1 Single AAV-mediated mutation replacement genome editing in limited number of

2 photoreceptors mediate marked visual restoration

- 3
- 4 Short title: Single AAV MMEJ genome editing
- 5
- 6 Koji M Nishiguchi,^{1,2†*} Kosuke Fujita,^{3†} Fuyuki Miya,⁴ Shota Katayama,¹ Toru Nakazawa^{1,2,3*}

 $\overline{7}$

- 8 ¹ Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of
- 9 Medicine, Sendai 980-8574, Japan
- ² Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai
- 11 980-8574, Japan
- ³ Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate
- 13 School of Medicine, Sendai 980-8574, Japan
- ⁴ Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical
- 15 and Dental University, Tokyo 113-8510, Japan
- 16
- ¹⁷ [†]These authors contributed equally to the work.
- ^{*}Corresponding authors. Tel: +81-22-717-7294

19 Koji M Nishiguchi, E-mail: <u>nishiguchi@oph.med.tohoku.ac.jp</u>

- 20 Toru Nakazawa, E-mail: <u>ntoru@oph.med.tohoku.ac.jp</u>
- 21
- 22 Abstract

23	Supplementing wildtype copies of functionally defective genes (gene
24	supplementation) with adeno-associated virus (AAV) is a strategy being explored
25	clinically for various retinal dystrophies. However, the low cargo limit of this vector
26	(~5,000 bps) allows its use in only a fraction of patients with mutations in relatively
27	small pathogenic genes. To overcome this issue, we developed a single AAV platform
28	that allows local replacement of a mutated sequence with its wildtype counterpart,
29	based on combined CRISPR-Cas9 and micro-homology-mediated end-joining (MMEJ).
30	In blind mice, the mutation replacement rescued ~10% of photoreceptors, resulting in
31	an incredible ~10,000-fold improvement in light sensitivity and increasing visual
32	acuity to ~60% of the controls. Surprisingly, these effects were comparable to
33	restoration mediated by gene supplementation, which targets ~70% of
34	photoreceptors. This strategy paves the way for treatment of inherited disorders
35	caused by mutations in larger genes, for which conventional gene supplementation
36	therapy is not currently feasible.

 $\mathbf{2}$

38 Introduction

39	Delivery of wild-type copies of the defective gene (gene supplementation) in retinal
40	dystrophy patients with loss of function mutations via adeno-associated virus (AAV) has
41	shown promising therapeutic effects. ¹ However, the stringent cargo limit of the vector (4,700
42	- 5,000 bps) 2 allows its application to only a fraction of the patients with mutations in
43	relatively small pathogenic genes. For example, according to our recent genetic survey of
44	Japanese patients with retinitis pigmentosa, the most frequent inherited retinal degeneration,
45	more than 90% were shown to have mutations in larger genes untreatable by AAV-mediated
46	gene supplementation. ³ Thus, vast majority of these patients require other approaches
47	other than AAV-mediated gene supplementation to treat their mutations, except for rare
48	exceptions. ⁴ Recently, the CRISPR-Cas9-mediated allele knock-out genome editing
49	strategy, based on non-homologous end joining (NHEJ) has been successfully applied to
50	correct gain-of-function mutations via AAV. ^{5, 6, 7, 8} One of the unique advantages of the
51	genome editing approach is that it allows local treatment of the genome, such that the
52	approach does not depend on the size of the target gene. However, genome editing for
53	loss-of-function mutations in larger genes that require local replacement of the mutated
54	sequence with a wildtype counterpart (mutation replacement) has not been successful in

55	treatment of neuronal disorders primarily affecting neurons, due to its low editing efficiency. ^{9,}
56	^{10, 11, 12} This could be partly attributed to the requirement of two separate vectors for this
57	approach, in which various components including Cas9, two guide RNAs (gRNAs) and U6
58	promoters, and DNA template and flanking homology arms all needs to be contained.
59	Recently, extremely small homology arms of ~20 bps (microhomology arms), relative to the
60	conventional homology arms sized a few hundred bps or more, have been successfully
61	applied to edit mammalian genome in vivo. ¹³ This system termed microhomology-mediated
62	end joining (MMEJ) reportedly allows precise integration of a DNA donor in a desired
63	genomic location. ¹⁴ In this study, we aim to develop a single AAV vector platform for
64	mutation replacement genome editing using MMEJ. Through application of the platform in
65	mouse models of retinal dystrophy, we show that a robust restoration of the visual function
66	can be achieved, supported by an improved genome editing efficacy.
67	
68	Results
69	First, we generated mutants of preexisting retina-specific promoters and conducted
70	in vivo AAV reporter assays (Fig. S1a-e and Table S1). The smallest promoter that
71	maintained neural retina-specific transcription was a 93-bp mutant GRK1 promoter with
72	reporter expression in 65.5% of the photoreceptors, including the cones (Fig. S1c). This was

73	used to drive SaCas9 (3.2 Kb) expression. We tested our single-AAV vector platform in
74	Gnat1 ^{IRD2/IRD2} /Pde6c ^{cpfl1/cpfl1} mice; the Gnat1 and Pde6c defects in these mice cause
75	blindness due to a functional lack of rods and cones, ¹⁵ leaving behind only a residual cortical
76	light response to brightest flashes ¹⁶ mediated by <i>Gnat</i> 2. ¹⁷ This allows the clear observation
77	of therapeutic effects. We used our platform to correct IRD2 mutations in Gnat1; these
78	mutations constitute a homozygous 59-bp deletion in intron 4 (Fig. S2a), preventing protein
79	expression in the rods ¹⁸ , which comprise ~75% of murine retinal cells. ¹⁹ Six gRNAs
80	designed to flank the mutation were assessed with a T7 endonuclease 1 (T7E1) assay (Fig.
81	S2b,c and Table S2). The gRNA pair (1+4) that excised the mutation most efficiently was
82	selected.
82 83	selected. The constructed prototype single-AAV vector (MMEJ vector; Fig 1a and Fig.
83	The constructed prototype single-AAV vector (MMEJ vector; Fig 1a and Fig.
83 84	The constructed prototype single-AAV vector (MMEJ vector; Fig 1a and Fig. S3a,f,g) that allows mutation replacement via MMEJ was then injected sub-retinally in
83 84 85	The constructed prototype single-AAV vector (MMEJ vector; Fig 1a and Fig. S3a,f,g) that allows mutation replacement via MMEJ was then injected sub-retinally in 6M-old blind mice. Mutations of up to a few bp were designed in the gRNA target sites
83 84 85 86	The constructed prototype single-AAV vector (MMEJ vector; Fig 1a and Fig. S3a,f,g) that allows mutation replacement via MMEJ was then injected sub-retinally in 6M-old blind mice. Mutations of up to a few bp were designed in the gRNA target sites flanking the donor sequence to prevent repeated cleavage of the sites after successful
83 84 85 86 87	The constructed prototype single-AAV vector (MMEJ vector; Fig 1a and Fig. S3a,f,g) that allows mutation replacement via MMEJ was then injected sub-retinally in 6M-old blind mice. Mutations of up to a few bp were designed in the gRNA target sites flanking the donor sequence to prevent repeated cleavage of the sites after successful mutation replacement. At this age, the rods show little sign of degeneration. ²⁰ Six weeks

