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High-throughput sequencing of fetal DNA is a promising and
increasingly common method for the discovery of all (or all
coding) genetic variants in the fetus, either as part of prena-
tal screening or diagnosis, or for genetic diagnosis of sponta-
neous abortions. In many cases, the fetal DNA (from chorionic
villi, amniotic fluid, or abortive tissue) can be contaminated with
maternal cells, resulting in the mixture of fetal and maternal
DNA. This maternal cell contamination (MCC) undermines the
assumption, made by traditional variant callers, that each al-
lele in a heterozygous site is covered, on average, by 50% of the
reads, and therefore can lead to erroneous genotype calls.
We present a panel of methods for reducing the genotyping er-
ror in the presence of MCC. All methods start with the out-
put of GATK HaplotypeCaller on the sequencing data for the
(contaminated) fetal sample and both of its parents, and addi-
tionally rely on information about the MCC fraction (which it-
self is readily estimated from the HTS data). The first of these
methods uses an explicit formula based on simple probabilistic
assumptions to “recalibrate” the fetal genotype calls produced
by MCC-unaware HaplotypeCaller. The other two methods
“learn” the recalibration model from examples. We use simu-
lated contaminated fetal data to train and test the models. Us-
ing the test sets, we show that all three methods lead to sub-
stantially improved accuracy when compared with the original
MCC-unaware HaplotypeCaller calls. We then apply the best-
performing method to three chorionic villus samples from spon-
taneously terminated pregnancies.

1. Introduction
High-throughput sequencing of fetal DNA is increasingly be-
ing used in academic and clinical settings. It is a powerful
tool with the potential for use in prenatal diagnosis based
on chorionic villus or amniotic fluid sampling [13], or in the
analysis of chorionic villi or products of conception for ge-
netic diagnosis of an unsuccessful pregnancy. In prenatal di-
agnosis, whole-genome or whole-exome sequencing can dis-
cover novel clinically significant variants that are not present
in SNP arrays or gene panels, resulting in higher diagnos-
tic yield [1]. Prenatal sequencing can inform prenatal and
postnatal care and counseling, and may lead to prenatal ther-
apeutic interventions [1].
In standard practice, the DNA of both parents is sequenced
together with fetal DNA (”trio sequencing”) in order to es-

tablish patterns of inheritance and inform variant prioritiza-
tion and interpretation. A technical difficulty that may arise
in the analysis of fetal DNA is the contamination of the fetal
sample with maternal cells. The prevalence of such mater-
nal cell contamination (MCC) can be significant, depending
on the experimental technique and quality of the sample; for
example, one study reported 9.1% of amniotic fluid samples
as having detectable MCC [12], while another found MCC
fraction > 5% in as many as 26% of amniotic fluid samples
under some practices [15]. High-level contamination (over
20%) was detected by one study [9] in a small, but non-zero
number of samples (0.3% of cultured amniotic fluid samples
and 1.3% of cultured chorionic villi samples; it must be noted
that cultured amniotic fluid samples generally have less MCC
than direct samples). In traditional prenatal analysis, such
as that aimed at detecting chromosomal aberrations, mater-
nal cell contamination is assayed by special tests, such as the
Short Tandem Repeat analysis, and, if detected at a sufficient
level, may nullify the analysis [10].

Meanwhile, standard variant calling software that is used to
analyze next-generation sequencing data relies on the expec-
tation that each allele is represented by half of the reads.
MCC disrupts this assumption, leading to errors in variant
calling. In this work, we propose and evaluate computa-
tional methods for reducing the MCC-caused error. All of
these methods begin with variants called in the fetal speci-
men, the mother, and the father by a standard variant-calling
pipeline and then “recalibrate” the results from the fetal spec-
imen. The first method uses a simple probabilistic heuristic
to decide on the “true” fetal genotype based on the called
genotypes of the trio. The other methods eschew making
assumptions about the best way to uncover the “true” fetal
genotype from the maternally-contaminated observed speci-
men data and instead solve this problem using machine learn-
ing. We train these methods on synthetic “mother-father-
fetus” trios generated from real family trios by adding spec-
ified numbers of maternal reads to the child sample. We use
these synthetic trios, where the child’s genotype is known, to
demonstrate that MCC correction significantly improves the
accuracy of variant calling compared to contamination-naive
calling, especially for higher fractions of MCC. As an inter-
mediate technical step, we present a simple heuristic algo-
rithm for estimating maternal cell contamination fraction in
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the fetal sample. We then apply the trained model to real se-
quencing data from miscarried fetuses and their parents with
MCC > 3%, changing the fetal calls for a substantial number
of SNPs.

