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Abstract 

 
 
The libraries generated by high-throughput single cell RNA-sequencing platforms such as the 

Chromium from 10x Genomics require considerable amounts of sequencing, typically due to the 

large number of cells. The ability to use this data to address biological questions is directly 

impacted by the quality of the sequence data. Here we have compared the performance of the 

Illumina NextSeq 500 and NovaSeq 6000 against the BGI MGISEQ-2000 platform using identical 

Single Cell 3’ libraries consisting of over 70,000 cells. Our results demonstrate a highly 

comparable performance between the NovaSeq 6000 and MGISEQ-2000 in sequencing quality, 

and cell, UMI, and gene detection. However, compared with the NextSeq 500, the MGISEQ-2000 

platform performs consistently better, identifying more cells, genes, and UMIs at equalised read 

depth. We were able to call an additional 1,065,659 SNPs from sequence data generated by the 

BGI platform, enabling an additional 14% of cells to be assigned to the correct donor from a 

multiplexed library. However, both the NextSeq 500 and MGISEQ-2000 detected similar 

frequencies of gRNAs from a pooled CRISPR single cell screen. Our study provides a benchmark 

for high capacity sequencing platforms applied to high-throughput single cell RNA-seq libraries.  
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Introduction 
 
The human genome project was an important achievement in life sciences and paved the way 

for major technology developments in DNA and RNA sequencing. The development of synthesis-

based Next-Generation Sequencing (NGS, also known as massively parallel or high-throughput 

sequencing) was pioneered by Solexa (1). After the company’s acquisition by Illumina, this 

technology was refined further and gave rise to a number of platforms that include the NextSeq, 

HiSeq and NovaSeq sequencers. These platforms have now produced the majority of the publicly 

available human sequencing data. Over time the cost of sequencing has decreased and the 

technology has become more accessible, both in terms of sequence hardware and tools for 

analysis (2). Collectively, this has resulted in NGS being adopted by many researchers, and used 

in clinical and industry settings.  

 

Until recently, the majority of libraries sequenced have been generated on ‘bulk’ samples, 

consisting of the DNA or RNA collected from millions of cells. However, advances in single cell 

library preparation techniques (3, 4) have made it possible to produce sequencing libraries from 

tens of thousands of individually barcoded cells, and even individually barcoded molecules. High-

throughput library preparation methods, such as the Chromium platform from 10x Genomics (5), 

are now widely available, enabling libraries consisting of tens of thousands of cells to be 

generated in several hours. The cDNA libraries from the Chromium experiments differ from ‘bulk’ 

libraries in that each cDNA molecule contains a Unique Molecular Identifier (UMI) and shared cell 

barcode. After amplification cDNAs are sheared, and adapter and sample indices are 

incorporated into finished libraries, which are compatible with next-generation short-read 

sequencing.  

 

In 2017 BGI launched the MGISEQ-2000 as an alternative to existing short-read sequencing 

technologies (6). The technology underlying the MGISEQ-2000 combines DNA nanoball (DNB) 

nanoarrays (7) with polymerase-based stepwise sequencing (DNBseq), and its use has recently 

been validated as comparative in performance to the Illumina platforms when sequencing small 

noncoding RNAs (8), bulk transcriptomes (9), as well as whole genome DNA (10). To fully explore 
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this platform's potential for scRNA-seq, we undertook a direct performance comparison against 

Illumina technology by building scRNA-seq libraries generated with the Chromium platform from 

10x genomics and sequencing 70,000 cells on both the MGISEQ-2000 and Illumina NextSeq 500, 

and NovaSeq 6000 (Figure 1). 

 

Results 

 

Sequencing quality metrics 

The total number of reads generated for the four libraries on the Illumina platforms was 159-616 

million, and 1,112-1,339 million using the BGI platform. Comparison of sequencing quality control 

metrics revealed similar percentages of detectable valid cell barcodes, with a 0.8-1.2% greater 

detection from the NextSeq 500 and 1% from the NovaSeq 6000 (Table 1). The probability of a 

sequencing error is represented by a nucleotide base Q score, and thus the slightly higher 

percentages of valid cell barcodes from Illumina platforms most likely reflects the 5.1-6.8% 