91	exclusively in the cells and retinal area with reporter expression (Fig. 1c), suggesting a
92	causal relationship between SaCas9 and GNAT1 expression. Furthermore, histology
93	showed no sign of accelerated cone degeneration as a side effect of the treatment, although
94	we have no evidence that genome editing occurs in cones (Fig. 1d and S1c). Next, we
95	investigated the effects of Gnat1 mutation replacement on mRNA expression of related
96	genes (Fig. 1e). The expression of <i>Rho</i> and <i>Pde6b</i> , both of which cooperate with <i>Gnat1</i> to
97	signal phototransduction in rods, ²¹ and of <i>Rcvrn</i> , a marker of both rods and cones, were not
98	reduced in the eyes of untreated blind mice and remained unchanged after the treatment.
99	However, the expression of the rod bipolar cell marker <i>Pkca</i> , which had been reduced to
100	29.3% of its expression in the controls, nearly doubled to 50.0% following the treatment,
101	indicating that the treated rods interacted with the downstream bipolar cells. Meanwhile, the
102	absolute editing efficiency deduced from Gnat1 mRNA expression was ~12.7% (Fig. 1f). In
103	contrast, when microhomology arms (MHAs) or gRNA target sites flanking the donor
104	sequence were removed from the prototype MMEJ vector (Fig. S3c,d), the efficiency was
105	dramatically reduced, consistent with mutation replacement mediated by MMEJ.
106	Furthermore, testing with a 6-Hz flicker electroretinogram (ERG), which reflects the number
107	of functional photoreceptors, revealed responses averaging 11.2% of that in the control mice
108	(Fig. 1g). The effect was severely diminished after the intravitreal injection of LAP4, a

109	glutamate analog that blocks synaptic transmission between the photoreceptors and
110	ON-bipolar cells. ²⁰ This is consistent with functional connection of the treated rods with
111	downstream neural circuits. The result was further corroborated by a single-flash ERG
112	paradigm: mice pretreated with MMEJ vector and then injected with LAP4 showed reduced
113	b-waves generated by the ON bipolar cells including the rod bipolar cells, and preserved
114	a-waves driven by rods (Fig. 1h). Again, the modified vectors without MHAs or gRNA target
115	sites, showed no discernable response in either ERG protocol, supporting the specific role
116	of MMEJ in mutation replacement. These results were consistent with ~10% success in
117	mutation replacement via MMEJ in the rods and functional integration of the treated cells
118	into the retinal circuitry.
118 119	into the retinal circuitry. Next, we carried out PCR-based sequencing analyses of the on-target site <i>in vitro</i>
119	Next, we carried out PCR-based sequencing analyses of the on-target site in vitro
119 120	Next, we carried out PCR-based sequencing analyses of the on-target site <i>in vitro</i> (Fig. S4) and <i>in vivo</i> (Fig. 2). The <i>in vitro</i> analysis showed a 10.3% success rate after MMEJ
119 120 121	Next, we carried out PCR-based sequencing analyses of the on-target site <i>in vitro</i> (Fig. S4) and <i>in vivo</i> (Fig. 2). The <i>in vitro</i> analysis showed a 10.3% success rate after MMEJ mutation replacement, higher than the rate of 3.8% with a different mutation replacement
 119 120 121 122 	Next, we carried out PCR-based sequencing analyses of the on-target site <i>in vitro</i> (Fig. S4) and <i>in vivo</i> (Fig. 2). The <i>in vitro</i> analysis showed a 10.3% success rate after MMEJ mutation replacement, higher than the rate of 3.8% with a different mutation replacement strategy (homology-independent targeted integration, HITI; Fig. S3e-g and S4a,b). ⁹ Similarly,
 119 120 121 122 123 	Next, we carried out PCR-based sequencing analyses of the on-target site <i>in vitro</i> (Fig. S4) and <i>in vivo</i> (Fig. 2). The <i>in vitro</i> analysis showed a 10.3% success rate after MMEJ mutation replacement, higher than the rate of 3.8% with a different mutation replacement strategy (homology-independent targeted integration, HITI; Fig. S3e-g and S4a,b). ⁹ Similarly, the success rate of <i>in vivo</i> mutation replacement in the genome-edited rods was 11.1% and

127	approach (Fig. 2b-d). In both the in vitro and in vivo analyses, MMEJ vectors without MHAs
128	or gRNA target sites did not result in any successful mutation replacements. Meanwhile, the
129	major editing outcome was deletion caused by a simple excision of the IRD2 mutation for
130	both in vitro and in vivo analyses. Unplanned in vivo on-target integrations of the AAV
131	genome were present, but at a lower rate than deletions. Extended in vivo on-target site
132	sequencing and mRNA analysis (Fig. 2a-f) conducted 3M post-treatment revealed a similar
133	absolute success rate (corrected editing rate of 11.0%) accompanied by the sustained or
134	slightly reduced expression of SaCas9 mRNA and gRNAs (Fig. 2g,h), demonstrating the
135	stability of the platform. The result also indicates that the treatment effect nearly plateaus by
136	1M. Although accurate estimation by PCR based sequencing is difficult, the results support
137	the stable ~10% absolute editing efficiency at the genome level in the rods with
138	MMEJ-mediated mutation replacement.
139	Then, off-target analysis was performed with a T7E1 assay and PCR-based
140	sequencing of 14 predicted sites (7 for each gRNA, Table S2). These showed no mutation
141	events in retinas collected 1M after MMEJ vector injection (Fig. S5). In these sites, whole
142	genome sequencing of 4 retinas of 4 mice collected 1M post-injection (average read depth
143	of 158 per base) and an additional 3 retinas of 3 mice collected 4M post-injection (average
144	read depth of 126 per base) revealed no off-target events (Table S3). In addition, we listed

145	up additional 59 potential off-target sites in an unbiased manner, by selecting all variants in
146	whole genome sequence data that were present in 3 independent samples collected after
147	the therapeutic transfection of murine Neuro2A cells, but were not present in a single
148	sample collected before transfection (Table. S3). No indels were observed in these sites
149	using the whole genome sequence data from the 7 retinas also used for the on-target
150	analysis (average read depth of 219 per site). Furthermore, there was no evidence of AAV
151	integration into the mouse genome outside of the on-target site. Together, these results
152	indicate that off-target indel formation was rare, if it occurred at all.
153	Next, we investigated the therapeutic effects of MMEJ-mediated mutation
154	replacement. Light sensitivity in the visual cortex was assessed with flash visually evoked
155	potentials (fVEPs). Surprisingly, cortical responses contralateral to the treated eye revealed
156	a ~10,000-fold (range: 1,000 – 100,000-fold) improvement in light sensitivity, equivalent to
157	gene supplementation in \sim 70% of the photoreceptors (Fig. 3a, S1f, S3h, and S6a) with
158	greater ERG rescue (Fig. S6b,c). ¹⁶ Changes in light-induced behavior (fear conditioning, Fig.
159	3b) also reflected this improvement. Furthermore, cortical responses to phase-reversal
160	gratings of various spatial resolutions, i.e., the pattern VEP (pVEP), showed larger
161	amplitudes post-treatment (Fig. 3c). The threshold of spatial resolution of vision (i.e., visual
162	acuity), determined by measuring the optokinetic response (OKR), was restored in the

163	treated mice to 59.1% of the control mice, also similar to the effect of gene supplementation
164	(Fig. 3d). Taken together, MMEJ-mediated Gnat1 mutation replacement allowed substantial
165	improvement of light sensitivity and visual acuity, comparable to the effects delivered by
166	gene supplementation.
167	We also used MMEJ-mediated mutation replacement to treat 2M-old Gnat1 ^{IRD2/IRD2}
168	mice, which retain cone function and serve as a model of human retinal dystrophy. ²² In the
169	early course of the disease, patients suffer from severe loss of light sensitivity with
170	preserved visual acuity. ²² A histological analysis showed scattered GNAT1-postive
171	photoreceptors in the treated mice (Fig. 4a). RT-PCR measurement indicated that absolute
172	genome editing efficiency was 7.2% (Fig. S7a). The fVEP analysis showed a ~1,000-fold
173	increase in light sensitivity (Fig. 4b). This was confirmed behaviorally in a fear conditioning
174	experiment (Fig. 4c). However, the improvement in retinal function could not be isolated
175	from preexisting cone function by ERG testing, and visual acuity remained unchanged in
176	pVEP and OKR testing (Fig. S7b-d). These results show that the therapeutic effects of our
177	platform extended to an animal model of human disease.
178	