2. Materials and Methods

In the rest of the paper, we use the term specimen to denote
the obtained fetal sample which may be contaminated with
maternal cells. In practice, it can be a chorionic villus or
amniotic fluid sample or an abortus sample.
We assume that DNA samples are available for all three
members of the trio. We expect the trio to be sequenced,
and the reads mapped and variant-called according to a stan-
dard bioinformatics pipeline, e.g., one involving the Genome
Analysis Toolkit (GATK, [5]), and that called genotypes are
available along with accompanying quality information, such
as allelic depths, genotype likelihoods, and so on. The VCF
file produced by the pipeline is the starting point for all our
analyses (see Figure 1).

2.1. Estimating the contamination fraction. We define
the maternal cell contamination (MCC) fraction, which we
denote by α ∈ [0,1], to be the share of maternal DNA in the
DNA of the fetal specimen. MCC accounts for the discrep-
ancy between the results of variant calling on the contam-
inated specimen sample and the true fetal genotype. The
MCC-aware variant calling and recalibration methods pre-
sented below all rely on knowing the value of α, and therefore
it is vital to be able to estimate it accurately.
To estimate α in a fetal sample, we look at the results of vari-
ant calling by GATK HaplotypeCaller [5] and consider po-
sitions in the genome where the mother and the father are
homozygous for different alleles (i.e., one of the parents is
homozygous for the reference allele, and the other for the al-
ternative allele); we only consider biallelic sites. The fetus
then should be heterozygous at these sites, with equal read
coverage for the two parental alleles.
In the presence of MCC, however, the mother’s allele cover-
age fraction m should be higher, namely 1+α

2 . Then, we can
use the value of m at the position obtained from the VCF file
to compute α as 2m−1. Since the actual coverage fluctuates,
we average this ratio over all relevant sites to get the MCC
fraction estimate. Let mi be the fraction of maternal reads at
site i, Then we compute m̂ to be the average of mi over all
sites i where the mother and the father are homozygous for
different alleles, and estimate α̂= 2m̂−1.
Although this procedure should be symmetric with respect to
which of the parents is homozygous for the reference allele
at a site, we observe that estimating α when the mother is ho-
mozygous for the reference allele (“mo00”) systematically
gives larger values than when the mother is homozygous
for the alternative allele (“mo11”). We attribute this phe-
nomenon to the reference bias of the variant calling pipeline
[6]. We, therefore, estimate α separately over the two al-
ternatives (“fa00_mo11” and “fa11_mo00”) and compute the
average of the two estimates as the final result. We found this

aggregated estimate to be more accurate than either alterna-
tive.
Using simulated data (see Section 2.4), we found that the
MCC estimation error made by this method does not exceed
2% and in the vast majority of the cases is below 1% (Figure
S1).

2.2. Confidence interval-based recalibration. As our
first method, we consider a hypothesis-testing approach that
carries out genotype call adjustment based on an explicit
mathematical model. To construct the genotype prediction
for the child, we first observe that the disagreement between
the true variants of the child and the called variants of the fe-
tal specimen is in the vast majority of cases due to the misla-
beling of homozygous positions in the fetus as heterozygous
in the contaminated fetal specimen. The maternal genotype
must, of course, be heterozygous for that to happen. Follow-
ing this observation, we set the recalibrated genotype pre-
diction of the fetus to equal that of the contaminated speci-
men at all genome positions except for those where the con-
taminated specimen is called heterozygous, and mark these
latter as candidates for readjustment to a homozygous call.
At each site that is a candidate for readjustment, we com-
pare the ratios of allelic depths in the mother and the fetal
specimen to determine the homozygous readjustment target
(00 or 11, with 0 denoting the reference allele and 1 de-
noting the alternative allele; only biallelic sites are consid-
ered). To check if the readjustment is indeed needed, we use
the allelic depths of the fetal specimen, AD0 and AD1, to
estimate the DNA contamination ratio under the hypothesis
that the child is homozygous and so the extra allele comes
from the heterozygous mother; e.g., α̂loc = 2AD1