(NextSeq 500) and 4.3-5.6% (NovaSeq 6000) higher Q30 scores observed in the cell barcode 

region of the reads compared to the MGISEQ-2000 (Table 1). A valid barcode is one that is 

detected from the sequence data that matches a whitelist of approximately 737,000 possible 

barcodes for the 3’ assay. The effect on the percentage of valid barcodes caused by lower Q30 

score is partly mitigated by the Cell Ranger pipeline, which includes a step to correct for potential 

sequencing errors in the cell barcode based on a posterior probability that an observed barcode 

originated from the whitelist barcode. The second step in calling cells is based on the distribution 

and total counts of UMIs assigned to a given cell. We observed increased percentages of Q30 

scores of 4.9-6.8% (NextSeq 500) and 4.1-5.9% (NovaSeq 6000) compared with the MGISEQ-2000 

(Table 1).   

 

The cell barcode and UMI enable individual cells to be identified for subsequent analysis, but 

these bases are obviously trimmed for the alignment stage. Accurate alignment to a reference 

transcriptome is partly a function of the sequencing error rate, and here we observe a dramatic 

difference in the Q30 percentage for the RNA transcript part of the read, with the MGISEQ-2000 
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achieving 19.9-30.7% greater Q30 compared to the NextSeq 500, although comparable 

performance compared with the NovaSeq 6000 (Table 1). The reduction in sequencing accuracy 

for scRNA-seq libraries on a NextSeq 500 has previously been discussed (11), and it has been 

hypothesised that this is due to flow cell surface chemistry. While variation in performance of 

specific flow cell lot numbers has been observed, it is important to note that the flowcells used 

here are not from a reported low-performance lot number. 

 
The combination of assigning reads to a given cell, a transcript molecule, and aligning to a 

reference sequence directly affects the number of usable reads that are obtained from sequence 

data. Collectively, differences in the sequencing accuracy between platforms over the entire read 

length has consequential effects on the percentage of reads that pass quality control and that 

are able to be mapped to the reference genome. When we integrated the percentage of the 

reads that were able to be aligned to the GRCh38 (release 88) reference genome, we obtain an 

11.1-17.2% difference between the NextSeq 500 and MGISEQ-2000, while the difference 

between the NovaSeq 6000 and MGISEQ-2000 is only 1.8-2.7% (Table 1). The lower percentage 

of alignment seen from the NextSeq 500 libraries is most likely due to the lower sequencing 

accuracy in the RNA transcript part of the read, as supported by the observation that the Q30 in 

RNA for Nextseq was much lower than that for MGISEQ-2000 (Table1). Because the thresholds used 

to determine if a read aligns to the genome are the same, the lower sequencing accuracy should 

not affect the biological interpretation of the aligned data. However, it does mean libraries 

sequenced on a NextSeq 500 will need to be sequenced at a greater depth to obtain the same 

sequencing depth of aligned reads per cell.  

 
Identification of cells, genes, and transcript molecules 
 
To evaluate the similarity in the ability of sequencing platforms to identify the same cells, 

transcript molecules, and genes, we standardised the read depth between samples by 

downsampling. As the same cells from each sample had been sequenced on two platforms, we 

evaluated cell identification based on the observation of same cell barcode. Each of the two 

platforms identified close to 100% of cells in common in the four samples (Figure 2a). For cells 
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identified by only one platform, the mean number of UMIs are on average one log2 lower than 

the cells identified as common between platforms (Figure 2b). There is a lower concordance of 

shared genes for these cells, suggesting that these ‘platform specific’ cells are possibly cell free 

transcripts that have not been adequately detected during quality control filtering by the cell 

singlet detection algorithm. An alternative explanation is that these are cells with low 

transcriptional abundance, although we observe no evidence for this scenario.  

 

Gene detection was similarly at high concordance with 89.7-93.3% of genes detected by both 

platforms for the four samples (Figure 2c). For all samples a subset of genes were detected by a 

single platform. The percentages of genes detected by a single platform were approximately 

equal for NextSeq 500 vs MGISEQ-2000, while the NovaSeq 6000 identified an additional 1.5-

1.9% of genes. Details of the the genes detected from each platform are provided in Supporting 

Material Tables 1-4. Based on the number of UMIs, genes detected by a single platform were 

very lowly expressed, and variation in detection is expected due to the level of expression. To 

further confirm this, we downsampled to an average of 105 reads per sample and repeated the 

comparison of gene detection. Interestingly, the NextSeq 500 detected an additional 0.8-1.7% 

genes in the iPSC and TMWC datasets, while the MGISEQ-2000 detected an additional 0.2-0.6% 

genes in the PBMC datasets. 