179 Discussion

180	This study shows that mutation replacement genome editing with a single AAV
181	vector can achieve striking improvements in light sensitivity and visual acuity comparable to
182	that of gene supplementation. ¹⁶ The results showed that the gene supplementation can treat
183	by far a larger number of retinal neurons compared to the mutation replacement genome
184	editing, resulting in substantially larger ERG responses directly proportional to the increased
185	number of light-responsive photoreceptors in the former. However, the light sensitivity as
186	defined by dimmest recognizable light stimulus and visual acuity was not very different
187	between the two treatment approaches (Figure 3a right lower panel). This is because
188	thresholds of these visual perceptions reflect functional integrity of defined number of
189	photoreceptors rather the total number of treated retinal neurons.
189 190	photoreceptors rather the total number of treated retinal neurons. This therapeutic platform renders a major step forward from the dual vector-based
190	This therapeutic platform renders a major step forward from the dual vector-based
190 191	This therapeutic platform renders a major step forward from the dual vector-based mutation replacements, which generally yield an absolute editing efficiency of less than
190 191 192	This therapeutic platform renders a major step forward from the dual vector-based mutation replacements, which generally yield an absolute editing efficiency of less than $\sim 5\%^{10, 11, 12}$ in post-mitotic cells, including 4.5% efficiency at the level of mRNA in the retinal
190 191 192 193	This therapeutic platform renders a major step forward from the dual vector-based mutation replacements, which generally yield an absolute editing efficiency of less than $\sim 5\%^{10, 11, 12}$ in post-mitotic cells, including 4.5% efficiency at the level of mRNA in the retinal pigment epithelium in a rat model of retinal dystrophy, ⁹ compared to the efficiency of up to
190 191 192 193 194	This therapeutic platform renders a major step forward from the dual vector-based mutation replacements, which generally yield an absolute editing efficiency of less than $\sim 5\%^{10, 11, 12}$ in post-mitotic cells, including 4.5% efficiency at the level of mRNA in the retinal pigment epithelium in a rat model of retinal dystrophy, ⁹ compared to the efficiency of up to $\sim 10\%$ shown here by genomic, mRNA, and functional analysis. This paves the way for

198

- 199 Methods
- 200
- 201 Animals

202	Pde6c ^{cpf11/cpf11} Gnat1 ^{IRD2/IRD2} mice (i.e., blind mice) were derived from Gnat1 ^{IRD2/IRD2}
203	mice (Takeda, Japan), ¹⁸ which are rod-defective, and <i>Pde6c</i> cpfi1/cpfi1 mice (Jackson
204	Laboratory, Bar Harbor, ME), ²³ which are cone-defective. The phenotype of these mice has
205	been previously studied and reported. 16 For the <i>in vivo</i> reporter assay, an AAV vector (1 $ imes$
206	10^{12} gc mL ⁻¹) was injected (1.5 μ L per injection) into the ventral subretinal space of
207	3-month-old C57BL/6J mice (Japan SLC Inc., Hamamatsu, Japan) as previously reported.
208	24 For mutation placement genome editing, the AAV vector (1 × 10 ¹² gc mL ⁻¹) was injected
209	(1.5 μ L per injection) into the dorsal and ventral subretinal space of
210	Pde6c ^{cpf1/cpf1} Gnat1 ^{IRD2/IRD2} mice (6-month-old) and Gnat1 ^{IRD2/IRD2} mice (2-month-old).
211	Control animals comprised age-matched Pde6c cpf11/cpf11 mice or C57BL/6J mice (Japan SLC
212	Inc., Hamamatsu, Japan). The surgical procedures were performed after intraperitoneal
213	administration of a mixture of ketamine (37.5 mg kg ⁻¹) and medetomidine (0.63 mg kg ⁻¹). The
214	medetomidine was reversed by intraperitoneal administration of atipamezole (1.25 mg kg ⁻¹)
215	after the surgery. Sample sizes were calculated using an on-line sample size calculator

216	(https://www.stat.ubc.ca/)	adopting a two-sided	alpha-level of 0.05,	80% power. The
-----	----------------------------	----------------------	----------------------	----------------

- 217 parameters included the means and standard deviation predicted from a previous study we
- 218 conducted with a similar experimental approach to evaluate effects of AAV-mediated gene
- supplementation therapy on a group of mice that had a similar genetic background.¹⁶ Rarely,
- 220 the sample size was limited by the availability of mice. The mice were handled in
- accordance with the ARVO Statement On the Use of Animals in Ophthalmic and Vision
- 222 Research and the Tohoku University guidelines for the care and use of animals. All
- 223 experimental procedures were conducted after approval by the relevant committee for
- animal experiments at Tohoku University Graduate School of Medicine.
- 225

226 Miniaturization of photoreceptor-specific promoter

227	Various known small promoters (Table S1) were tested before deletion mutant
228	promoters were synthesized by modifying the <i>RCV</i> promoter 25 or <i>GRK1</i> promoter 26 (Figure
229	S1c, Thermo Fisher Scientific, Waltham, MA; Eurofins Genomics, Tokyo, Japan). They were
230	each sub-cloned into a pAAV-MCS Promoterless Expression Vector (Cell Biolabs Inc., San
231	Diego, CA) containing an enhanced green fluorescent protein (EGFP) gene as a reporter, as
232	previously described. ^{24, 27} AAV2/8 containing the reporter constructs were generated and
233	purified following the method described below. Each virus was injected into 2 eyes of

234 C57BL/6J mice. The eyes were collected 1 week after the injection and were processed for

- histological assessment as described below.
- 236
- 237 Selection of gRNAs
- 238 Three gRNAs each were designed using Cas-Designer
- 239 (http://www.rgenome.net/cas-designer/) on both sides of the mutation in the intron 4 and
- exon 4 of *Gnat1*, as displayed in Figure S2 (Assembly: GRCm38/mm10). Oligos for each
- gRNA were subcloned with pX601 vector (gRNA expression plasmid, addgene #61591).
- 242 Neuro2a cells (Cell Resource Center for Biomedical Research, Tohoku University, Sendai,
- Japan) were transfected with an gRNA expression plasmid using lipofectamine 3000
- transfection reagent (Thermo Fisher Scientific). Genomic DNA was extracted 72 hrs
- post-transfection using a DNA extraction kit (QIAamp DNA Mini kit; Qiagen, Hilden,
- Germany). This was subjected to a T7E1 assay following the manufacturer's instructions
- 247 (New England Biolabs, Ipswich, MA). In brief, genomic fragments containing the gRNA
- target site were amplified with PCR and purified using NucleoSpin Gel and a PCR Clean-up
- kit (Macherey-Nagel, Düren, Germany). Then 200 ng of each of the PCR products derived
- 250 from the transfected and non-transfected cells were denatured at 95° C for 5 min and
- reannealed, then digested with T7E1 for 30 min at 37° C, followed by electrophoresis in 2%

252	agarose gel. After measuring the density of the bands with ImageJ, %indels was calculated
253	following the formula: 100 x (1–(1–cleaved band intensity/total band intensities)1/2). 28 The
254	sequences of all the PCR primers used in this study are presented in Table S2.
255	
256	Construction and purification of plasmid and AAV vectors
257	The all-in-one CRISPR/SaCas9 plasmid (pX601) for mutation replacement
258	genome editing was assembled as shown in Fig. S1. The 93-bp <i>GRK1</i> promoter (<i>GRK1-93</i>)
259	was used to drive SaCas9 (Ac. No. CCK74173.1; from pX601) expression. Oligonucleotides
260	for the donor template, which comprised the flanking micro-homology arms, gRNA target
261	sites and the donor sequence, were synthesized and inserted into the vector using a DNA
262	ligation kit (Clontech, Mountain View, CA). To avoid repeated cleavage after successful
263	mutation replacement, mutations were introduced in the flanking gRNA target sites. The 4
264	bp mutation in the 5' gRNA-1 target site inside exon 4 was selected using codon
265	optimization tool GENEisu (http://www.geneius.de/GENEius/). For selecting 1 bp mutation in
266	the 3' gRNA-4 target site, the corresponding genomic sequences from Mus musculus, Mus
267	Caloli, Mus phari and Rattus norvegicus were aligned by ClustalW
268	(https://clustalw.ddbj.nig.ac.jp/). The sequences were perfectly conserved except for a
269	single variant in Rattus norvegicus, which was chosen for inducing mutation. Mutations at