AD0+AD1 when
the candidate readjusted genotype is 00. Then we compare
this value to the value of α̂, which we refer to here as α̂glob
(for “global”), estimated from the entire sample as described
in Section 2.1 (for the present purpose, we view this latter
value as exact). Using the binomial proportion confidence
interval, we expect the site-specific contamination estimate

α̂loc to satisfy α̂glob− z
√

α̂glob(1−α̂glob)
AD0+AD1 < α̂loc < α̂glob +

z

√
α̂glob(1−α̂glob)
AD0+AD1 , where z is a parameter corresponding to

the confidence level. We have chosen z = 3 by tuning z ex-
perimentally to achieve a better prediction accuracy. If the
contamination estimate at a site falls within the confidence
interval, we attribute the heterozygosity observed at that site
in the fetal specimen to maternal contamination and “correct”
the call to be the appropriate homozygous genotype.

2.3. Machine learning-based genotype recalibration.
In this approach, the predictive model for genotype readjust-
ment is not based on heuristics, but is trained using a machine
learning algorithm. The input to the model consists of two
components. The first is the estimated fraction of maternal
DNA in the fetal specimen, α̂glob. The second is the vector
of features characterizing the variants called in the fetal spec-
imen and the parents at a particular position in the genome
(practically, this is the line in the VCF file for that position;
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Fig. 1. Pipeline for accurate fetal variant calling in the presence of maternal cell contamination (MCC). NGS reads for each sample in the trio are mapped to the reference
genome, and then variants are called with GATK v3. In the presence of MCC, the resulting VCF file contains incorrect calls for the fetus. To overcome this, we estimate
MCC from this VCF and utilize the estimated value to recalibrate the VCF file and correct the calls for the fetus. Three different approaches for recalibration were utilized
(see Materials and Methods section): confidence intervals and two machine learning-based approaches, namely, logistic regression and Gradient Boosted Decision Trees
(XGBoost). The meta-classifier combines outputs of all previous methods. ML - machine learning.

it includes the genotype likelihoods, genotype qualities, read
depths, etc. for all three samples). The output of the model is
the adjusted fetal genotype at this position in the genome.
The approach assumes that we either consistently use a par-
ticular mapping and variant calling pipeline or train predic-
tive models using a sufficiently rich training dataset combin-
ing data obtained using several pipelines, since a single map-
ping and calling pipeline may have bias dependent on the
specifics of the read mapper and variant caller. In practice,
it is necessary that the fields describing the variant (geno-
type likelihood, read depth, etc.) be the same in the training
VCFs and the VCF to be recalibrated; therefore, the same,
or closely related variant callers should be used to produce
all VCFs. The “ground truth” to which the predictive model
is fit is the genotype calls on the pure fetal sample made by
the same pipeline as was used on the fetal specimen sample.
To train and test the model, we simulate “virtual specimens”
from a number of publicly available father-mother-child trios
by randomly mixing mother and child reads at various MCC
fractions, as described in Section 2.4, and then calling the
variants in the simulated trios. Since none of the trios on
which the “virtual specimens” were based have MCC, we can
use them to obtain the true child genotypes. The predictive
model is then trained and tested on the data set that maps,
genomic position-wise, father-mother-virtual specimen vari-
ant data to the child variant data of the corresponding father-
mother-child sample. The predictive models may overfit to
particular variant calling pipelines or underlying trios, and
care must be taken to ensure sufficient diversity of training
samples.
Two machine learning algorithms were considered: logistic
regression (as implemented in scikit-learn1) and Gra-

1 http://scikit-learn.org/

dient Boosted Decision Trees (XGBoost implementation2,
[2]). The inputs to the models are read from a VCF file
and standardized, with categorical features being one-hot en-
coded (split into binary columns for each unique value the
feature can take). L2 regularization is applied to the logis-
tic models, while early stopping based on performance on a
validation set is used to prevent XGBoost from overfitting.
The hyperparameters of the models (regularization factor for
logistic regression; maximum tree depth, etc. for XGBoost)
were tuned using a grid search.
Additionally, an ensemble meta-classifier combining the re-
sults of all of the above methods (confidence intervals, lo-
gistic regression, XGBoost) was constructed. An ensemble
makes predictions by combining ‘votes’ from multiple clas-
sifiers. Here we use soft-voting, i.e. voting based on the
predicted probabilities of each class for the different classi-
fiers, rather than a simple class prediction. This combined
prediction helps mitigate the shortcomings of each individual
classifier.