 

The capture efficiency in gene detection levels, based on the relationship between the mean 

UMIs per gene and the number of genes detected was a similar for the iPSC and human trabecular 

meshwork cells (TMWC) samples sequenced on the NextSeq 500 and MGISEQ-2000. However, 

we observed a slight increase in the capture efficiency for the two PBMC samples sequenced on 

the NovaSeq 6000 in comparison to the MGISEQ-2000 (Figure 3a). This is likely a function of the 

slightly higher sequencing accuracy in the UMI region of the read (Table 1), corresponding to an 

increase in the mean UMIs per cell from the NovaSeq 6000 (Table 2). As expected we observe a 

marginal increase in the estimated dropout rate for the two PBMC samples from the MGISEQ-

2000 compared with the NovaSeq 6000 (Figure 3b), although the correlation across all cells was 

high (0.989 and 0.988 respectively). Interestingly, there is no mean difference in the estimated 
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dropout rate for the iPSC and TMWC samples between NextSeq 500 and MGISEQ-2000 (Figure 

3b), and while the correlations across cells is lower (0.988 and 0.954 respectively) this is likely a 

function of the lower read depths for these samples, combined with greater variation in 

sequencing quality between platforms (Table 1). However, taken together, our analyses show 

that the gene detection, and quantification of transcript molecules via UMIs is highly consistent 

across platforms (Figure 3c-d). 

 
Identification of genetic variation and CRISPR guides 
 
The ability to call single nucleotide polymorphisms (SNPs) from scRNA-seq data allows 

researchers to use multiplexing strategies in the library generation stage, reducing the overall 

cost of running experiments where large sample sizes are needed (12). The power of 

demultiplexing a cell back to an individual donor is partly a function of the number of SNPs that 

can confidently be called from the short RNA section of the read. Using the iPSC sample, which 

comprises of cells multiplexed from two unrelated donors, we assigned cells to an origin donor 

by calling SNPs from the equalised total reads of sequence data generated by the NextSeq 500 

and MGISEQ-2000 using the demuxlet algorithm (12). Donor identity was confirmed using 

genotyped SNPs from an Illumina Global Screening array that had been imputed to the Haplotype 

Reference Consortium panel (13). Despite equalised read depths across platforms, we identified 

an additional 1,065,659 SNPs from the MGISEQ-2000 data. The additional SNPs allowed demuxlet 

to assign an additional 1,694 cells to the correct donor (Table 3, Figure 4), with the greater SNP 

detection likely due to the higher sequencing quality of the MGISEQ-2000 reads (Table 1). To 

verify that this was not a function of differences in the base-pair length of the RNA section of the 

read, we trimmed the BGI data to a total RNA-read length of 98 bp and re-called SNPs, and could 

still correctly identify an additional 1,663 cells.  

 

Finally, we evaluated the ability to detect the inserted guide RNAs (gRNA) from the TMWC that 

had been transfected with a CRISPR pool targeting 128 loci with the CROP-seq protocol. The 

guides are targeted to be inserted in the 3’ end of the gene and thus detectable from short-read 
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sequence data. We observed consistent detection of the number of cells per guide, and the 

number of UMIs per guide across both the NextSeq 500 and MGISEQ-2000 (Figure 4).   

 
Discussion 

 

To our knowledge, this study is the first to utilize MGISEQ-2000 platform for scRNA-seq, and the 

first to compare sequence performance for the widely used 10x Chromium platform against 

Illumina platforms. Our comprehensive benchmarking utilizes data from over 70,000 cells, and 

shows that the MGISEQ-2000 has to be highly comparable performance across a range of 

modalities to the Illumina NovaSeq 6000 platform, while being more cost effective (Supporting 

material table 5). When considering sequencing quality, as well as cell, UMI, and gene detection 

for single cell RNA-sequencing experiments, we found the Illumina NovaSeq 6000 and BGI 

MGISEQ-2000 platforms generated highly comparable data. Interestingly however, compared 

with the NextSeq 500, at equalised read depth, the BGI platform performs consistently better, 

identifying more cells, genes, and UMIs. We were able to call an additional 1,065,659 SNPs from 

sequence data generated by the BGI platform, enabling an additional one in seven cells to be 

assigned to the correct donor from a multiplexed library. It is also noteworthy that the NextSeq 

500 and MGISEQ-2000 detected similar frequencing of gRNAs from a pooled CRISPR single cell 

screen. This work provides a benchmark for high capacity sequencing platforms applied to high-

throughput single cell RNA-seq libraries.  

