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High-throughput sequencing of fetal DNA is a promising and
increasingly common method for the discovery of all (or all
coding) genetic variants in the fetus, either as part of prena-
tal screening or diagnosis, or for genetic diagnosis of sponta-
neous abortions. In many cases, the fetal DNA (from chorionic
villi, amniotic fluid, or abortive tissue) can be contaminated with
maternal cells, resulting in the mixture of fetal and maternal
DNA. This maternal cell contamination (MCC) undermines the
assumption, made by traditional variant callers, that each al-
lele in a heterozygous site is covered, on average, by 50% of
the reads, and therefore can lead to erroneous genotype calls.
We present a panel of methods for reducing the genotyping er-
ror in the presence of MCC. All methods start with the output
of GATK HaplotypeCaller on the sequencing data for the (con-
taminated) fetal sample and both of its parents, and addition-
ally rely on information about the MCC fraction (which itself is
readily estimated from the high-throughput sequencing data).
The first of these methods uses maximum likelihood estimation
to correct the fetal genotype calls produced by MCC-unaware
HaplotypeCaller. The other two methods “learn” the genotype-
correction model from examples. We use simulated contami-
nated fetal data to train and test the models. Using the test sets,
we show that all three methods lead to substantially improved
accuracy when compared with the original MCC-unaware Hap-
lotypeCaller calls. We then apply the best-performing method
to three chorionic villus samples from spontaneously terminated
pregnancies.

1. Introduction
High-throughput sequencing of fetal DNA is increasingly be-
ing used in academic and clinical settings. It is a powerful
tool with the potential for use in prenatal diagnosis based
on chorionic villus or amniotic fluid sampling [16], or in the
analysis of chorionic villi or products of conception for ge-
netic diagnosis of an unsuccessful pregnancy. In prenatal di-
agnosis, whole-genome or whole-exome sequencing can dis-
cover novel clinically significant variants that are not present
in SNP arrays or gene panels, resulting in higher diagnos-
tic yield [1]. Prenatal sequencing can inform prenatal and
postnatal care and counseling, and may lead to prenatal ther-
apeutic interventions [1].
In standard practice, the DNA of both parents is sequenced

together with fetal DNA (”trio sequencing”) in order to es-
tablish patterns of inheritance and inform variant prioritiza-
tion and interpretation. A technical difficulty that may arise
in the analysis of fetal DNA is the contamination of the fetal
sample with maternal cells. The prevalence of such mater-
nal cell contamination (MCC) can be significant, depending
on the experimental technique and quality of the sample; for
example, one study reported 9.1% of amniotic fluid samples
as having detectable MCC [15], while another found MCC
fraction > 5% in as many as 26% of amniotic fluid samples
under some practices [18]. High-level contamination (over
20%) was detected by one study [12] in a small, but non-zero
number of samples (0.3% of cultured amniotic fluid samples
and 1.3% of cultured chorionic villi samples; it must be noted
that cultured amniotic fluid samples generally have less MCC
than direct samples). In traditional prenatal analysis, such
as that aimed at detecting chromosomal aberrations, mater-
nal cell contamination is assayed by special tests, such as the
Short Tandem Repeat analysis, and, if detected at a sufficient
level, may nullify the analysis [13].

Meanwhile, standard variant calling software that is used to
analyze next-generation sequencing data relies on the expec-
tation that each allele is represented by half of the reads.
MCC disrupts this assumption, leading to errors in variant
calling. In this work, we propose and evaluate computational
methods for reducing the MCC-caused error. All of these
methods begin with variants called in the fetal specimen, the
mother, and the father by a standard variant-calling pipeline
and then “correct” the results from the fetal specimen. The
first method uses a maximum-likelihood estimator to decide
on the “true” fetal genotype based on the called genotypes
of the trio. The other methods eschew making assumptions
about the best way to uncover the “true” fetal genotype from
the maternally-contaminated observed specimen data and in-
stead solve this problem using machine learning. We train
these methods on synthetic “mother-father-fetus” trios gen-
erated from real family trios by adding specified numbers of
maternal reads to the child sample. We use these synthetic
trios, where the child’s genotype is known, to demonstrate
that MCC correction significantly improves the accuracy of
variant calling compared to contamination-naive calling, es-
pecially for higher fractions of MCC. As an intermediate
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technical step, we present a simple heuristic algorithm for
estimating maternal cell contamination fraction in the fetal
sample. We then apply the trained model to real sequenc-
ing data from a miscarried fetus with 40% estimated MCC,
changing the fetal calls for a substantial number of SNPs.