2.4. Contaminated trio generation. We obtained testing
and training datasets by using publicly available exome reads
from father-mother-child trios (“real-world trios”) to pro-
duce “virtual specimen trios” with predetermined maternal
contamination fraction α. Namely, we mixed randomly se-
lected reads from the “real-world child” and the “real-world
mother” in such a proportion that the fraction of maternal
reads would be α, and thus obtained “virtual specimen”
reads. We used the remaining reads from the “real-world
mother” to create the “virtual specimen mother”, while the
“virtual specimen father’s” reads were identical to the origi-
nal “real-world father’s” reads. For each “virtual specimen”

2https://xgboost.readthedocs.io/en/latest/
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trio, we also came up with a corresponding “pure child” trio,
which was identical to the “virtual specimen” trio except that
no mother’s reads were added to the child’s reads. Keeping
everything but the presence of maternal contamination the
same between the “virtual” and the “real” trios ensures that
the genotypes called with and without contamination would
be compared fairly.
We performed this procedure for four “real-world” trios
with publicly available exome data: the Ashkenazim trio
HG002_NA24385 from the Genome in the Bottle project
[16] (“AJT”), the YRI NA19240 trio from the 1000 Genomes
project [3] (“YRI”), the CHD trio [7] (“CHD”), and the Cor-
pas family daughter trio [4] (“Corpas”). Since the child in
the “real-world” trios was either a living individual (AJT,
YRI, Corpas) or stillborn (CHD), there was no maternal cell
contamination in the “real-world” reads. If the data were
available only as an alignment, we first obtained raw reads
using the bam2FastQ program of the bamUtil package [8].
The CHD trio had a large number of read duplicates, which
distorted the contamination fraction, so we deduplicated the
aligned reads using the biobambam package3, and used the
reads from the deduplicated file to generate the “contami-
nated” trio.
For each “real-world trio”, we repeated this procedure with
α= 0.01, 0.03, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5.
We aligned the “virtual specimen” and the “pure child” trio
reads to the GRCh38DH reference genome following the
1000 Genomes pipeline [11]. Variants were called using
Genome Analysis Toolkit 3.8 HaplotypeCaller with the op-
tion -dontUseSoftClippedBases and restricting the
sequence considered to Gencode v.27 protein-coding exons
with 50-nt flanks.

2.5. Miscarriage samples. Internal Review Board ap-
proval was obtained from the Ethics Committee of the In-
stitute of Information Transmission Problems (document
11616-2116/726, 27/11/2017). Families who suffered a
miscarriage and requested chromosomal microarray analysis
(CMA) of the embryo were offered the choice to participate
additionally in the whole-exome sequencing study. Informed
consent was obtained from the parents. Only cases where
no copy-number anomalies were detected by the CMA were
considered for the WES study. Chorionic villi were used for
the abortus DNA sample, while blood was drawn from both
parents for sequencing. DNA was extracted using the Gentra
Puregene kit (Qiagen). The chromosomal microarray analy-
sis was performed on the Thermo Fisher CytoScan Optima
array. Copy-number analysis was performed using the ChAS
3.3 (Applied biosystems) software and an in-house database.
Parenthood and the presence of fetal DNA in the chorionic
villus sample were verified using short tandem repeat (STR)
analysis with the COrDIS Plus system (GORDIZ, Russian
Federation).
DNA was fragmented using Covaris S220 sonicator (Covaris,
USA) using settings for 150-bp insert (peak power 175W, cy-