270 both target sites were confirmed with off-target site analysis tool CRISPOR

271	(http://crispor.tefor.net/) to yield lowest probability of cleavage (Cutting frequency
272	determination score of 0.00). For labeling of SaCas9 expression, 2A peptide and mKO1
273	(monomeric Kusabira-Orange 1) red fluorescence protein cDNA (MBL, Nagoya, Japan)
274	were inserted downstream of SaCas9 into the vector using a NEBuilder HiFi assembly kit
275	(New England Biolabs). For construction of plasmid used for cell sorting, MMEJ vector was
276	modified so that 2A peptide and EGFP cDNA (Clontech) were inserted downstream of the
277	SaCas9 driven by CMV promoter replaced for the GRK1-93 promotor. The NoMHA (no
278	mirohomology arm), NoTS (no target site) and HITI (homology-independent targeted
279	integration) plasmids was assembled as shown in Fig. S1. Each fragment was synthesized
280	and inserted into the vector using the same regents described above. We also constructed a
281	plasmid vector for gene supplementation of $GNAT1$ as previously described ¹⁶ (shown in
282	Fig.S1h). In brief, full length GNAT1 cDNA (KIEE3139; Promega Corp., Madison, WI) was
283	subcloned downstream of the ubiquitous CMV promoter into the AAV-MCS vector (Cell
284	Biolabs Inc).
285	Then, the constructed plasmid vectors were used for in vitro assays or assembled
286	into AAV2/8. In brief, each vector was co-transfected with AAV2rep/AAV8cap vector (pdp8;
287	Plasmid Factory, Bielefeld, Germany) in HEK293T cells (Thermo Fisher Scientific) using PEI

(Polysciences Inc, Warrington, PA). AAV particles was extracted in PBS and purified with an

288

289	AKTA prime plus chromatography system (GE Healthcare, Chicago, IL) on an AVB
290	Separose HP column (GE Healthcare), as previously described. 24, 27
291	
292	RT-PCR
293	RT-PCR was carried out as described previously. ²⁷ Total RNA was purified from the
294	mouse retinas using the miRNeasy plus mini kit (Qiagen) and reverse-transcribed with
295	SuperScript III (Thermo Fisher Scientific). qRT-PCR was performed with an initial
296	denaturation step at 95° C for 20 s, followed by 40 cycles at 95° C for 3 s and 60° C for 20 s
297	(7500 Fast Real-Time PCR System; Thermo Fisher Scientific). Taqman probes for Gnat1
298	(Mm01229120; Thermo Fisher Scientific), Gapdh (Mm99999915; Thermo Fisher Scientific),
299	Pde6b (Mm00476679; Thermo Fisher Scientific), Pkca (Mm00440858; Thermo Fisher
300	Scientific), Rho (Mm01184405; Thermo Fisher Scientific), Rcvrn (Mm00501325; Thermo
301	Fisher Scientific) and SaCas9 (AP2XCCY; Thermo Fisher Scientific) were used. For
302	SaCas9 and gRNA scaffold, primers and probes were designed and used as previously
303	described. ⁴ Each mRNA expression was determined by plotting CT values on the standard
304	curve generated by serially diluting the control sample (C57BL/6J mice retinal cDNA or AAV
305	injected retinal cDNA).

306

307	Western	blot
-----	---------	------

308	The eyes were harvested 6 weeks (1.5M) after the AAV injection. The retina and
309	RPE/choroid complex were then collected separately and placed on ice. The tissues were
310	dissolved in RIPA buffer and the total protein concentration was measured with a Pierce
311	BCA protein assay kit (Thermo Fisher Scientific). Proteins (15 μ g each) were separated
312	based on their molecular weight with SDS-PAGE on 10% Mini-PROTEAN gels (Bio-Rad,
313	Hercules, CA) and then transferred to PVDF membranes (Millipore, Billerica, MA).
314	Membranes were blocked with 5% skim milk for 1 hr, incubated with rabbit anti-GFP
315	antibody (#598, 1/2500; MBL) for 1 hr, and then incubated with horseradish peroxidase
316	(HRP)-conjugated anti-rabbit IgG antibodies (A0545, 1/2000; Sigma-Aldrich) for 1 hr. The
317	immunogenic signal was detected with ECL prime (GE Healthcare). The membrane was
318	stripped and incubated with anti-beta-actin (F5316, 1/2000; Sigma-Aldrich, St. Louis, MO),
319	incubated with HRP-conjugated anti-mouse antibodies (#31430, 1/2000; Thermo Fisher
320	Scientific), and detected with ECL prime.
321	

322 Immunohistochemistry

323 Immunohistochemistry was performed as described previously.²⁷ Six weeks (1.5M)

324	after the AAV injection, the eyes were fixed in 4% paraformaldehyde. They were then either
325	embedded in OCT compound and sectioned using a cryostat to generate retinal sections, or
326	the RPE/choroid complex was separated from the retina and then flattened by creating 4
327	incisions from the periphery to the optic nerve, thereby resulting in a clover-shaped
328	RPE/choroid flatmount. The retinal sections were blocked with 5% normal goat serum for 30
329	min, incubated with mouse anti-mKO1 monoclonal antibodies (M104-3M, 1/200; MBL),
330	rabbit anti-M-opsin antibodies (AB5405, 1/1000; Millipore) or rabbit anti-recoverin (AB5585,
331	1/5000; Millipore) and Alexa Fluor 488 conjugated PNA (10 μ g/mL, Thermo Fisher scientific)
332	for 1hr, incubated with Alexa Fluo 568-conjugated anti-mouse IgG antibodies (1/500;
333	Thermo Fisher Scientific) or Alexa Fluo 568-conjugated anti-rabbit IgG antibodies (1/500;
334	Thermo Fisher Scientific) for for 1hr, and DAPI (Vector Labs, Burlingame CA) for additional
335	45 min. For the reporter assay, RPE/choroid flat mounts were stained with only DAPI for 45
336	min before imaging. For the analysis of GNAT1 expression, immunohistochemistry was
337	carried out using a TSA Plus Fluorescein System (Perkin-Elmer, Waltham, MA, USA)
338	following the manufacturer's instructions. In brief, the sections were blocked with 1% skim
339	milk for 1 hr, incubated with rabbit anti-GNAT1 antibodies (ab74059, 1/200; Abcam,
340	Cambridge, UK) for 1 hr, incubated with HRP-conjugated anti-rabbit IgG antibodies (A0545,
341	1/2000; Sigma-Aldrich) for 1 hr, and then stained with TSA reagent and/or DAPI for an

342	additional 45 min. The retinal flat mounts were stained as previously described. ²⁹ In brief,
343	the isolated eyes were fixed in 4% paraformaldehyde. Then they were treated with 3
344	freeze/thaw cycles. For the analysis of Gnat1 expression, the retinas were blocked with 1%
345	skim milk for 1 hr, incubated with rabbit anti-GNAT1 antibodies (ab74059, 1/200; Abcam,
346	Cambridge, UK) overnight, incubated with HRP-conjugated anti-rabbit IgG antibodies
347	(A0545, 1/2000; Sigma-Aldrich) for 1 hr, and then stained with TSA reagent (Perkin-Elmer).
348	For the analysis of mKO1 expression, the retinas were blocked with 5% normal goat serum
349	for 1 hr, incubated with mouse anti-mKO1 monoclonal antibodies (M104-3M, 1/200; MBL)
350	overnight, incubated with Alexa Fluo 568-conjugated anti-mouse IgG antibodies (1/500;
351	Thermo Fisher Scientific) for 1hr. Images were acquired on a Zeiss LSM780 confocal
352	microscope (Carl Zeiss, Jena, Germany).
353	
354	
355	Electrophysiological assessment
356	Basic equipment and techniques for ERG and fVEP recordings were carried out as
357	previously described. ³⁰ Scotopic 6-Hz flicker ERGs were recorded following a previously
358	published protocol ³¹ with modifications. We used flash intensities at 7 steps, ranging from
359	-6.0 to 0 log.cd.s m ⁻² , separated by 1.0 log units. For each step, after 10 seconds of

adaptation, 400 msec sweeps were recorded 50 times and averaged.

