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Abstract 

Genome-wide scans for deviations from Hardy-Weinberg equilibrium (HWE) are commonly applied to 

detect genotyping errors. In contrast to the autosomes, genotype frequencies on the X chromosome do 

not reach HWE within a single generation. Instead, if allele frequencies in males and females initially differ, 

they oscillate for a few generations towards equilibrium. Several populations world-wide have 

experienced recent sex-biased admixture, namely, their male and female founders differed in ancestry 

and thus in allele frequencies. Sex-biased admixture makes testing for HWE difficult on X, because 

deviations are naturally expected, even under random mating post-admixture and error-free genotyping. 

In this paper, we develop a likelihood ratio test and a 𝜒2 test that detect deviations from HWE on X while 

allowing for natural deviations due to sex-biased admixture. We demonstrate by simulations that our tests 

are powerful for detecting deviations due to non-random mating, while at the same time they do not 

reject the null under historical sex-biased admixture and random mating thereafter. We also demonstrate 

that when applied to 1000 Genomes project populations (e.g., as a quality control step), our tests reject 

fewer SNPs (among those showing frequency differences between the sexes) than other tests. 

Introduction 

Testing for deviations from Hardy-Weinberg equilibrium (HWE) is an important quality control step in 

genome-wide association studies 1-4. Extensive literature exists on HWE tests for the autosomes, from 

classic tests to recent work on Bayesian approaches, structured populations, sequenced or imputed 

genotypes, and software tools5-18. However, tests for HWE on the X chromosome have only been recently 

developed 19-23. The importance of associations of X-linked variants with complex traits, particularly as a 

mechanism of sexual dimorphism, has been recently recognized 24-32, and these developments underscore 

the importance of proper quality control on X, including testing for deviations from HWE. 

A naive test for HWE on X would consider females only. However, such a test would implicitly assume an 

equal allele frequency between males and females. Indeed, a number of tests were recently proposed for 

joint testing of HWE in females as well as equality of allele frequencies between the sexes 20-22. However, 

these tests ignore the possibility that allele frequencies in males and females would differ naturally due 

to sex-biased admixture. 

While autosomal allele frequencies reach HWE within a single generation, it is well known that for X, in 

case male and female allele frequencies initially differ, perfect equilibrium is never reached 33,34. The 

classical equations describing the evolution of allele frequencies on X, for an infinite population, are, 

(1) 𝑝𝑓(𝑡 + 1) =
𝑝𝑚(𝑡)+𝑝𝑓(𝑡)

2
, 

(2) 𝑝𝑚(𝑡 + 1) = 𝑝𝑓(𝑡), 
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where 𝑝𝑓(𝑡) and 𝑝𝑚(𝑡) are the male and female allele frequencies, respectively, at generation 𝑡. Starting 

with unequal allele frequencies at generation 𝑡 = 0, the male and female frequencies oscillate while 

gradually stabilizing. Specifically 34, if 𝑝𝑓(0) = 1 and 𝑝𝑚(0) = 1, then 𝑝𝑓(𝑡) = (2𝑡+1 + (−1)𝑡)/ (3 ⋅ 2𝑛) 

and 𝑝𝑚(𝑡) = (2𝑡 − (−1)𝑡)/(3 ⋅ 2𝑡−1). While equilibrium is approached exponentially quickly, if allele 

frequencies initially differ by a substantial amount, the frequency difference between the sexes can be 

non-negligible in the first few generations.  

Recent sex-biased admixture has been known or identified for several populations, in particular in the 

Pacific and the Americas 35-41. Moreover, admixture in these populations has often been cross-continental, 

which may have led to large initial frequency differences between the sexes. Thus, even if a population 

has been randomly mating since admixture, and even if SNPs are accurately genotyped, we may expect 

natural frequency differences to exist for some X-linked SNPs, along with natural deviations from HWE in 

females. Thus, it would be wrong to discard X SNPs due to HWE violation, in case the violation can be 

explained as a natural result of sex-biased admixture. 

In this work, we developed a likelihood ratio test and a 𝜒2 test for HWE deviations on X, while permitting 

natural sex differences in frequency due to sex-biased admixture. This is achieved by taking into account 

the constraints imposed by Eqs. (1) and (2) on sex-specific frequency differences across generations. We 

show by simulations that our test has the expected size under the null, as well as power at least as high 

as existing tests for true deviations from the null (e.g., due to genotyping errors or inbreeding). Crucially, 

our test rejects HWE substantially less often compared to existing tests when HWE is violated due to 

historical sex-biased admixture in otherwise randomly mating populations. Finally, we show that in 1000 

Genomes populations, our test rejects fewer SNPs among these for which frequency differences exist 

between the sexes. 