3https://www.sanger.ac.uk/science/tools/biobambam

cles per burst 200, duty cycle 10%, time 280 seconds). Li-
braries were prepared using the TruSeq DNA Library Prep
for Enrichment kit (Illumina, USA) without size selection
(this step was replaced by purification/concentration with
1.5x volume of Ampure XP beads). Exome capture was per-
formed using the xGen Exome Research Panel v.1.0 (IDT,
USA) using manufacturer instructions with pooling of 12 li-
braries per reaction. Library concentration was measured
on Qubit fluorometer (Thermofisher, USA) and fragment
length distribution was measured on Bioanalyzer2100 (Ag-
ilent, USA). 2.5 nM dilution of the resulting post-capture li-
brary was used for sequencing on the HiSeq4000 instrument
(Illumina, USA) in paired-end mode with 150 cycles kit. The
reads were aligned to the hg19 reference genome. The rest
of the mapping and calling procedure was the same as for the
“virtual specimen” trios (see Section 2.4).

3. Results
We compared the genotypes recalibrated by each of the
MCC-aware methods on the “virtual specimen trios” (see
Section 2.4) to the genotypes produced by the GATK Hap-
lotypeCaller on the corresponding “pure child” trios, the lat-
ter being considered the ground truth. As a baseline, we
also included the comparison to initial genotypes called by
the GATK HaplotypeCaller on the “virtual specimen” trios
(“no recalibration”). Since the “virtual specimen” genera-
tion procedure may be subject to hidden artifacts, e.g., arising
from differences in the sequencing procedure of the original
mother and the original child, we present the results sepa-
rately for the four sets of “virtual specimen” trios generated
from each “real-world” family.
The machine learning-based models were trained with a
“leave-one-out” strategy, where every trio excluding the test
trio was used for training. This ensures that we test on data
derived from individuals unseen by the trained classifier.
Figure 2 summarizes the results separately for each pub-
licly available family that served as the basis for the “vir-
tual” contaminated trios, with the accuracy achieved by
each method plotted against the contamination fraction. All
three individual methods fare well, reducing the number of
mis-called positions by 40-80% over the baseline of using
the original MCC-unaware calls (the “no recalibration” ap-
proach). Both machine learning approaches outperform the
confidence interval-based method and overcome some of the
problems of that heuristic method. XGBoost is the best-
performing individual method, while the meta-classifier out-
performs all individual methods.
We also compared the running times of the methods for both
training and testing (Table 1). In terms of speed, the con-
fidence interval-based method, which requires no training,
is the clear winner. The machine learning methods take on
the order of minutes to train. Once the models are trained,
though, the running times for recalibrating a specimen are
comparable.

3.1. Factors affecting the quality of machine learn-
ing-based genotype recalibration. We further explored
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Fig. 2. Accuracy of the recalibration methods at various MCC fractions. Machine learning methods were trained with a “leave one out” strategy. Each curve consists of twelve
data points corresponding to accuracy of the method applied to “contaminated specimens” at various MCCs (the contamination values used are as given in Section 2.4). The
accuracy is calculated on the intersection of the calls made on the virtual fetal specimen and the calls made on the real-world child.
Table 1. Training and running times of our methods. Training includes training a
model on the entire synthetic dataset excluding the test trio (Section 2.4). Running
involves recalibrating a single VCF file with a pre-trained model.

Training time
Logistic Regression 180 s
XGBoost 750 s
Meta-classifier 940 s
Running time
Logistic Regression 0.0025 s
XGBoost 0.34 s
Confidence Intevals 0.0021 s
Meta-classifier 0.35 s

the effect of various settings on the performance of the ma-
chine learning approaches.
As noted earlier, the training dataset needs to be sufficiently
rich to succeed at genotype recalibration. To demonstrate
this, the two machine learning algorithms were trained and
tested on different pairs of families (a ‘one versus one’ ap-
proach), at all contamination fractions. The results are sum-
marized in Figure S2. While all the methods lead to an
improvement in accuracy, the gains are much more modest
than when training with a ‘leave-one-out‘ approach (Figure
2, contamination 0.3), due to overfitting to the features of a
particular trio. To combat overfitting, we ultimately adopted
the approach where we train on all available trios except for
the test one.
The trained classifiers can tell us about the discriminative

Table 2. Top 10 most important features for machine learning methods in descend-
ing order. The parameters learned by the trained models (the coefficients of the
hyperplanes separating the different classes for logistic regression; the degree of
decision tree branching on each feature for XGBoost) can give an estimate of rela-
tive feature importance.

