10-5; 
cellular response to interferon gamma: FDR-corrected p=3.1x10-5; SI Appendix, Dataset S2). 
This observation suggests that differences in expression between Gard and NC samples 
reflect a true biological response to the viral ligand and are not a technical artifact of our 
sequencing design. 
 
Statistical modeling of rank effects 
  

To investigate rank effects on gene expression levels upon bacterial versus viral 
stimulation, and to quantify social history effects on these responses, we modeled batch-
corrected gene expression levels using the following nested mixed model, with predictor 
variables quantile normalized (rank data), transformed to a standard normal (rank and tissue 
composition data), or mean-centered (age data) as described above: 
 
Eq (2): 

𝑦 = 𝜇 + >𝑝𝛽'?@ + 𝑟𝛽)?@ + 𝑎𝛽+?@ + 𝑡𝛽-?@ + 𝑣𝛽/?@A × 	𝐼(𝑐 = 0)	
+>𝛿 + 𝑝𝛽'DEF + 𝑟𝛽)DEF + 𝑎𝛽+DEF + 𝑡𝛽-DEF + 𝑣𝛽/DEFA × 	𝐼(𝑐 = 1)		 	

+>𝛾 + 𝑝𝛽'I+)J + 𝑟𝛽)I+)J + 𝑎𝛽+I+)J + 𝑡𝛽-I+)J + 𝑣𝛽/I+)JA × 	𝐼(𝑐 = 2)		 	
+𝑍𝑢 + 𝜀,	

𝑢~𝑀𝑉𝑁(0, 𝜎PQ𝐾),	
𝜀~𝑀𝑉𝑁(0, 𝜎SQ𝐼), 
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where y represents the normalized gene expression levels corrected for social group and flow 
cell effects, and data from all three conditions are modeled jointly. Here, gene expression 
levels are modeled as a function of an intercept, 𝜇; the effects of LPS stimulation (𝛿) and 
Gard stimulation (𝛾); and the fixed effects of past rank, p; rank at the time of sampling 
(“current rank”), r; age, a; and the top two principal components of the normalized cell type 
proportions data, t and v. Fixed effects are nested within condition (control = 0; LPS = 1; 
Gard = 2), and I is an indicator variable for evaluating whether each sample was collected in 
the given condition. Coefficients are consistent with Eq. (1), but with an added superscript 
to denote estimates specific to a given treatment condition. We also model an m by 1 vector 
u as a random effects term to control for kinship and other sources of genetic structure. Here, 
m is the number of unique females in the analysis (m=45) and the m by m matrix K contains 
estimates of pairwise relatedness derived from a 45 x 54,165 genotype matrix, as described 
in (18). Z is an incidence matrix of 1’s and 0’s that maps samples to individuals in the random 
effects term. Residual errors are represented by 𝜀, 𝜎SQ represents the environmental variance 
component (unstructured by genetic relatedness), I is the identity matrix, and MVN denotes 
the multivariate normal distribution. 
 

To specifically estimate the effects of dominance rank on the response to LPS and 
Gard, we reformulated Eq. (2) to extract estimates for the interaction between rank and 
treatment condition, separately for past rank and current rank.  
 
Eq. (3): 
𝑦 = 𝜇 + 𝑐T𝛿 + 𝑐Q𝛾 + 𝑝𝛽' + 𝑟𝛽) + 𝑎𝛽+ + 𝑡𝛽- + 𝑣𝛽/ + (𝑝 × 𝑐T)𝛽'×UV + (𝑝 × 𝑐Q)𝛽'×UW +	

(𝑟 × 𝑐T)𝛽)×UV + (𝑟 × 𝑐Q)𝛽)×UW	 + (𝑎 × 𝑐T)𝛽+×UV + (𝑎 × 𝑐Q)𝛽+×UW + (𝑡 × 𝑐T)𝛽-×UV + 
(𝑡 × 𝑐Q)𝛽-×UW + (𝑣 × 𝑐T)𝛽/×UV + (𝑣 × 𝑐Q)𝛽/×UW + 𝑍𝑢 + 𝜀,  

 
where the notation is consistent with Eq. (2), but we reparametrize the model to obtain 
directly each covariate’s interaction with treatment condition (i.e., the effects of each 
covariate on treatment response). These interactions can be interpreted as the effect of past 
rank, current rank, age, and tissue composition on the gene expression response to LPS or 
Gard challenge.  
 

Finally, to explicitly model interaction effects between past rank and current rank, 
we introduced an additional term for each condition into Eq. (2):  
               
Eq. (4)  
𝑦 = 𝜇 + >𝑝𝛽'?@ + 𝑟𝛽)?@ + 𝑎𝛽+?@ + 𝑡𝛽-?@ + 𝑣𝛽/?@ + (𝑝 × 𝑟)𝛽'×)?@ A × 	𝐼(𝑐 = 0) + 	 	
>𝛿 + 𝑝𝛽'DEF + 𝑟𝛽)DEF + 𝑎𝛽+DEF + 𝑡𝛽-DEF + 𝑣𝛽/DEF + (𝑝 × 𝑟)𝛽'×)DEFA × 	𝐼(𝑐 = 1) +	 
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>𝛾 + 𝑝𝛽'I+)J + 𝑟𝛽)I+)J + 𝑎𝛽+I+)J + 𝑡𝛽-I+)J + 𝑣𝛽/I+)J + (𝑝 × 𝑟)𝛽'×)I+)JA × 	𝐼(𝑐 = 2) + 𝑍𝑢
+ 𝜀, 

                                                                             
where notations are consistent with Eq. (2). Additional terms 𝛽'×)?@ , 𝛽'×)DEF, and 𝛽'×)I+)Jto 
represent condition-specific interactions between past and current rank. 
 