2. Materials and Methods

In the rest of the paper, we use the term specimen to denote
the obtained fetal sample which may be contaminated with
maternal cells. In practice, it can be a chorionic villus or
amniotic fluid sample or an abortus sample.
We assume that DNA samples are available for all three mem-
bers of the trio. We expect the trio to be sequenced (we gear
our work towards and test it on Illumina whole-exome se-
quencing, currently the most widely used protocol in biomed-
ical practice) and the reads mapped and variant-called ac-
cording to a standard bioinformatics pipeline, e.g., one in-
volving the Genome Analysis Toolkit (GATK, [5]), although
our approach can work with other calling pipelines too, as we
show in Section 3.3. We expect that the called genotypes are
available along with accompanying quality information, such
as allelic depths, genotype likelihoods, and so on. The VCF
file produced by the pipeline is the starting point for all our
analyses (see Figure 1).

2.1. Estimating the contamination fraction. We define
the maternal cell contamination (MCC) fraction, which we
denote by α ∈ [0,1], to be the share of maternal DNA in the
DNA of the fetal specimen. MCC accounts for the discrep-
ancy between the results of variant calling on the contam-
inated specimen sample and the true fetal genotype. The
MCC-aware genotype correction methods presented below
all rely on knowing the value of α, and therefore it is vital
to be able to estimate it accurately.
To estimate α in a fetal sample, we look at the results of vari-
ant calling by GATK HaplotypeCaller [5] and consider po-
sitions in the genome where the mother and the father are
homozygous for different alleles (i.e., one of the parents is
homozygous for the reference allele, and the other for the al-
ternative allele); we only consider biallelic sites. The fetus
then should be heterozygous at these sites, with equal read
coverage for the two parental alleles.
In the presence of MCC, however, the mother’s allele cov-
erage fraction m should be higher, namely 1+α

2 . Then, we
can use the value of m at the position obtained from the VCF
file to compute α as 2m−1. Since the actual coverage fluc-
tuates, we average this ratio over all relevant sites to get the
MCC fraction estimate. Let mi be the fraction of maternal
reads at site i, Then we compute m̂ to be the average of mi

over all sites i where the mother and the father are homozy-
gous for different alleles, and estimate α̂ = 2m̂− 1. Only
calls that pass basic filtering criteria (GQ > 30 in both par-
ents, depth at site > 10 in all three samples) are considered in
the calculation.
Although this procedure should be symmetric with respect to
which of the parents is homozygous for the reference allele

at a site, we observe that estimating α when the mother is ho-
mozygous for the reference allele (“mo00”) systematically
gives larger values than when the mother is homozygous
for the alternative allele (“mo11”). We attribute this phe-
nomenon to the reference bias of the variant calling pipeline
[6]. We, therefore, estimate α separately over the two al-
ternatives (“fa00_mo11” and “fa11_mo00”) and compute the
average of the two estimates as the final result. We found this
aggregated estimate to be more accurate than either alterna-
tive.

Using simulated data (see Section 2.4), we found that the
MCC estimation error made by this method does not exceed
2% and in the vast majority of the cases is below 1% Figure
S1.

While there are methods for estimating sample con-
tamination that are geared towards detecting contamina-
tion during sequencing with unrelated samples and make
use of population allele frequencies (VerifyBamID [9]
and the CalcualteContamination module of the cancer-
sequencing workflow in Genome Analysis Toolkit v.4
(https://software.broadinstitute.org/gatk/), they are not well
suited for the particular case of maternal contamination; in
fact, the authors of VerifyBamID predicted that their method
would underestimate contamination with maternal sample by
half [9]. Our evaluation of these methods on simulated con-
taminated data generally agrees with this prediction, although
we find it to be something of an underestimate itself, espe-
cially for large MCC fractions (Figure S1).

2.2. Maximum likelihood-based genotype correction.
As our first method, we consider a maximum likelihood-
based approach that carries out a fetal genotype call adjust-
ment based on a simple explicit mathematical model. To this
end, we first observe that the disagreement between the true
variants of the child and the called variants of the fetal spec-
imen is in the vast majority of cases due to the mislabeling
of homozygous positions in the fetus as heterozygous in the
contaminated fetal specimen. This happens when the mater-
nal genotype, and accordingly the mixture of fetal and mater-
nal reads, is heterozygous.