Logistic regression XGBoost
1 Phred likelihood (0/0) (S) Phred likelihood (0/0) (S)
2 Allelic depth (ref) (S) Phred likelihood (1/1) (S)
3 Phred likelihood (1/1) (M) MCC %
4 Allelic depth (alt) (S) Phred likelihood (0/0) (M)
5 Phred likelihood (1/1) (S) Phred likelihood (1/1) (M)
6 Phred likelihood (1/1) (M) Allelic depth (ref) (S)
7 Genotype (0/1) (M) Phred likelihood (1/1) (F)
8 Phred likelihood (0/1) (S) Phred likelihood (0/0) (F)
9 Genotype (0/0) (M) Allelic depth (alt) (S)

10 Allelic depth (alt) (M) Read depth (F)
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power of our input features. Table 2 shows the top 10 features
ordered by discriminative power for both classifiers. The let-
ter in the last parentheses represents which sample the feature
belongs to (Specimen, Mother, Father).
It is interesting to note that the degree of contamination is
not found among the top features for logistic regression. Ad-
ditionally, the father’s features are prominently towards the
bottom of the table for logistic regression, yet are included
in the top 10 for XGBoost, suggesting some complex rela-
tionship that the linear model does not capture. Finally, the
linear model gives importance to the one-hot encoded geno-
types as well as to the likelihood scores, whereas XGBoost
completely ignores the genotypes, implying that the informa-
tion in the genotypes is redundant when the likelihood scores
are known (which is indeed true).

3.2. Robustness of the recalibration method. We ex-
plored the robustness of the meta-classifier performance to
variations in the setup.
First, since in practice, the MCC fraction is not known in
advance, we investigated the robustness of the model to errors
in MCC fraction estimate. We found that for the range of
errors in the MCC estimate we obtained for the simulated
specimens (Figure S1), the decrease in performance is close
to negligible (Figure S4).
We then investigated the dependence of the recalibration
method performance on read coverage and found that for po-
sitions covered by more than 80 reads, which is typical cover-
age for exome sequencing, the recalibration accuracy is close
to maximal (Figure S3).
Finally, we investigated the effect of the choice of the refer-
ence genome on the performance of the meta-classifier. We
tested the performance of the classifier with GRCh38 as the
reference genome, and in settings where the classifier was
trained on hg19-mapped data and tested on GRCh38-mapped
data, and vice versa. As seen in Figure S5, the machine learn-
ing approach is robust not only to the choice of the reference
genome build, but also to changing the reference genome
build between training and evaluation. Therefore, a model
trained on one reference genome can be used to recalibrate
variants called with a different reference.

3.3. Application to clinical miscarriage data. We ap-
plied the meta-classifier recalibration to three spontaneously
miscarried abortus samples where the MCC exceeded 3%
(estimated as in Section 2.1). The abortus samples (la-
beled 3, 6, and 15) were sequenced together with the pe-
ripheral blood from both their parents. After mapping and
variant-calling with the GATK HaplotypeCaller, we obtained
107004, 91682, and 102751 calls in the three trios, respec-
tively. These include variants where the abortus has a 0/0,
0/1, or 1/1 phenotype, each of which is potentially subject
to recalibration. The actual numbers of recalibrated variants
were 964, 1190, and 775, respectively. Since the Haplotype-
Caller results are meant to be filtered, we repeated the anal-
ysis after applying GATK-suggested hard filtering to the call
set ([14] with the additional requirement that each trio mem-
ber’s genotype have GQ ≥ 30). This procedure resulted in

Table 3. Statistics on the miscarriage samples that were recalibrated. The numbers
of raw calls and recalibrated raw calls, and filtered calls and recalibrated filtered calls
are given.