We fit models 2 - 4 using the R package EMMREML (74). To assess significance 
after correcting for multiple hypothesis testing, we compared the distribution of p-values for 
each variable of interest to the distribution of p-values from permuted data. To generate 
permutations that preserved the structure of our data set (especially the strong correlation 
between Phase II social group membership and past rank in Phase I, which is a product of 
our experimental design: see Fig. 1A), we followed a two-step permutation procedure.  

 
First, we blocked all explanatory variables (past rank, current rank, animal age, tissue 

composition variables) by social group in Phase II. We then permuted these blocks across 
social group labels (n=9 blocks and labels: one set for each social group), while keeping the 
gene expression data associated with the original social group label. Second, we shuffled the 
individual sets of explanatory variables randomly within each (now randomly re-assigned) 
social group. This two-step procedure maintains the correlation between Phase II social 
group and past rank observed in the original data because all co-housed females remain 
assigned to a shared social group label following permutation. However, it also randomizes 
the relationship between gene expression and the explanatory variables (see SI Appendix, 
Fig. S7 for a graphical depiction of this two-step strategy).  

 
We performed permutations independently for each gene, conducted our complete 

set of statistical analyses (i.e., batch effect removal followed by differential expression 
analysis) on the permuted data, and treated the resulting p-value distributions as empirical 
null distributions to calculate false discovery rates, following a generalized version of the 
method described by Storey and Tibshirani (75).  

 
To identify genes that significantly responded to Gard and LPS stimulation, which 

should not be affected by correlations between past rank and Phase II social group, we used 
the standard method for multiple testing correction implemented in the R package qvalue 
(76). 

 
 

Quantification of gene-specific plasticity 
 

To quantify the plasticity of rank effects for each gene in each condition, we first 
estimated the total variance in gene expression levels explained by both past rank and current 
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rank, 𝜎'∪)Q . We then calculated the proportion of the total variance that could be accounted 
for by the effects of current rank in Phase II alone, 𝜎)Q . We define gene-specific plasticity, 
Θ, as the ratio of square roots of these variances (i.e., a ratio of standard deviations):  
Eq. (5) 

𝛩 = 𝜎)	/𝜎'∪) 
 

Since current rank and past rank are distributed following a standard normal 
(mean=0, s.d.=1) and almost perfectly uncorrelated (r=0.06, p=0.68), Θ can be approximated 
by the following expression: 
Eq. (6) 

𝛩 = |𝛽)|	/\𝛽'Q + 𝛽)Q	

 
𝛩	therefore has an elementary geometric interpretation, which can be interpreted as the 
absolute value of the sine of the angle, 𝛼, created by the vector (𝑥, 𝑦) = (𝛽', 𝛽))and the x-
axis (see SI Appendix, Fig. S7 for a schematic representation). 
 

To make the distributions of 𝛩 directly comparable across conditions, we focused our 
analyses on the top 1000 genes with the largest values of 𝜎'∪)Q  within each conditions (i.e., 
the genes most strongly affected by dominance rank, whether past, current, or both). We 
excluded the small set of genes for which past and current ranks were significant but 
directionally opposed (FDR=10%; <7.5% of all rank-associated genes in each condition). 
Importantly, the overall pattern--that social history effects are less apparent in immune-
challenged conditions than in control conditions—is robust across a wide range of top rank-
associated genes (SI Appendix, Fig. S6). 
  
 
 
 
Gene Ontology enrichment analysis  
 

For all GO term enrichment analyses, we used the Cytoscape module ClueGO (77) 
(SI Appendix, Dataset S3). In all cases, we performed one-tailed  Fisher’s Exact Tests for 
enrichment, and corrected for multiple tests using the Benjamini-Hochberg (B-H) method 
(78). To reduce the multiple testing space and account for the nested nature of GO terms, we 
analyzed only terms that fell between levels 3 and 8 of the GO tree for Biological Processes, 
included at least 5 genes in our data set, and for which at least 5% of the total number of 
genes belonging to the GO term were present in the test gene set. We report significant gene 
set enrichments for those GO categories that passed a 5% FDR for the response to LPS/Gard 
challenge and for current rank effects, and a 10% FDR for past rank effects. 
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Transcription factor binding site enrichment analysis. 
  

To investigate whether binding sites for specific TFs were enriched in the promoter 
regions of rank-associated genes, we drew on chromatin accessibility data generated via 
ATAC-seq and reported previously in (18). In brief, these data were generated from 50,000 
PBMCs obtained from three mid-ranking study subjects. The resulting libraries were 
sequenced on an Illumina NextSeq 500 and the reads mapped to the macaque genome and 
used to identify open chromatin peaks following the pipeline described in (18). 

  
To identify likely TFBSs that overlapped with accessible chromatin upstream of 

rank-responsive genes (within 5 kb of the transcription start site), we scanned the macaque 
genome for matches to 1900 TRANSFAC and JASPAR-derived position weight matrices 
(PWMs: threshold log2 likelihood ratio(TFBS/background)=13) (79, 80). To reduce 
redundancy, we used bedtools (81) to perform hierarchical clustering of the PWMs based on 
the pair-wise Jaccard distances between their locations in the macaque genome. We then 
defined independent TF clusters at a dissimilarity threshold of 0.2. After filtering for clusters 
that rarely occurred in open chromatin regions upstream of genes, we obtained a final set of 
460 motif clusters that we tested for enrichment near rank-associated genes.    
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