Methods 

We denote the number of males and females in the sample as 𝑛𝑚 and 𝑛𝑓, respectively, and the two alleles 

as A and B. The numbers of male A and B carriers are denoted 𝑚𝐴 and 𝑚𝐵. The numbers of females with 

genotypes AA, AB, and BB are denoted 𝑓𝐴𝐴, 𝑓𝐴𝐵, and 𝑓𝐵𝐵. We denote by 𝑝𝑚 and 𝑝𝑓 the A allele frequencies 

in males and females, respectively. 

We develop our likelihood ratio test based on the framework of You et al. 21. These authors have defined 

the inbreeding coefficient 𝜌 to represent deviations from HWE. Using 𝜌, the expected genotype 

frequencies in females can be written as  

(3) 𝑝𝐴𝐴 = (1 − 𝜌)𝑝𝑓
2 + 𝜌𝑝𝑓 = 𝑝𝑓

2 + 𝜌𝑝𝑓(1 − 𝑝𝑓), 

(4) 𝑝𝐴𝐵 = 2𝑝𝑓(1 − 𝑝𝑓)(1 − 𝜌),  

(5) 𝑝𝐵𝐵 = (1 − 𝜌)(1 − 𝑝𝑓)
2

+ 𝜌(1 − 𝑝𝑓) = (1 − 𝑝𝑓)
2

+ 𝜌𝑝𝑓(1 − 𝑝𝑓). 

The null hypothesis of no deviations from HWE and no frequency difference between males and females 

is 𝑝𝑚 = 𝑝𝑓 = 𝑝 and 𝜌 = 0. We interpret here the parameter 𝜌 more generally as a measure of the 

deviation from random mating in females, such that it can take any real value in [-1,1].  (This guarantees 
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that all frequencies are in [0,1].) The alternative hypothesis is 𝑝𝑚 ≠ 𝑝𝑓 or 𝜌 ≠ 0. Denote the parameters 

of the model as 𝜃 = (𝑝𝑚, 𝑝𝑓 , 𝜌). The likelihood of observing of the data (genotype counts) is multinomial, 

(6) 𝐿(𝜃) = (
𝑛𝑓

𝑓𝐴𝐴,𝑓𝐴𝐵,𝑓𝐵𝐵
) 𝑝𝐴𝐴

𝑓𝐴𝐴𝑝𝐴𝐵
𝑓𝐴𝐵𝑝𝐵𝐵

𝑓𝐵𝐵 × (𝑛𝑚
𝑚𝐴

) 𝑝𝑚
𝑚𝐴(1 − 𝑝𝑚)𝑚𝐵, 

where 𝑝𝐴𝐴, 𝑝𝐴𝐵, and 𝑝𝐵𝐵 are given by Eqs. (3), (4), and (5), respectively. You et al. have proposed an 

expectation-maximization algorithm to obtain the maximum likelihood estimates (MLE) 𝜃 = (𝑝̂𝑓 , 𝑝̂𝑚, 𝜌̂). 

Under the null hypothesis, 𝑝𝑚 = 𝑝𝑓 = 𝑝 and 𝜌 = 0, so 𝜃0 = (𝑝, 𝑝, 0), and the likelihood reduces to 

(7) 𝐿(𝜃0) = (
𝑛𝑓

𝑓𝐴𝐴,𝑓𝐴𝐵,𝑓𝐵𝐵
) (𝑛𝑚

𝑚𝐴
) 2𝑓𝐴𝐵𝑝2𝑓𝐴𝐴+𝑓𝐴𝐵+𝑚𝐴(1 − 𝑝)2𝑓𝐵𝐵+𝑓𝐴𝐵+𝑚𝐵. 

Here, the MLE is trivial, 𝜃0 = (𝑝̂, 𝑝̂, 0), where 𝑝̂ = (2𝑓𝐴𝐴 + 𝑓𝐴𝐵 + 𝑚𝐴)/(2𝑛𝑓 + 𝑛𝑚). The likelihood ratio 

(LR) statistic is 

(8) 𝐿𝑅 = 2 ln
𝐿(𝜃̂)

𝐿(𝜃̂0)
. 