Trio MCC Raw calls Recalibrated
raw calls

Filtered
calls

Recalibrated
filtered
calls

3 6% 107004 964 55200 296
6 4% 91682 1190 56165 515
15 4% 102751 775 62638 131
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T M
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14,976,420 bp
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Fig. 3. Integrative Genomics Viewer visualizaton of a deletion in Trio 6 that is called
heterozygous by the MCC-naive GATK HaplotypeCaller but gets recalibrated to a
homozygote by the ML method.

55200, 56165, and 62638 MCC-naive calls in the three trios,
of which 296, 515, and 131, respectively, were recalibrated.
As we expected, the vast majority of readjustments affected
the 0/1 abortus genotype. Also not surprisingly, recalibration
predominantly affected heterozygous variants with skewed
allelic depths and favored the “elimination” of the allele with
the lower allelic depth (Figure S6).
To illustrate how the ML model recalibrates the abortus
trio data, we present a case in trio 6, where the abortus
is initially called as heterozygous in the frameshift deletion
chr12:14976417 CTA/C in the gene C12orf60, as are both
parents (Figure 3). The classifier recalibrates this variant to a
homozygous deletion call, with the reference allele predicted
to have come from contamination with maternal DNA. In
a manner consistent with the observation above, the allelic
depth distribution in this locus is noticeably skewed in favor
of the variant allele, which is predicted by the model to be the
only allele observed in the abortus sample.

4. Discussion and Conclusions
As its costs are dropping, high-throughput sequencing is be-
coming increasingly routine in clinical and academic prac-
tice, and is gaining ground in prenatal diagnosis and in the
diagnostic study of miscarried fetuses. While the bioinfor-
matics toolkit for analyzing the sequencing data of individu-
als is well-developed and mature, it may encounter difficul-
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ties in the analysis of sequencing data for products of con-
ception, which may be mixed with maternal tissue. We have
shown that the accuracy of standard variant-calling pipelines
does indeed degenerate as the maternal cell contamination
increases, but that much of this decline can be alleviated
by MCC-aware variant genotype correction. We show that
the MCC fraction can be readily estimated from trio se-
quencing data and then used to inform the genotype correc-
tion. We show, using synthetic contaminated samples ob-
tained from real trio data, that even a simple intuitive method
based on confidence intervals does much to correct for the
MCC-related loss of calling accuracy, and that the machine-
learning methods trained on simulated data show even greater
improvement, with the more sophisticated XGBoost having
the better performance of the individual methods. The best
performance, meanwhile, was obtained with the ensemble
method that incorporates the results of all three methods that
we tried.
We note that all methods discussed in this paper only recal-
ibrate the variants that have been discovered by a general-
purpose variant caller (we used GATK HaplotypeCaller
which is commonly employed for human data analysis, but
any variant caller which outputs sufficiently rich informa-
tion about variants into a VCF file should work). Therefore,
MCC-aware recalibration is a simple add-on to a standard
bioinformatics pipeline, needing only the VCF file produced
by it. The user can then compare the original VCF to the
recalibrated VCF to see which genotypes had been changed.
On the other hand, the reliance on standard variant calling
implies that if MCC had caused the true fetal variant to be
missed in all members of the trio, then that variant will not
be called by the recalibration pipeline, either. We expect such
cases to be rare.
We have applied our method to in-house sequencing data
for three speciments from spontaneous miscarriages. While
these particular samples had rather low MCC, this may not
always be the case, as high levels of MCC do occur among
aminocentesis and chorionic villi samples.
Currently, next-generation sequencing is applied to fetal
DNA obtained by invasive methods which extract amniotic
fluid or fetal or chorionic villi cells. Our work is aimed at
the analysis of this sort of sequencing data, and we do not
consider MCC fractions higher than 50%. As its costs drop,
sequencing may become a practical option in non-invasive
prenatal testing (NIPT) as well. NIPT analyzes fetal DNA
circulating in maternal blood which constitutes a small frac-
tion of the DNA sample obtained. Analyzing that sort of data
would make MCC-aware variant calling a necessity, and may
in fact give rise to more sophisticated and/or specialized al-
gorithms, such as those that work directly with mapped reads.

Supplementary material
Supplementary material is available at bioRxiv online.
We also present a repository with scripts and notebooks
for reproducing our experiments as well as applying our
methods: https://github.com/bazykinlab/
ML-maternal-cell-contamination
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