 

Methods 

 

Description of the single cell datasets and cell collection details 

 

A total of four scRNA-seq libraries were generated from three experimental scenarios, chosen to 

evaluate the ability of sequencing platforms to provide sufficient information to detect features 

such as germline genetic variation and CRISPR inserts. All experimental work performed in this 

study was approved by the Human Research Ethics committee (HREC) of the Royal Victorian Eye 

and Ear Hospital (11/1031H; 13/1151H) or the Tasmanian Health and Medical HREC (H0012902)  
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and conformed with the Declarations of Helsinki, under the requirements of the National Health 

& Medical Research Council of Australia (NHMRC). 

 

iPSC - Consisted of undifferentiated human induced pluripotent stem cells (iPSCs) maintained 

with StemFlex (ThermoFisher Scientific) that were derived from two unrelated individuals (14). 

Colonies were harvested using ReleSRTM (Stem Cell Tech) and were dissociated into a single cell 

suspension. Cells were counted and assessed for viability with Trypan Blue using a Countess II 

automated counter (Thermo Fisher Scientific), then pooled at a concentration of 391-663 cells/µL 

(3.91x105 - 6.63x105 cells/mL). Final cell viability estimates ranged between 95-97%. The two cell 

lines were then genotyped separately using the Infinium HumanCore-24 v1.1 BeadChip assay 

(Illumina), and SNPs were called from this assay with GenomeStudioTM V2.0 (Illumina). To 

generate the libraries, cells were partitioned and barcoded using high-throughput droplet 10x 

Genomics Chromium Controller (10x Genomics, USA) and the Single Cell 3' Library and Gel Bead 

Kit (V2; 10x Genomics; PN-120237). The estimated number of cells in each well in the Chromium 

chip was optimized to capture approximately 10,000 cells. GEM generation and barcoding, cDNA 

amplification, and library construction were performed according to standard protocol.  

 

TMWC - Comprised of cultured human trabecular meshwork cells (TMWCs) that had been 

transfected with a CROP-seq (Addgene: 99248) guide RNA (gRNA) pool targeting 128 loci, with 

the guides targeted to be inserted in the 3’ end of the the gene and thus detectable from short-

read sequence data. TMWCs were plated in T75 flasks and transfected with a pooled single guide 

RNA (sgRNA) library lentivirus containing sgRNA for 128 targets, 10 of which were control genes. 

Cells were harvested 7 days after virus transduction and were FACS sorted for EGFP-positive 

and viable cells (propidium iodide-negative cells) before applying to the Chromium System (10x 

Genomics) single cell RNA-sequencing workflow. Single cell suspensions were used to generate 

a Chromium library using the Chromium Single Cell 3’ v2 Library (10x Genomics; PC-120237). 

The estimated number of cells in each well in the Chromium chip was optimized to capture 

approximately 10,000 cells. 
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PBMC1 and PBMC2 - Consisted of peripheral blood mononuclear cell (PBMCs) collected from a 

total of 28 unrelated individuals. Peripheral blood samples were collected in Vacutainer Cell 

Preparation Tubes containing sodium heparin and ficoll (BD Biosciences: 362753), and were 

processed according to the manufacturer’s recommendations. Following separation, PBMCs 

were cryopreserved and stored. Samples were subsequently thawed, and each library contained 

a pool of PBMCs from 14 donors, with 40,000 cells loaded to achieve a targeted 20,000 cells per 

library.  

 

Illumina NextSeq 500 and NovaSeq 6000 sequencing 

The iPSC and TMWC libraries were sequenced on an Illumina NextSeq 500 (NextSeq control 

software v2.0.2/ Real Time Analysis v2.4.11) using a 150 cycle NextSeq High Output Reagent Kit 

v2 in stand-alone mode as follows: 26bp (Read 1), 8bp (Index), and 98bp (Read 2). The NextSeq 

500 sequencing was performed by the Institute of Molecular Bioscience sequencing core facility. 