Following this observation, we implement a fetal genotype
correction procedure in which the candidates for readjust-
ment are the positions where both the contaminated speci-
men’s genotype and the maternal genotype are called het-
erozygous, say 01. We assume for simplicity that the ma-
ternal genotype 01 is known with high certainty (this can be
ensured by filtering out positions with low genotype quality).
We consider three hypotheses, that the child’s genotype is 00,
01, or 11. We then determine the child’s genotype using the
maximum likelihood estimate based on the fetal allelic depths
and the previously estimated MCC fraction α. Specifically,
given child’s true genotype 00, 01 or 11 (and remembering
that the maternal genotype is 01), the respective conditional
probabilities of observing the allelic depthsAD0,AD1 in the
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Fig. 1. Pipeline for accurate fetal variant calling in the presence of maternal cell contamination (MCC). NGS reads for each sample in the trio are mapped to the reference
genome, and then variants are called with GATK v3. In the presence of MCC, the resulting VCF file contains incorrect calls for the fetus. To overcome this, we estimate MCC
from this VCF and utilize the estimated value to correct the genotype calls for the fetus. Three different approaches for genotype correction were utilized (see Materials and
Methods section): an explicit maximum likelihood method (MLE) and two machine learning-based approaches, namely, logistic regression and Gradient Boosted Decision
Trees (XGBoost). The meta-classifier combines outputs of all previous methods. ML - machine learning.

mixture are:

P(AD0,AD1|00) = C(α2 )AD1(1− α
2 )AD0,

P(AD0,AD1|01) = C(1
2 )AD1(1

2 )AD0,

P(AD0,AD1|11) = C(1− α
2 )AD1(α2 )AD0,

with the binomial coefficientC = (AD0+AD1)!
AD0!AD1! Then, assum-

ing for simplicity that the three possible fetal genotypes have
the same prior probability, we just pick the genotype with the
maximum probability.

2.3. Machine learning-based genotype correction. In
this approach, the predictive model for genotype readjust-
ment is not based on heuristics, but is trained using a machine
learning algorithm. The input to the model consists of two
components. The first is the estimated fraction of maternal
DNA in the fetal specimen, α̂glob. The second is the vector
of features characterizing the variants called in the fetal spec-
imen and the parents at a particular position in the genome
(practically, this is the line in the VCF file for that position;
it includes the genotype likelihoods, genotype qualities, read
depths, etc. for all three samples). The output of the model is
the adjusted fetal genotype at this position in the genome.
The approach assumes that we either consistently use a par-
ticular mapping and variant-calling pipeline or train predic-
tive models using a sufficiently rich training dataset combin-
ing data obtained using several pipelines, since a single map-
ping and calling pipeline may have bias dependent on the
specifics of the read mapper and variant caller. In practice,
it is necessary that the fields describing the variant (genotype
likelihood, read depth, etc.) be the same in the training VCFs
and the VCF to be genotype-corrected; therefore, the same,
or closely related variant callers should be used to produce

all VCFs. The “ground truth” to which the predictive model
is fit is the genotype calls on the pure fetal sample made by
the same pipeline as was used on the fetal specimen sample.
To train and test the model, we simulate “virtual specimens”
from a number of publicly available father-mother-child trios
by randomly mixing mother and child reads at various MCC
fractions, as described in Section 2.4, and then calling the
variants in the simulated trios. Since none of the trios on
which the “virtual specimens” were based have MCC, we can
use them to obtain the true child genotypes. The predictive
model is then trained and tested on the data set that maps,
genomic position-wise, father-mother-virtual specimen vari-
ant data to the child variant data of the corresponding father-
mother-child sample. The predictive models may overfit to
particular variant-calling pipelines or underlying trios, and
care must be taken to ensure sufficient diversity of training
samples.
Two machine learning algorithms were considered: logis-
tic regression (as implemented in scikit-learn1) and
Gradient Boosted Decision Trees (XGBoost implementation2