361	Standard single flash ERGs were recorded following a previously published
362	protocol. ¹⁶ In brief, we used flash intensities comprising 10 steps, ranging from -7.0 to 2.0
363	log.cd.s m ⁻² , separated by 1.0 log units (Fig S6c). Then, the standard protocol was
364	optimized for an accurate estimation of the small effect of MMEJ-mediated mutation
365	replacement in <i>Pde6c^{cpf11/cpf11}Gnat1^{IRD2/IRD2}</i> mice, in which a fixed flash (1.0 log.cd.s m ⁻²)
366	separated by 10 sec intervals with increased averaging of 50 times (compared to 2 times in
367	the standard protocol for this flash intensity) were applied (Fig. 1h). For assessing synaptic
368	transmission between photoreceptor and ON-bipolar cells, group III mGlu agonist L-AP4
369	(L-2-amino-4-phosphonobyturic acid, ab12002, 50 mM; Abcam) was injected into the
370	vitreous of the mice at 3 W after treatment with MMEJ vector and ERGs were recorded
371	before (to ensure successful mutation replacement) and 20hr after injection following the
372	protocol described. ²⁰
373	Surgical implantation of the VEP electrodes was carried out as previously
374	described ^{30, 32} 5 weeks post-injection, and recording was performed a week later. For
375	recording fVEPs, we used flash intensities at 9 steps, ranging from -7.0 to 1.0 log.cd.s m ⁻² ,
376	separated by 1.0 log units. The light sensitivity of the visual cortex was determined by
377	identifying the dimmest light condition that yielded an amplitude of the negative trough

378	(P1-N1) or a positive peak (N1-P2) over 25 μ V during fVEP recording. To record pVEPs, we
379	used black (3 cd m ⁻²) and white (159 cd m ⁻²) vertical stripes of equal width (average
380	luminance: 81 cd m ⁻²) with different spatial resolutions (0.42, 0.35, 0.28, 0.21, 0.14, 0.07,
381	0.05, 0.03, 0.02 and 0.01 cycles per degree for the <i>Gnat1^{IRD2/IRD}</i> mice, and 0.21, 0.14, 0.07,
382	0.05, 0.03, 0.02 and 0.01 cycles per degree for the <i>Gnat1^{IRD2/IRD2}/Pde6c^{cpfi1/cpfi1}</i> mice), as
383	described previously. ³² The amplitudes for the negative trough (P1-N1) and positive peak
384	(N1-P2) were plotted vertically as a function of the log spatial resolution of the stimulus
385	(horizontally).
386	
387	Behavioral tests
388	Fear conditioning was performed 3 weeks after the AAV treatment, as previously
389	described, with modifications. ²⁰ In the training session, each mouse was placed in a shock
390	chamber with a stainless-steel grid floor (21.5 $_$ cm width × 20.5 $_$ cm depth × 30 $_$ cm height

- 391 box; Ohara Medical Industry, Tokyo, Japan), located inside a sound attenuating box, and left
- 392 for 2 \perp mins to adapt to the environment. Then, the mouse was exposed to an LED light cue

393 (535 nm, 0.015 cd m⁻², 2.0 Hz, 5.0 s) controlled via a stimulus controller (FZ-LU, Ohara

- Medical Industry) that co-terminated with a 0.8-mA foot shock (2.0-s duration). This was
- repeated 5 times at pseudorandomized intervals (70 140s) before returning the mouse to

396	the housing cage. In the testing session, which took place 24 hours after the training session,
397	the mice were returned to the same chamber to test for visually-cued memory recall. In
398	order to change the environmental context from the training session, a white floor and
399	curved wall made of thin plastic were inserted into the chamber before the test. After placing
400	the mice in the environmentally modified chamber, the mouse was allowed to adapt to the
401	environment for 4.0 minutes before being shown the light cue, which persisted for 2.0
402	minutes. The time spent freezing, as defined by an absence of movement (< 200 pixels, >
403	2.0 s), was recorded by a built-in infrared video camera. The time spent freezing during the
404	2.0 min immediately before and after presentation of the light cue was averaged using
405	pre-installed imaging software (Ohara Medical Industry).
406	Visual acuity was measured 2 weeks after the AAV injection by observing the
407	optokinetic responses of mice to rotating sinusoidal gratings presented on monitors
408	(average luminance: 62 cd m ⁻²) surrounding the mouse (Optomotry, Cerebral Mechanics,
409	Lethbridge, Canada), as reported previously. ¹⁶ This test yields independent measures of
410	right and left eye acuity based on the unequal sensitivities to pattern rotation direction, as
411	the motion in the temporal-to-nasal direction dominates the tracking response. ³³ Visual
412	acuity data used in this study represented the averages of four trials conducted on four
413	consecutive days. The results obtained by testing without using a mouse served as the

414 negative control.

415

416 *In vitro* on-target assessment

- 417 Neuro2a genomic DNA was extracted 72 hrs post-transfection using a DNA
- 418 extraction kit (QIAamp DNA Mini kit). PCR products were sub-cloned into T-vector (pTAC2;
- 419 BioDynamics, Tokyo, Japan), which was used to transform a DH5a-competent cell (Toyobo,
- 420 Osaka, Japan). DNA from single colonies (>50 clones) were amplified by colony direct PCR.
- 421 Each PCR fragment was sequenced following a standard procedure using an ABI3130
- 422 genetic analyzer (Thermo Fisher Scientific), as described previously.³⁴
- 423 For preparation of DNA samples used for *in vitro* analysis by whole genome
- 424 sequencing, successfully transfected Neuro2a cells were used. In brief, Neuro2a cells were
- 425 transfected with an SaCas9-2A-EGFP expression plasmid described above using
- 426 lipofectamine 3000 transfection reagent (Thermo Fisher Scientific). After 72hrs,
- 427 EGFP-positive cells were selected using FASC aria II cell sorter (BD Biosciences, Franklin
- 428 lakes, NJ), and genomic DNA were extracted from these cells using DNA extraction kit
- 429 (QIAamp DNA Mini kit).
- 430
- 431

432 In vivo on-target and off-target assessment

433	The on-target site and the 14 off-target sites (listed in Fig. S3 and Table S3,
434	assembly: GRCm38/mm10) predicted by CRISPOR (<u>http://crispor.tefor.net/</u>) were amplified
435	with PCR using the primers listed in Table S2. PCR products were subjected either to a
436	T7E1 assay or Sanger sequencing of the PCR clones. We conducted a T7E1 assay for the
437	14 off-target sites, as described above in detail. PCR products of the on-target site and
438	the14 off-target sites were sub-cloned into T-vector (pTAC2; BioDynamics, Tokyo, Japan),
439	which was used to transform a DH5a-competent cell (Toyobo, Osaka, Japan). DNA from
440	single colonies (>50 clones for the on-target site and >50 clones each for the off-target site)
441	were amplified by colony direct PCR. Each on-target and/or off-target PCR fragment was
442	sequenced following a standard procedure using an ABI3130 genetic analyzer (Thermo
443	Fisher Scientific), as described previously. ³⁴ Classifications of the sequenced clones are as
444	follows: Success, mutation replaced as planned; Cleavage site indel, insertion or deletion in
445	either gRNA cleavage site without replacement of <i>IRD</i> 2 mutation; AAV integration,
446	unplanned insertion of AAV genome fragment; Deletion, simple excision of the IRD2
447	mutation at the two gRNA cleavage sites without an insertion; Other indel, mutations that do
448	not belong to any of the classifications above.