The two PBMC libraries were sequenced on an Illumina NovaSeq 6000 (Software version: 1.4) 

using a 2x150 cycle S4 flowcell in standalone mode. The NovaSeq 6000 sequencing was 

performed by the Kinghorn Centre for Clinical Genomics Sequencing core facility.  

 

BGI MGISEQ-2000 sequencing 

Libraries generated using the 10x Genomics Chromium system require a conversion step using 

the MGIEasy Universal Library Conversion kit (App-A) (Part Number: 1000004155) before 

sequencing can be performed on the MGISEQ-2000 instrument. For each library, 10ng was 

amplified using 10 cycles of PCR to incorporate a 5’ phosphorylation on the forward strand only. 

Purified PCR product was then denatured and mixed with a “splint” oligonucleotide that is 

homologous to the P5 and P7 adapter regions of the library to generate a circle (Figure S1). A 

ligase reaction was then performed to create a complete ssDNA circle of the forward strand then 

an exonuclease digest was performed to remove single stranded non-circularized DNA 

molecules. Circular ssDNA molecules then underwent Rolling Circle Amplification (RCA) to 

generate 300-500 faithful copies of the libraries which then fold upon themselves to become 

DNA Nanoballs (DNB). Each DNB library was then flowed across a 1,500M feature patterned array 
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flow cell ready for sequencing using the MGISEQ-2000RS High-Throughput Sequencing Set (App-

A) (PE100) (Part Number: 1000005662). The custom cycle mode on the instrument was run to 

allow 26bp (Read 1) and 100bp (Read 2) cycles without a index barcode read due to only one 

sample being run per flow cell, and FASTQ files were generated locally on the instrument. 

Sequencing was performed in BGI Shenzhen, MGI R&D facility. 

 

Bioinformatic and computational analysis 

Sequencing data from both platforms were processed into transcript count tables using the Cell 

Ranger Single Cell Software Suite version 2.2.0 by 10x Genomics 

(http://www.10xgenomics.com/).  Base calls from the NextSeq 500 and NovaSeq 6000 Illumina 

sequencers were pre-processed as described by Zheng et al. (5). Base calls from the MGISEQ-

2000 were pre-processed as described by Huang et al. (15) into demultiplexed, processed reads. 

The BGI-formatted headers of the resulting FASTQ reads were converted to Illumina-formatted 

headers using custom Python scripts that are included with this publication’s accompanying 

repository. The quality of the raw sequencing data was assessed with FastQC v0.11.7 (16). The 

FASTQ files for both platforms were then processed with the cellranger count pipeline, where 

each sample was processed independently to generate the transcript count tables. Using STAR 

v2.5.1b (17), the iPSC library was mapped to the GRCh37/hg19 genome (release 84), while the 

PBMC libraries were mapped to the GRCh38 (release 88) Homo sapiens genome. The TMWC 

library was mapped to the GRCh38 (release 88) Homo sapiens genome that was spiked with gRNA 

and CROP-seq-associated sequences. This reference was prepared as described by Datlinger et 

al. (18). We note that, since the expression data is limited to the 3’ end of a gene and we used 

gene-level annotations, differences between reference versions, such as GRCh38, are unlikely to 

significantly alter conclusions. The resulting mapped counts for each pair of samples were then 

depth-equalized using the cellranger aggr pipeline, which downsampled raw reads from the 

higher-depth BGI library until the mean read depth per cell was equal to the mean read depth 

per cell of the Illumina library.  Downsampling of mapped data to 105 reads per sample was 

performed with DropletUtils (19). 
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Post-processing and biological analyses were performed on each sample using  depth-equalized 

data. Statistical analyses were performed in R, using the ascend (20), scran (21), biomaRt (22) 

and M3Drop (23) packages. First, the count matrices were loaded into R and separated by 

platform. Cell barcodes were extracted from the matrices and those detected by both platforms 

were identified. The genes of these cells were then compared in terms of identity and 

distribution. Counts from each platform underwent quality control separately. A cell quality 

matrix based on the following data types: library size (total mapped reads), total number of genes 

detected, percent of reads mapped to mitochondrial genes, and percent of reads mapped to 

ribosomal genes. Cells that had any of the four parameter measurements higher than 3x median 