[2]). The inputs to the models are read from a VCF file
and standardized, with categorical features being one-hot en-
coded (split into binary columns for each unique value the
feature can take). L2 regularization is applied to both algo-
rithms, with early stopping based on performance on a val-
idation set used to prevent XGBoost from overfitting. We
found both the models to be fairly robust to choice of hyper-
parameters, and while these can be further tuned for a par-
ticular dataset, the gains in performance are marginal and do
not warrant the loss in generalizability this incurs.
Additionally, an ensemble meta-classifier combining the re-

1 http://scikit-learn.org/
2https://xgboost.readthedocs.io/en/latest/
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sults of all of the above methods (maximum-likelihood es-
timator, logistic regression, XGBoost) was constructed. An
ensemble makes predictions by combining ‘votes’ from mul-
tiple classifiers. Here we use soft-voting, i.e. voting based on
the predicted probabilities of each class for the different clas-
sifiers, rather than a simple class prediction. This combined
prediction helps mitigate the shortcomings of each individual
classifier.

2.4. Contaminated trio generation. We obtained testing
and training datasets by using publicly available exome reads
from father-mother-child trios (“real-world trios”) to pro-
duce “virtual specimen trios” with predetermined maternal
contamination fraction α. Namely, we mixed randomly se-
lected reads from the “real-world child” and the “real-world
mother” in such a proportion that the fraction of maternal
reads would be α, and thus obtained “virtual specimen”
reads. We used the remaining reads from the “real-world
mother” to create the “virtual specimen mother”, while the
“virtual specimen father’s” reads were identical to the origi-
nal “real-world father’s” reads. For each “virtual specimen”
trio, we also generated a corresponding “pure child” trio,
which was identical to the “virtual specimen” trio except that
no mother’s reads were added to the child’s reads (thus, the
"virtual child" and the "virtual mother" reads are subsets of
the corresponding child and mother reads from the original
family exome). Keeping everything but the presence of ma-
ternal contamination the same between the “virtual” and the
“real” trios ensures that the genotypes called with and with-
out contamination would be compared fairly.
We performed this procedure for four “real-world” trios
with publicly available exome data: the Ashkenazim trio
HG002_NA24385 from the Genome in the Bottle project
[19] (“AJT”), the YRI NA19240 trio from the 1000 Genomes
project [3] (“YRI”), the CHD trio [8] (“CHD”), and the Cor-
pas family daughter trio [4] (“Corpas”). Since the child in
the “real-world” trios was either a living individual (AJT,
YRI, Corpas) or stillborn (CHD), there was no maternal cell
contamination in the “real-world” reads. If the data were
available only as an alignment, we first obtained raw reads
using the bam2FastQ program of the bamUtil package [10].
The CHD trio had a large number of read duplicates, which
distorted the contamination fraction, so we deduplicated the
aligned reads using the biobambam package3, and used the
reads from the deduplicated file to generate the “contami-
nated” trio.
For each “real-world trio”, we re-
peated this procedure with α =
0.01,0.03,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5.
We aligned the “virtual specimen” and the “pure child” trio
reads to the GRCh38DH reference genome following the
1000 Genomes pipeline [14]. Variants were called using
Genome Analysis Toolkit 3.8 HaplotypeCaller with the op-
tion -dontUseSoftClippedBases and restricting the
sequence considered to Gencode v.24 protein-coding exons.

3https://www.sanger.ac.uk/science/tools/biobambam

2.5. Miscarriage samples. We analyzed DNA from spon-
taneously miscarried euploid abortuses. Internal Review
Board approval was obtained from the Ethics Committee of
the Institute of Information Transmission Problems (docu-
ment 11616-2116/726, 27/11/2017) and the Institutional Re-
view Board of the Skolkovo Institute of Science and Tech-
nology (20/06/2019). Families who suffered a miscarriage
and requested chromosomal microarray analysis (CMA) of
the embryo were offered the choice to participate addition-
ally in the whole-exome sequencing study. Informed consent
was obtained from the parents. Only cases where no copy-
number anomalies were detected by the CMA were consid-
ered for the WES study. Chorionic villi were used for the
abortus DNA sample, while blood was drawn from both par-
ents for sequencing. Parenthood and the presence of fetal
DNA in the chorionic villus sample were verified using short
tandem repeat (STR) analysis with the COrDIS Plus system
(GORDIZ, Russian Federation).
Libraries were prepared using the TruSeq DNA Library Prep
for Enrichment kit (Illumina, USA). Exome capture was per-
formed using the xGen Exome Research Panel v.1.0 (IDT,
USA). Sequencing was performed on the HiSeq4000 instru-
ment (Illumina, USA) in paired-end mode The reads were
aligned to the hg19 reference genome. Calling was restricted
to the Gencode v.2.7 protein-coding exons with 50-nt flanks.
In other respects, the mapping and calling procedure was the
same as for the “virtual specimen” trios (see Section 2.4).