449

450 Whole genome sequencing and assessment of off-target sites & AAV integration

- 451 For the genomic DNAs extracted from Neuro2A and mice, we performed
- 452 whole-genome sequencing using the NovaSeq 6000 (Illumina, San Diego, CA, USA)
- 453 sequencer with 151 bp paired-end reads. The amount of data per sample was made to
- 454 exceed at least 100G bases. The sequencing library was constructed using the TruSeq
- 455 Nano DNA Library Prep Kit (Illumina) according to the manufacturer's instructions. We
- 456 prepared two reference genomes, mouse reference genome (mm10) and mm10 plus AAV
- 457 genome (mm10+AAV). The sequencing reads were separately aligned to mm10 and
- 458 mm10+AAV using BWA-mem (ver.0.7.17). Then, PCR duplicate reads were marked using
- 459 Picard tools (ver.2.17.8). Base quality scores were recalibrated using GATK (ver.4.1.2.0)
- 460 according to the GATK Best Practices
- 461 (https://software.broadinstitute.org/gatk/best-practices/).
- 462 Single nucleotide variants (SNVs) and short insertions and deletions (indels)
- 463 calling were performed for the WGS data to assess off-target sites. To detect variants with
- 464 low variant allele frequency (VAF), we used the GATK4 Mutect2 software, which is used for
- 465 somatic variant calling. The variants were called according to the GATK Best Practices.
- 466 Untransfected cells and untreated mouse data were used as normal control samples data in
- the Mutect2 variant calling.

468	In addition, to investigate whether integrations of the AAV occurred in the mice
469	genome, we identified sequencing reads that were partially mapped (soft-clipped) to the
470	AAV genome. From those sequencing reads, we extracted the subset of reads that were
471	also partially mapped to the mouse genome (mm10). The extracted reads were evaluated
472	for the presence of regions in which the AAV genome was inserted into the mouse genome.
473	
474	Determination of editing efficiency
475	Absolute editing efficiency among rods were estimated by dividing Gnat1
476	expression (RT-PCR) in the treated retinas of <i>Pde6c^{cpf/1/cpf/1}Gnat1^{IRD2/IRD2}</i> mice by that in the
477	retinas of untreated $Pde6c^{cpf11/cpf11}$ mice born with wildtype copies of $Gnat1$ (N = 4). Similarly,
478	the efficiency was estimated by dividing the 6Hz ERG response amplitudes at -1.0 log.cd.s
479	m ⁻² in the treated eyes of <i>Pde6c^{cpfl1/cpfl1}Gnat1^{IRD2/IRD2}</i> mice by those in the untreated eyes of
480	<i>Pde6c</i> ^{cpf11/cpf11} mice (41.5 μ V, average of 4 mice). When estimating the absolute efficiency by
481	sequencing analysis of on-target site in an in vivo experiment, we corrected for the
482	difference in detection efficiency (described below), arising from the difference in PCR
483	amplicon size of the on-target site with an assumption that the difference in efficiency
484	remains constant across various mixture of edited and unedited alleles. The proportion of
485	rod photoreceptors among retinal cells were considered to be 0.75 ¹⁹ , which were also used

486 to calculate genome editing efficacy among rods.

487	To determine the difference in detection efficiency of genome edited "success" allele (670
488	bp amplicon) and unedited "mutant" <i>IRD2</i> allele (611 bp amplicon), 1:1 (50%) mixture
489	(molecular ratio) of these alleles were PCR amplified, subcloned, and re-amplified by colony
490	direct PCR in the same way as described in <i>in vivo</i> on-target and off-target assessment.
491	The identity of the clones (N = 53) were determined by difference in the band size in
492	agarose-gel electrophoresis. Against the expected sequence results of 26.5:26.5 clones,
493	16:37 clones were observed for success:mutant, indicating under-representation of the
494	former by a factor of 16/26.5 = 0.60. This factor was 0.52 when competition between
495	"Success" and even smaller "Deletion" (524 bp amplicon; the major editing outcome) was
496	compared with a similar experiment (16:45 clones for success:deletion). In order to correct
497	"Success" rate for unedited "mutant" IRD2, which comprised the major population of the
498	clones analyzed, we carried out the same experiment to 1:19 (5%), 1:9 (10%), 1:4 (20%),
499	and 1:1 (50%) mixture of "Success" and unedited "mutant" IRD2 allele (molecular ratio)
500	followed by linear regression analysis (intercept -0.154, slope 0.528). Using the results of
501	regression analysis, we corrected only the rates of "Success" and unedited "mutant" IRD2
502	allele. For example, observed absolute "Success" for MMEJ at 1 month was 0.047 (4.7%)
503	then absolute corrected "Success" rate would be $(4.7 + 0.154)/0.528 = -9.185\%$. The

504	calculation	yields an underestimate of	genome editing.	as the	"Success"	represent the

505 largest PCR amplicon, thus least efficiently detected, of all the other edited genomes.

506

- 507 Statistical analysis
- 508 Differences between pairs of groups were assessed with the paired Student's t-test
- 509 (two-sided) for paired data and unpaired Student's t-test (two-sided) for other data.
- 510 Differences between sets of three groups were assessed with an analysis of variance
- 511 (ANOVA), followed by Tukey's test as a post-hoc analysis. Linear regression analysis was
- 512 carried out to generate Figure 2d. All statistical analysis was performed with JMP (SAS
- 513 Institute, Cary, NC). All values are expressed as the mean ± SEM. *P* < 0.05 was considered
- 514 statistically significant.

515

516 **Data availability**

- 517 The source data underlying Figs 1d-h, 2b–h, 3a-d, 4b and c and Supplementary Figs 1d,f,
- 518 2c, 5a, 6b, c and 7a-d are provided as a Source Data file. The datasets generated during
- and/or analyzed during the current study not listed in the Source Data file are available from
- 520 the corresponding author on reasonable request.

523 Reference

524	1.	Kumaran N, Michaelides M, Smith AJ, Ali RR, Bainbridge JW. Retinal gene therapy.
525		<i>Br Med Bull</i> , (2018).
526		
527	2.	Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther
528		18 , 80-86 (2010).
529		
530	3.	Koyanagi Y, et al. Genetic characteristics of retinitis pigmentosa in 1204 Japanese
531		patients. J Med Genet, jmedgenet-2018-105691 (2019).
532		
533	4.	Maeder ML, et al. Development of a gene-editing approach to restore vision loss in
534		Leber congenital amaurosis type 10. Nat Med 25, 229 (2019).
535		
536	5.	Tsai YT, et al. Clustered Regularly Interspaced Short Palindromic Repeats-Based
537		Genome Surgery for the Treatment of Autosomal Dominant Retinitis Pigmentosa.
538		<i>Ophthalmology</i> 125 , 1421-1430 (2018).
539		
540	6.	Yang S, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in

541		mouse model of Huntington's disease. J Clin Invest 127 , 2719-2724 (2017).
542		
543	7.	Gaj T, Ojala DS, Ekman FK, Byrne LC, Limsirichai P, Schaffer DV. In vivo genome
544		editing improves motor function and extends survival in a mouse model of ALS.
545		Science advances 3, eaar3952 (2017).
546		
547	8.	Li P, et al. Allele-specific CRISPR-Cas9 genome editing of the single-base P23H
548		mutation for rhodopsin-associated dominant retinitis pigmentosa. The CRISPR
549		<i>Journal</i> 1 , 55-64 (2018).
550		
551	9.	Suzuki K, et al. In vivo genome editing via CRISPR/Cas9 mediated
552		homology-independent targeted integration. Nature 540, 144-149 (2016).
553		
554	10.	Yin H, et al. Therapeutic genome editing by combined viral and non-viral delivery of
555		CRISPR system components in vivo. Nat Biotechnol 34, 328 (2016).
556		
557	11.	Yin H, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and
558		phenotype. Nat Biotechnol 32 , 551 (2014).

560	12.	Yang Y, et al. A dual AAV system enables the Cas9-mediated correction of a
561		metabolic liver disease in newborn mice. Nat Biotechnol 34 , 334 (2016).
562		
563	13.	Yao X, et al. CRISPR/Cas9-Mediated precise targeted integration in vivo using a
564		double cut donor with short homology arms. <i>EBioMedicine</i> 20 , 19-26 (2017).
565		
566	14.	Nakade S, et al. Microhomology-mediated end-joining-dependent integration of
567		donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nature
568		communications 5 , 5560 (2014).
569		
570	15.	Lamb TD. Evolution of phototransduction, vertebrate photoreceptors and retina.
571		<i>Prog Retin Eye Res</i> 36 , 52-119 (2013).
572		
573	16.	Nishiguchi KM, et al. Retained Plasticity and Substantial Recovery of Rod-Mediated
574		Visual Acuity at the Visual Cortex in Blind Adult Mice with Retinal Dystrophy. Mol
575		Ther 26 , 2397-2406 (2018).