absolute deviation (MAD) of all cells were considered outliers and removed from subsequent 

analysis (Table S1). Next, we applied two thresholds to remove cells with mitochondrial reads 

above 20% or ribosomal reads above 50% (Table S1). To exclude genes that were potentially 

detected from random noise, we removed genes that were detected in fewer than 0.1% of all 

cells. The data from both platforms were combined back into one dataset. The NBDrop function 

from the M3Drop R package was used on filtered, un-normalised UMI counts to compare dropout 

rates between platforms. Abundantly expressed ribosomal protein genes and mitochondrial 

genes were then discarded to minimize the influence of those genes in driving clustering and 

differential expression analysis. Cell-cell normalization was performed using the deconvolution 

method described by (21). The correlation of gene expression between platforms was calculated 

using normalised UMI counts. To evaluate capture efficiency and transcript length bias of genes, 

gene lengths were calculated by summing exonic lengths retrieved from from the ENSEMBL 

Homo sapiens gene database. These values were then plotted as shown in Figure S2. 

 

Additional analyses were conducted on the iPSC and TMWC samples to evaluate the influence of 

sequencing platform on properties specific to these experiments. Using genotype information 

from that was generated as described in (14), SNPs were called from the iPSC sample using 

demuxlet (12). To account for the downsampling of read depth in the MGISEQ-2000 data, only 

alignments from UMIs detected in the downsampled data were used. As the MGISEQ-2000 

sequencer produced a longer insert read at 100bp, the iPSC sequencing data was re-mapped to 
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the reference using reads that were truncated to 98bp. The reads were also downsampled to the 

same depth as the NextSeq 500 dataset. For the TMWC sample, gRNAs were detected using 

transcriptome data. This information was supplemented with read counts from the alignments 

using custom Python scripts that can be found in the accompanying repository. 
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Figures 
 
Figure 1 
 

 
Experimental design. Preparation of single cell libraries and sequencing using Illumina and BGI 
platforms and subsequent analysis. A: Human induced Pluripotent Stem Cells (iPSC) were 
generated generated from a human donor and underwent SNP genotyping in addition to scRNA-
seq. B: Trabecular MeshWork Cells (TMWC) derived from iPSCs were screened with a CRISPR-
based molecular screen (CROP-seq).  C: Peripheral Blood Mononuclear Cells (PBMC). Single cell 
libraries were prepared from two individual pools of PBMCs. 
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Figure 2: 

 
Cell barcodes and UMIs detected by platforms. We observed a high concordance of cell barcodes 
detected in common to both platforms (A), and the distributions of the Total UMI counts 
associated with a cell barcode shows a low average UMIs for cell barcodes detected by one 
platform (B). In each sample, both platforms detected similar total numbers of genes (C), 
although the mean of the UMIs for genes detected by a single platform shows that platform bias 
in gene detection was limited to lowly expressed genes (D). 
  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/552588doi: bioRxiv preprint 

https://doi.org/10.1101/552588
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3 

 
 
Comparison of gene capture between platforms. A: Capture efficiency of each platform. 
Efficiency is evaluated from the number of genes with the mean number of transcripts of a gene 
expressed by a cell. B: Correlation of dropout rate between platforms. Dropout rates for each 
platform were calculated by the DANB model from M3Drop package. C: Principal Components 
one and two calculated from 1,500 of the most variable genes. D: Correlation of gene expression 
in cells identified by both sequencing platforms. Correlation of each cell is represented in the 
histograms, while the expression values of genes in the cells with the lowest and highest 
correlations are represented in the scatter plots. 
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Figure 4 

 
Experiment-specific metrics. A. Metrics related to guide RNA assignment in TMWC. This excludes 
cells that were not affiliated with a guide RNA and cells that with ambiguous assignments. B. 
Number of SNPs called per cell in iPSCs. SNPs were called from alignments of cells found in 
NextSeq 500 and MGISEQ-2000 datasets. 
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Tables 

 