3. Results
We compared the genotypes corrected by each of the MCC-
aware methods on the “virtual specimen trios” (see Section
2.4) to the genotypes produced by the GATK Haplotype-
Caller on the corresponding “pure child” trios, the latter be-
ing considered the ground truth. As a baseline, we also
included the comparison to initial genotypes called by the
GATK HaplotypeCaller on the “virtual specimen” trios (“no
genotype correction”). To control for possible artifacts that
may result from experimental differences in the original se-
quencing of the real-world trios, including differences in cov-
erage, we present the results separately for the four sets of
“virtual specimen” trios generated from each original family.
The machine learning-based models were trained with a
“leave-one-out” strategy, where every trio excluding the test
trio was used for training. This ensures that we test on data
derived from individuals unseen by the trained classifier.
Figure 2 summarizes the results separately for each pub-
licly available family that served as the basis for the “vir-
tual” contaminated trios, with the accuracy achieved by each
method plotted against the contamination fraction. All three
individual methods fare well, reducing the number of mis-
called positions by 40-80% over the baseline of using the
original MCC-unaware calls (the “no genotype correction”
approach). Both machine learning approaches outperform
the maximum likelihood-based method and overcome some
of its problems. XGBoost is the best-performing individual
method, while the meta-classifier outperforms all individual
methods. Restricting analysis just to indels similarly shows
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Fig. 2. Accuracy of the genotype correction methods at various MCC fractions. Machine learning methods were trained with a “leave one out” strategy. Each curve consists
of twelve data points corresponding to accuracy of the method applied to “contaminated specimens” at various MCCs (the contamination values used are as given in Section
2.4). The accuracy is calculated on the intersection of the calls made on the virtual fetal specimen and the calls made on the real-world child.
Table 1. Training and running times of our methods. Training includes training a
model on the entire synthetic dataset excluding the test trio (Section 2.4). Running
involves genotype-correcting a single VCF file with a pre-trained model.

Training time
Logistic Regression 180 s
XGBoost 750 s
Meta-classifier 940 s
Running time
Logistic Regression 0.0025 s
XGBoost 0.34 s
Maximum Likelihood 0.0021 s
Meta-classifier 0.35 s

improvement in accuracy from genotype correction (Figure
S2).
We also compared the running times of the methods for
both training and testing (Table 1). In terms of speed, the
maximum-likelihood method, which requires no training, is
the clear winner. The machine learning methods take on
the order of minutes to train. Once the models are trained,
though, the running times for genotype-correcting a speci-
men are comparable.

3.1. Factors affecting the quality of machine learn-
ing-based genotype correction. We further explored the
effect of various settings on the performance of the machine
learning approaches.
As noted earlier, the training dataset needs to be sufficiently

Table 2. Top 10 most important features for machine learning methods in descend-
ing order. The parameters learned by the trained models (the coefficients of the
hyperplanes separating the different classes for logistic regression; the degree of
decision tree branching on each feature for XGBoost) can give an estimate of rel-
ative feature importance. Parentheses indicate the member of the trio (specimen,
mother, father).

Logistic regression XGBoost
1 Phred likelihood (0/0) (S) Phred likelihood (0/0) (S)
2 Allelic depth (ref) (S) Phred likelihood (1/1) (S)
3 Phred likelihood (1/1) (M) MCC %
4 Allelic depth (alt) (S) Phred likelihood (0/0) (M)
5 Phred likelihood (1/1) (S) Phred likelihood (1/1) (M)
6 Phred likelihood (1/1) (M) Allelic depth (ref) (S)
7 Genotype (0/1) (M) Phred likelihood (1/1) (F)
8 Phred likelihood (0/1) (S) Phred likelihood (0/0) (F)
9 Genotype (0/0) (M) Allelic depth (alt) (S)

