




Figure 4 

 
Experiment-specific metrics. A. Metrics related to guide RNA assignment in TMWC. This excludes 
cells that were not affiliated with a guide RNA and cells that with ambiguous assignments. B. 
Number of SNPs called per cell in iPSCs. SNPs were called from alignments of cells found in 
NextSeq 500 and MGISEQ-2000 datasets. 
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Tables 

 

Table 1: Sequence quality 

 iPSC TMWC PBMC1 PBMC2 

NextSe
q 500 

MGISEQ-
2000 

|Δ| NextSeq 
500 

MGISEQ
-2000 

|Δ| NovaSeq 
6000 

MGISEQ-
2000 

|Δ| NovaSeq 
6000 

MGISEQ-
2000 

|Δ| 

Valid 
barcodes 

97.20 96.40 0.80 97.90 96.80 1.10 98.00 97.00 1.00 98.00 97.00 1.00 

Reads 
mapped 
to 
genome 

80.60 97.80 17.2 87.30 98.00 10.70 95.30 98.10 2.80 95.20 97.90 2.70 

Q30 in 
barcode 

93.00 87.90 5.10 94.60 87.80 6.80 96.10 91.80 4.30 96.10 90.50 5.60 

Q30 in 
UMI 

92.20 87.30 4.90 93.90 87.10 6.80 95.90 91.80 4.10 95.90 90.00 5.90 

Q30 in 
RNA 

55.90 86.60 30.70 68.40 88.00 19.60 92.00 89.00 3.00 92.20 88.00 4.20 

Fraction 
of reads 
in cells 

79.20 80.10 0.90 95.00 95.10 0.10 93.70 94.80 1.10 94.10 95.20 1.10 
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Table 2: Cell metrics 

 iPSC TMWC 

NextSeq 500 MGISEQ-
2000 

MGISEQ-
2000 

(Equalised) 

|Δ| (Equal 
depth) 

NextSeq 500 MGISEQ-
2000 

MGISEQ-
2000 

(Equalised) 

|Δ|(Eq
ual 

depth) 

Estimated number of 
cells 

12,859 12,916 12,916 57 18,765 18,784 18,784 19 

Total number of reads 159,010,774 1,122,883,3
12 

159,715,620 704,846 410,550,815 1,119,142,9
07 

410,966,50
7 

415,692 

Mean reads per cell 12,365 86,937 12,366 1 21,878 59,579 21,879 1 

Median UMI counts per 
cell 

4,677 22,677 5,309 632 10,468 18,411 10,011 457 

Median genes per cell 1,857 4,691 2,000 143 2,754 3,781 2,667 87 

Total number of genes 
detected 

22,329 25,154 22,357 28 22,967 23,999 22,812 155 

 PBMC1 PBMC2 

 
NextSeq 500 

MGISEQ-
2000 

MGISEQ-
2000 

(Equalised) 

Δ (Equal 
depth) 

NextSeq 500 
MGISEQ-

2000 

MGISEQ-
2000 

(Equalised) 

Δ 
(Equal 
depth) 

Estimated number of 
cells 

12,859 12,916 12,916 57 18,765 18,784 18,784 19 
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Total number of reads 159,010,774 1,122,883,3
12 

159,715,620 704,846 410,550,815 1,119,142,9
07 

410,966,50
7 

415,692 

Mean reads per cell 12,365 86,937 12,366 1 21,878 59,579 21,879 1 

Median UMI counts per 
cell 

4,677 22,677 5,309 632 10,468 18,411 10,011 457 

Median genes per cell 1,857 4,691 2,000 143 2,754 3,781 2,667 87 

Total number of genes 
detected 

22,329 25,154 22,357 28 22,967 23,999 22,812 155 
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Table 3: Predicted assignments of cells to donor from iPSCs 

Prediction NextSeq 500 MGISEQ-2000 (Downsampled) MGISEQ-2000 (Downsampled, 
98bp reads) 

Unassigned 6016 4322 4311 

Correctly assigned 4272 5966 5977 
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Supporting material tables 

 

Table S1: Cell Filtering 

 

 

Sample 
Cells filtered by 
library size 

Cells filtered by 
low expression 

Cells filtered by 
mitochondrial 
transcript expression 

Cells filtered by 
ribosomal transcript 
expression 

Genes 
filtered by 
low 
expression 

Illumina 
NextSeq 500 

iPSC 104 82 325 42 16578 

TMWC 244 184 382 80 16264 

Illumina 
NovaSeq 6000 

PBMC1 49 1 450 1 18483 

PBMC2 64 0 382 0 18153 

MGISEQ-2000 iPSC 103 90 332 48 16413 

TMWC 226 142 377 62 16439 

PBMC1 57 2 432 1 18969 

PBMC2 73 0 397 0 18668 
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Supporting material figures 

Figure S1 

 
Conversion of Illumina-specific Single Cell library to BGI.  
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Figure S2. 

 
Relationship between gene length and abundance. ​Gene lengths were grouped into ten bins 
of equal number. 

 
 

.CC-BY-ND 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted February 24, 2019. . https://doi.org/10.1101/552588doi: bioRxiv preprint 

https://doi.org/10.1101/552588
http://creativecommons.org/licenses/by-nd/4.0/