Table 1: Sequence quality 

 iPSC TMWC PBMC1 PBMC2 

NextSe
q 500 

MGISEQ-
2000 

|Δ| NextSeq 
500 

MGISEQ
-2000 

|Δ| NovaSeq 
6000 

MGISEQ-
2000 

|Δ| NovaSeq 
6000 

MGISEQ-
2000 

|Δ| 

Valid 
barcodes 

97.20 96.40 0.80 97.90 96.80 1.10 98.00 97.00 1.00 98.00 97.00 1.00 

Reads 
mapped 
to 
genome 

80.60 97.80 17.2 87.30 98.00 10.70 95.30 98.10 2.80 95.20 97.90 2.70 

Q30 in 
barcode 

93.00 87.90 5.10 94.60 87.80 6.80 96.10 91.80 4.30 96.10 90.50 5.60 

Q30 in 
UMI 

92.20 87.30 4.90 93.90 87.10 6.80 95.90 91.80 4.10 95.90 90.00 5.90 

Q30 in 
RNA 

55.90 86.60 30.70 68.40 88.00 19.60 92.00 89.00 3.00 92.20 88.00 4.20 

Fraction 
of reads 
in cells 

79.20 80.10 0.90 95.00 95.10 0.10 93.70 94.80 1.10 94.10 95.20 1.10 
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Table 2: Cell metrics 

 iPSC TMWC 

NextSeq 500 MGISEQ-
2000 

MGISEQ-
2000 

(Equalised) 

|Δ| (Equal 
depth) 

NextSeq 500 MGISEQ-
2000 

MGISEQ-
2000 

(Equalised) 

|Δ|(Eq
ual 

depth) 

Estimated number of 
cells 

12,859 12,916 12,916 57 18,765 18,784 18,784 19 

Total number of reads 159,010,774 1,122,883,3
12 

159,715,620 704,846 410,550,815 1,119,142,9
07 

410,966,50
7 

415,692 

Mean reads per cell 12,365 86,937 12,366 1 21,878 59,579 21,879 1 

Median UMI counts per 
cell 

4,677 22,677 5,309 632 10,468 18,411 10,011 457 

Median genes per cell 1,857 4,691 2,000 143 2,754 3,781 2,667 87 

Total number of genes 
detected 

22,329 25,154 22,357 28 22,967 23,999 22,812 155 

 PBMC1 PBMC2 

 
NextSeq 500 

MGISEQ-
2000 

MGISEQ-
2000 

(Equalised) 

Δ (Equal 
depth) 

NextSeq 500 
MGISEQ-

2000 

MGISEQ-
2000 

(Equalised) 

Δ 
(Equal 
depth) 

Estimated number of 
cells 

12,859 12,916 12,916 57 18,765 18,784 18,784 19 
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Total number of reads 159,010,774 1,122,883,3
12 

159,715,620 704,846 410,550,815 1,119,142,9
07 

410,966,50
7 

415,692 

Mean reads per cell 12,365 86,937 12,366 1 21,878 59,579 21,879 1 

Median UMI counts per 
cell 

4,677 22,677 5,309 632 10,468 18,411 10,011 457 

Median genes per cell 1,857 4,691 2,000 143 2,754 3,781 2,667 87 

Total number of genes 
detected 

22,329 25,154 22,357 28 22,967 23,999 22,812 155 
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Table 3: Predicted assignments of cells to donor from iPSCs 

Prediction NextSeq 500 MGISEQ-2000 (Downsampled) MGISEQ-2000 (Downsampled, 
98bp reads) 

Unassigned 6016 4322 4311 

Correctly assigned 4272 5966 5977 
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Supporting material tables 

 

Table S1: Cell Filtering 

 

 

Sample 
Cells filtered by 
library size 

Cells filtered by 
low expression 

Cells filtered by 
mitochondrial 
transcript expression 

Cells filtered by 
ribosomal transcript 
expression 

Genes 
filtered by 
low 
expression 

Illumina 
NextSeq 500 

iPSC 104 82 325 42 16578 

TMWC 244 184 382 80 16264 

Illumina 
NovaSeq 6000 

PBMC1 49 1 450 1 18483 

PBMC2 64 0 382 0 18153 

MGISEQ-2000 iPSC 103 90 332 48 16413 

TMWC 226 142 377 62 16439 

PBMC1 57 2 432 1 18969 

PBMC2 73 0 397 0 18668 
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Supporting material figures 

Figure S1 

 
Conversion of Illumina-specific Single Cell library to BGI.  
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Figure S2. 

 
Relationship between gene length and abundance. Gene lengths were grouped into ten bins 
of equal number. 
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