10 Allelic depth (alt) (M) Read depth (F)

rich for machine learning to to succeed at genotype correc-
tion. To demonstrate this, the two machine learning algo-
rithms were trained and tested on different pairs of families
(a ‘one versus one’ approach), at all contamination fractions.
The results are summarized in Figure S3. While all the meth-
ods lead to an improvement in accuracy, the gains are much
more modest than when training with a ‘leave-one-out‘ ap-
proach (Figure 2), due to overfitting to the features of a par-
ticular trio. To combat overfitting, we ultimately adopted the
approach where we train on all available trios except for the
test one.
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The trained classifiers can tell us about the discriminative
power of our input features. Table 2 shows the top 10 features
ordered by discriminative power for both classifiers. The let-
ter in the last parentheses represents which sample the feature
belongs to (Specimen, Mother, Father).
It is interesting to note that the degree of contamination is
not found among the top features for logistic regression. Ad-
ditionally, the father’s features are prominently towards the
bottom of the table for logistic regression, yet are included
in the top 10 for XGBoost, suggesting some complex rela-
tionship that the linear model does not capture. Finally, the
linear model gives importance to the one-hot encoded geno-
types as well as to the likelihood scores, whereas XGBoost
completely ignores the genotypes, implying that the informa-
tion in the genotypes is redundant when the likelihood scores
are known (which is indeed true).

3.2. Robustness of the genotype correction method.
We explored the robustness of the meta-classifier perfor-
mance to variations in the setup.
First, since in practice, the MCC fraction is not known in
advance, we investigated the robustness of the model to errors
in MCC fraction estimate. We found that for the range of
errors in the MCC estimate we obtained for the simulated
specimens (Figure S1), the decrease in performance is close
to negligible (Figure S4).
We then investigated the dependence of the genotype correc-
tion method performance on read coverage and found that
for positions covered by more than 80 reads, which is typi-
cal coverage for exome sequencing, the genotype correction
accuracy is close to maximal (Figure S5).
Finally, we investigated the effect of the choice of the refer-
ence genome on the performance of the meta-classifier. We
tested the performance of the classifier with GRCh38 as the
reference genome, and in settings where the classifier was
trained on hg19-mapped data and tested on GRCh38-mapped
data, and vice versa. As seen in Figure S6, the machine learn-
ing approach is robust not only to the choice of the reference
genome build, but also to changing the reference genome
build between training and evaluation. Therefore, a model
trained on one reference genome can be used to correct vari-
ants called with a different reference.

3.3. Strelka2 genotype correction. To test the perfor-
mance of the genotype-correction framework on a variant
caller other than the GATK HaplotypeCaller, we repeated
the tests with the vcf files obtained using the recently pub-
lished caller Strelka2 [11] using its standard germline call-
ing pipeline and the same VCF features as were available
from GATK HaplotypeCaller. We observed the same trends,
namely, that genotype correction increases the concordance
between the calls on the "pure child" and the "contaminated
specimen" trios (Figure S7).

3.4. Application to clinical miscarriage data. We ap-
plied the MCC estimation algorithm from Section 2.1 to 33
abortus samples from a larger study aimed at finding genetic
causes of spontaneous miscarriages of euploid fetuses (data

to be published separately). In five of the 33 cases, the es-
timated MCC in the abortus exceeded 5%, with one case of
8% MCC and one of 40% MCC. We will focus on the one
abortus sample with the 40% MCC (miscarried at 9 weeks).
We applied the recommended GATK hard filters [17] to the
calls and further required that GQ be at least 30 for both par-
ents. We did not apply the GQ filter to the abortus sample,
as we expect maternal contamination to lower the quality of
the calls in the abortus and the GQ filter may therefore ex-
clude legitimate variants. As a result, we obtained 65431
calls by MCC-naive GATK HaplotypeCaller before genotype
correction, of which 11796 were genotype-corrected by the
meta-classifier (trained on the "virtual specimens"). As we
expected (see Section 2.2), all but one corrections affected the
heterozygous genotype call. Also not surprisingly, correction
predominantly affected heterozygous variants with skewed
allelic depths and favored the “elimination” of the allele with
the lower allelic depth (Figure S8).
Contamination-aware genotype correction had several ef-
fects, both on the global variant statistics and on the particular
list of candidate mutations that could explain the pregnancy
loss. Genotype correction rectified the highly skewed ratio
of heterozygous to homozygous variants called in the abortus
and brought it in line with that for the uncontaminated par-
ent samples. Thus, the parents’ heterozygous to homozygous
call ratio was 3.1, while for the MCC-naive abortus call set,
it was 6.7. After genotype correction, that number for the
abortus was brought down to 3.8, much closer to the parents’
value. Regarding the possible genetic explanation of preg-
nancy loss, the uncorrected call set contained six candidate
compound heterozygote variants (Supplementary Methods;
Table S1). Of these, genotype correction eliminated three
variant calls, which reduced the number of candidate com-
pound heterozygotes to three. Thus, in this case, MCC-aware
variant (re-)calling eliminated potential false positive candi-
date variants.