577	17.	Allen AE, Cameron MA, Brown TM, Vugler AA, Lucas RJ. Visual responses in mice
578		lacking critical components of all known retinal phototransduction cascades. PLoS
579		<i>One</i> 5 , e15063 (2010).
580		
581	18.	Miyamoto M, Aoki M, Hirai K, Sugimoto S, Kawasaki K, Imai R. A nonsense mutation
582		in Gnat1, encoding the alpha subunit of rod transducin, in spontaneous mouse
583		models of retinal dysfunction. Exp Eye Res 90, 63-69 (2010).
584		
585	19.	Jeon C-J, Strettoi E, Masland RH. The major cell populations of the mouse retina. J
586		Neurosci 18 , 8936-8946 (1998).
587		
588	20.	Nishiguchi KM, et al. Gene therapy restores vision in rd1 mice after removal of a
589		confounding mutation in Gpr179. Nature communications 6, 6006 (2015).
590		
591	21.	Fu Y, Yau K-W. Phototransduction in mouse rods and cones. Pflügers
592		Archiv-European Journal of Physiology 454, 805-819 (2007).
593		
594	22.	Carrigan M, Duignan E, Humphries P, Palfi A, Kenna PF, Farrar GJ. A novel

595		homozygous truncating GNAT1 mutation implicated in retinal degeneration. Br J
596		<i>Ophthalmol</i> 100 , 495-500 (2016).
597		
598	23.	Chang B, et al. A homologous genetic basis of the murine cpfl1 mutant and human
599		achromatopsia linked to mutations in the PDE6C gene. Proc Natl Acad Sci U S A
600		106 , 19581-19586 (2009).
601		
602	24.	Fujita K, et al. In vivo cellular imaging of various stress/response pathways using
603		AAV following axonal injury in mice. Sci Rep 5, 18141 (2015).
604		
605	25.	Wiechmann AF, Howard EW. Functional analysis of the human recoverin gene
606		promoter. Curr Eye Res 26, 25-32 (2003).
607		
608	26.	Khani SC, et al. AAV-mediated expression targeting of rod and cone photoreceptors
609		with a human rhodopsin kinase promoter. Invest Ophthalmol Vis Sci 48, 3954-3961
610		(2007).
611		
612	27.	Fujita K, Nishiguchi KM, Shiga Y, Nakazawa T. Spatially and Temporally Regulated

613		NRF2 Gene Therapy Using Mcp-1 Promoter in Retinal Ganglion Cell Injury. Mol
614		Ther Methods Clin Dev 5, 130-141 (2017).
615		
616	28.	Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering
617		using the CRISPR-Cas9 system. Nat Protoc 8, 2281 (2013).
618		
619	29.	Nishiguchi KM, Kaneko H, Nakamura M, Kachi S, Terasaki H. Identification of
620		photoreceptor precursors in the pars plana during ocular development and after
621		retinal injury. Invest Ophthalmol Vis Sci 49, 422-428 (2008).
622		
623	30.	Tomiyama Y, et al. Measurement of Electroretinograms and Visually Evoked
624		Potentials in Awake Moving Mice. PLoS One 11, e0156927 (2016).
625		
626	31.	Michalakis S, et al. Restoration of cone vision in the CNGA3-/- mouse model of
627		congenital complete lack of cone photoreceptor function. Mol Ther 18, 2057-2063
628		(2010).
629		
630	32.	Tokashiki N, Nishiguchi KM, Fujita K, Sato K, Nakagawa Y, Nakazawa T. Reliable

631 detection of low visual acuity in mice with pattern visually evoked potentials. *Sci Rep*

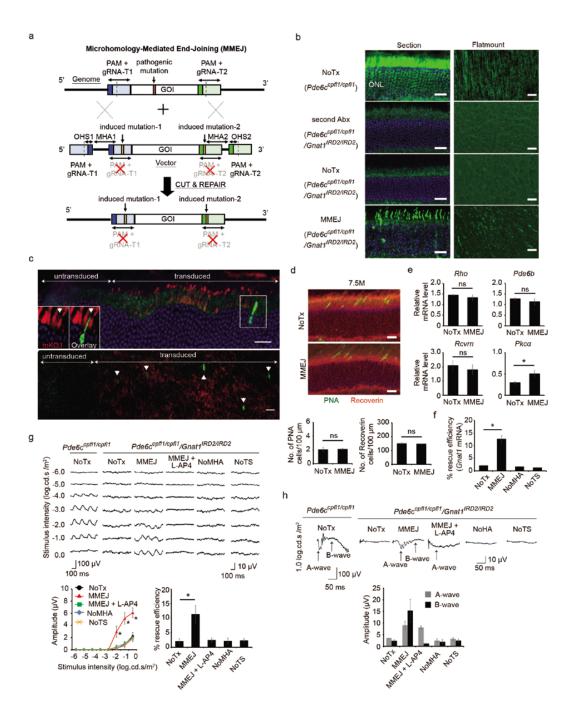
- 632 **8**, **15948 (2018)**.
- 633
- 634 33. Douglas RM, Alam NM, Silver BD, McGill TJ, Tschetter WW, Prusky GT.
 635 Independent visual threshold measurements in the two eyes of freely moving rats
- and mice using a virtual-reality optokinetic system. *Vis Neurosci* **22**, 677-684 (2005).
- 637
- 638 34. Nishiguchi KM, *et al.* Whole genome sequencing in patients with retinitis pigmentosa
- reveals pathogenic DNA structural changes and NEK2 as a new disease gene.
- 640 *Proceedings of the National Academy of Sciences* **110**, 16139-16144 (2013).

641

642 Acknowledgements

- 643 We thank Ms Misane Uchiike for her help with the experiments and Professor Carlo Rivolta
- 644 for the critical comments on the manuscript. This work was supported in part by the Japan
- 645 Agency for Medical Research and Development (KMN, 18ek0109213h0002). The
- 646 manuscript was edited by a professional English editing service (Mr. Tim Hilts). We thank
- 647 the Biomedical Research Core of Tohoku University Graduate School of Medicine for
- 648 technical support.

649


650 Author contributions

- 651 KMN conceived and designed the experiments. KMN and KF performed the experiments
- and analyzed the data. FM carried out *in slico* analysis. SK helped in vitro experiments.
- 653 KMN wrote the manuscript and KMN and TN obtained the funding.
- 654

655 **Competing financial interests**

- 656 KMN, KF, and TN are listed as inventors in a patent application related to this work. The
- 657 Departments of Advanced Ophthalmic Medicine and Ophthalmic Imaging and Information
- 658 Analytics are endowed departments, supported by an unrestricted grant from Senju
- 659 Pharmaceutical Co. (Osaka, Japan) and Topcon Co. Ltd. (Tokyo, Japan), respectively.
- 660 These funders had no role in the study design, data collection and analysis, decision to
- 661 publish, or preparation of the manuscript.
- 662
- 663