4. Discussion and Conclusions
As its costs are dropping, high-throughput sequencing is be-
coming increasingly routine in clinical and academic prac-
tice, and is gaining ground in prenatal diagnosis and in the
diagnostic study of miscarried fetuses. While the bioinfor-
matics toolkit for analyzing the sequencing data of individ-
uals is well-developed and mature, it may encounter diffi-
culties in the analysis of products of conception, which may
be mixed with maternal tissue. We have shown that the ac-
curacy of standard variant-calling pipelines does indeed de-
generate as the maternal cell contamination increases, but
that much of this decline can be alleviated by MCC-aware
variant genotype correction. We have demonstrated that the
MCC fraction can be readily estimated from trio sequenc-
ing data and then used to inform the genotype correction.
We have further shown, using synthetic contaminated sam-
ples obtained from real trio data, that even a simple method
based on maximum likelihood estimation does much to cor-
rect for the MCC-related loss of calling accuracy, and that the
machine-learning methods trained on simulated data show
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even greater improvement, with the more sophisticated XG-
Boost having the better performance of the individual meth-
ods. The best performance, meanwhile, was obtained with
the ensemble method that incorporates the results of all three
methods that we tried.
We note that all methods discussed in this paper only correct
the variants that have been discovered by a general-purpose
variant caller (we used GATK HaplotypeCaller which is com-
monly employed for human data analysis, but any variant
caller which outputs sufficiently rich information about vari-
ants into a VCF file should work). Therefore, MCC-aware
genotype correction is a simple add-on to a standard bioin-
formatics pipeline, needing only the VCF file produced by it.
The user can then compare the original VCF to the corrected
VCF to see which genotypes had been changed. On the other
hand, the reliance on standard variant calling implies that if
MCC had caused the true fetal variant to be missed in all
members of the trio, then that variant will not be called by the
genotype-correction pipeline, either. We expect such cases to
be rare.
Among published methods, CleanCall [7] applies its own
probabilistic model to correct for sample contamination,
starting with read-level information, and it has an op-
tion for doing so with a known contaminating sam-
ple (https://github.com/hyunminkang/cleancall/). Since our
method works with the output of a third-party variant caller,
and comparing it to CleanCall cannot be decoupled from
comparing CleanCall’s model to HaplotypeCaller’s, they are
not directly comparable. Nevertheless, we believe that in the
case of maternal cell contamination with maternal sequence
data available, our method is preferable, both because it is de-
signed for that particular situation and because it allows the
user to utilize the caller of his or her choice.
To show the applicatiblity of our method to real-world data,
we applied it to in-house sequencing data for a spontaneously
miscarried euploid embryo with 40% maternal contamination
and demonstrated that it can correct for artifacts caused by
maternal contamination.
Currently, next-generation sequencing is applied to fetal
DNA obtained by invasive methods which extract amniotic
fluid or fetal or chorionic villi cells. Our work is aimed at
the analysis of this sort of sequencing data, and we do not
consider MCC fractions higher than 50%. As its costs drop,
sequencing may become a practical option in non-invasive
prenatal testing (NIPT) as well. NIPT analyzes fetal DNA
circulating in maternal blood which constitutes a small frac-
tion of the DNA sample obtained. Analyzing that sort of data
would make MCC-aware variant calling a necessity, and may
in fact give rise to more sophisticated and/or specialized al-
gorithms, such as those that work directly with mapped reads.

Supplementary material
Supplementary material is available at bioRxiv online.
We also present a repository with scripts and notebooks
for reproducing our experiments as well as applying our
methods: https://github.com/bazykinlab/
ML-maternal-cell-contamination

Simulated trio data are available at https://archive.

org/download/simulated_MCC/simulated_MCC.

tar.gz
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