664

666 Fig 1. *In vivo* characterization of mutation replacement genome editing in


⁶⁶⁷ *Pde6c^{cpfl1/cpfl1}Gnat1^{IRD2/IRD2}* mice

668	a.	Illustration of MMEJ-mediated mutation replacement. Genome of interest (GOI) with and
669		without the mutation are excised at the flanking gRNA target sites (gRNA-T1 and -T2;
670		dotted line) from mouse genome and AAV vector, respectively, by SaCas9 and two
671		gRNAs. GOI without mutation is inserted into the genome using micro homology arms
672		(MHA), thereby correcting the mutation. b. GNAT1 staining. GNAT1-positive
673		photoreceptors (arrowhead) were observed (section, left; flatmount, right). c.
674		Co-localization of Kusabira Orange (mKO1) probing SaCas9 expression and GNAT
675		immunopositivity (inset). Scattered GNAT-positive cells were observed only in the area
676		transduced with mKO1 (section, top; flatmount, bottom). Note, oversized reporter vector
677		(5,201 bp) drastically reduced editing efficiency. $N = 4 d$. PNA and recoverin staining
678		with quantification. e. RT-PCR of <i>Rho</i> , <i>Pde6b</i> , <i>Rcvrn</i> , and <i>Pkcα</i> (relative to <i>Pde6c^{cpfl1/cpfl1}</i>
679		mice; N = 4 for all). f . Rescue efficiency by RT-PCR of <i>Gnat1</i> (relative to $Pde6c^{cpf11/cpf11}$
680		mice; N = 4 for all). g. 6-Hz flicker ERGs. N = 9, 9, 4, 4, and 4 for No treatment (NoTx),
681		MMEJ, MMEJ+L-AP4, NoMHA, NoTS, respectively. In MMEJ+L-AP4, MMEJ vector and
682		L-AP4 were sequentially injected. Amplitudes (1.0 log.cd.s./m ²) relative to those of
683		Pde6c ^{cpfl1/cpfl1} mice indicate %rescue efficiency (bottom right). h. Single flash ERGs. The
684		same group of mice used in g . Scale bar: 20 μ m; Data represent mean ± S.E.M.; *P <
685		0.05; ns, not significant; PAM, protospacer

686 **b.** adjacent motif, OHS, over-hanging sequence; Abx, antibodies; NoTS, no gRNA target

687 sites.

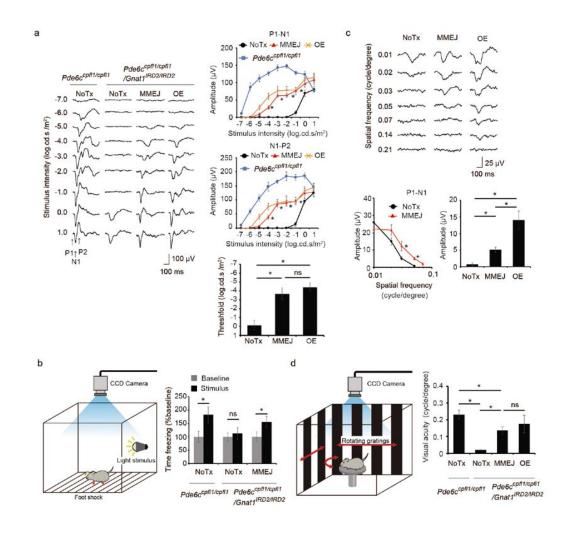
688

689

690 Fig 2. *In vivo* assessment of the on-target site following mutation replacement

691 therapy in *Pde6c^{cpf11/cpf11}Gnat1^{/RD2//RD2}* mice

692 **a.** Breakup of sequencing results of the on-target site in the genome edited clones amplified

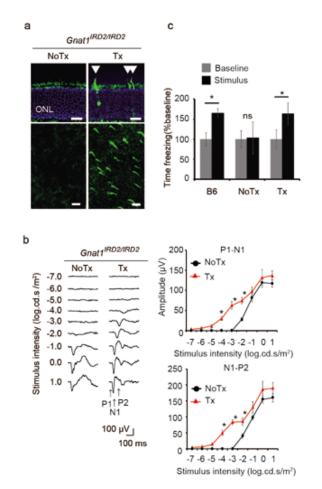

- from the retina collected 1M or 3M post-injection. MMEJ, NoMHA, and NoTS represents
- 694 injection of protype MMEJ vector, MMEJ vector without microhomology arms, and MMEJ
- 695 vector without gRNA target sites, respectively. HITI represents homology-independent
- targeted integration strategy. See Fig. S3 for vector map. Total clones sequenced were 57,

697	70, 67, 64 and 86 for MMEJ (1M), MMEJ (3M), NoMHA (1M), NoTS (1M), and HITI (1M),
698	respectively. "Success" indicates successful mutation replacement. "Cleavage site indel"
699	represents indels in either gRNA cleavage site without replacement of IRD2 mutation (see
700	Online Methods for detail). Note, co-existing mutation replacement and cleavage site indels,
701	which is expected to occur as a consequence of repeated cleavage at the gRNA site was
702	not observed. b. Total editing rate. Percentage of clones that showed any sign of genome
703	editing among the total clones analyzed, which were obtained by subcloning PCR amplicons
704	of the retinal genome of the treated eyes (using primer pairs shown in Figure S4a and Table
705	S2). c. Absolute success rate in the rods, assuming the cells comprise 75% of retinal
706	neurons. d. Estimation of detection efficiency of "Success" allele by subcloning and PCR.
707	Observed % "Success" (vertical axis) were obtained by distinguishing the identity of the
708	clones derived from PCR products amplified from mixture of "Success" and "Deletion" DNA
709	templates at various ratio (horizontal axis). Total clones sequenced in this experiment were
710	61, 52, 64 and 61 for 5%, 10%, 20%, and 50% mixtures (rate of "Success" DNA versus total
711	DNA), respectively. Intercept = -0.154, slope = 0.528, r^2 = 0.99. e . Estimated absolute
712	success rate in the rods corrected for by the detection efficiency of "Success" alleles relative
713	to "Deletion allele" that comprised the major sequencing outcome in a , assuming 75% of
714	retinal neurons are the rods. f. RT-PCR of <i>Gnat1</i> at 1M (N = 4) and 3M (N = 3). g. RT-PCR

and 3M (N = 3) post-injection. Data represent the mean \pm S.E.M.; **P* < 0.05.

717

718



719

Fig 3. Visual restoration by *in vivo* mutation-replacement genome editing in

721 Pde6c^{cpfl1/cpfl1}Gnat1^{IRD2/IRD2} mice

722	a. Flash visually evoked potentials (fVEP) of the visual cortex contralateral to the eyes in
723	response to flashes of various intensities. MMEJ indicates eyes treated with Gnat1 mutation
724	replacement (N = 9) and OE (over-expression) indicates those with <i>Gnat1</i> gene
725	supplementation (N = 6), both delivered by single AAV. NoTx refers to untreated eyes (N = $(N = 1)^{10}$
726	9). Control $Pde6c^{cpfl1/cpfl1}$ mice (N = 5). Note, light sensitivity as defined in the Methods was
727	increased by ~4 log unit after MMEJ-mediated genome editing, which was not significantly
728	different to the effect mediated by OE (right lower panel). b. Pattern VEPs. $N = 11$, and 10
729	for MMEJ and untreated, respectively. c. Fear conditioning test. Freezing time before
730	(Baseline) and during (Stimulus) presentation of fear-conditioned light cue from MMEJ
731	treated (N = 9) and untreated (N = 6) mice. i. pVEPs from MMEJ treated (N = 9) and
732	untreated (N = 5) mice. d. Optokinetic response. Note threshold of spatial resolution of
733	vision (visual acuity) was not different in the MMEJ and OE. N = 10, 7, and 4 for MMEJ, OE,
734	and NoTx, respectively. Control $Pde6c^{cpfl1/cpfl1}$ mice (N = 6). Data represent the mean ±
735	S.E.M.; *P < 0.05; nd, non-detectable; ns, not significant.

737

738 Fig 4. In vivo mutation replacement genome editing in a mouse model of retinal

739 degeneration

740 **a.** GNAT1-positive photoreceptors (arrowhead) following treatment of *Gnat1^{IRD2/IRD2}* mice

- shown in a retinal section (top) and a flatmount (bottom). Scale bar: 20 µm. b. fVEPs
- recorded from contralateral visual cortices in treated and untreated eyes of the same mice.
- 743 (N = 7). c. Fear conditioning test, showing freezing time before (Baseline) and during
- (Stimulus) presentation of fear-conditioned light cue. Treated (Tx, N = 7) and untreated

(NoTx, N = 6) $Gnat1^{IRD2/IRD2}$ mice and CL57B6 mice (B6, N = 6). Data represent the mean ±

S.E.M.; *P < 0.05; ONL, outer nuclear layer. ns, not significant.