The LR statistic is then asymptotically distributed (under the null) as a 𝜒2 distribution with two degrees of 

freedom, leading to a test we call the LRTP (likelihood ratio test for panmictic populations). 

As explained above, the LRTP cannot accommodate “legitimate” frequency differences between the sexes 

due to sex-biased admixture. To address that, we reparametrize the model as follows. Instead of 𝜃 =

(𝑝𝑓 , 𝑝𝑚, 𝜌), we write 𝜃 = (𝑝𝑓,𝑔, 𝑝𝑚,𝑔, 𝜌), where 𝑝𝑓,𝑔 and 𝑝𝑚,𝑔 are the allele frequencies in females and 

males in the previous generation. With these parameters, the expected genotype frequencies in males in 

the current generation are 

(9) 𝑝𝐴,𝑚,𝑐 = 𝑝𝑓,𝑔 

(10)  𝑝𝐵,𝑚,𝑐 = 1 − 𝑝𝑓,𝑔. 

This is analogous to Eq. (1), which is true because males receive X chromosomes only from females in the 

previous generation. In females, assume for the moment that once 𝑝𝑓,𝑔 and 𝑝𝑚,𝑔 are given, females in 

the current generation are the products of random mating. The expected genotype frequencies in females 

in the current generation would be 

(11)  𝑝𝐴𝐴,𝑓,𝑐 = 𝑝𝑚,𝑔𝑝𝑓,𝑔, 

(12)  𝑝𝐴𝐵,𝑓,𝑐 = 𝑝𝑚,𝑔(1 − 𝑝𝑓,𝑔) + 𝑝𝑓,𝑔(1 − 𝑝𝑚,𝑔), 

(13)  𝑝𝐵𝐵,𝑓,𝑐 = (1 − 𝑝𝑚,𝑔)(1 − 𝑝𝑓,𝑔). 

The above expressions reflect the fact that females receive one X chromosome from males and one from 

females. To incorporate deviations from random mating, we use again the parameter 𝜌. Analogously to 

the case of panmictic populations, we write the expected genotype frequencies in females in the current 

generation as 

(14)  𝑝𝐴𝐴,𝑓,𝑐,𝜌 = 𝑝𝑚,𝑔𝑝𝑓,𝑔 +
𝜌

2
(𝑝𝑚,𝑔(1 − 𝑝𝑓,𝑔) + 𝑝𝑓,𝑔(1 − 𝑝𝑚,𝑔)), 

(15)  𝑝𝐴𝐵,𝑓,𝑐,𝜌 = (𝑝𝑚,𝑔(1 − 𝑝𝑓,𝑔) + 𝑝𝑓,𝑔(1 − 𝑝𝑚,𝑔)) (1 − 𝜌), 
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(16)  𝑝𝐵𝐵,𝑓,𝑐,𝜌 = (1 − 𝑝𝑚,𝑔)(1 − 𝑝𝑓,𝑔) +
𝜌

2
(𝑝𝑚,𝑔(1 − 𝑝𝑓,𝑔) + 𝑝𝑓,𝑔(1 − 𝑝𝑚,𝑔)). 

Note that the overall A allele frequency in females in the current generation is (for any 𝜌) 

(17)  𝑝𝑓,𝑐 = 𝑝𝐴𝐴,𝑓,𝑐 +
𝑝𝐴𝐵,𝑓,𝑐

2
=

𝑝𝑚,𝑔+𝑝𝑓,𝑔

2
, 

as expected based on Eq. (2). Also note that here, 𝜌 cannot take any value, as 𝑝𝐴𝐴,𝑓,𝑐,𝜌, 𝑝𝐴𝐵,𝑓,𝑐,𝜌, and 

𝑝𝐴𝐵,𝑓,𝑐,𝜌 must all be within [0,1]. Our null hypothesis is that given the allele frequencies in the previous 

generation (𝑝𝑓,𝑔 and 𝑝𝑚,𝑔), the genotypes of the current generation are determined by random mating, 

or 𝜌 = 0. The alternative hypothesis is that there is a deviation from random mating, or 𝜌 ≠ 0. The 

likelihood of the data under the most general 𝜃 is 

(18)  𝐿(𝜃) = (
𝑛𝑓

𝑓𝐴𝐴,𝑓𝐴𝐵,𝑓𝐵𝐵
) 𝑝𝐴𝐴,𝑓,𝑐,𝜌

𝑓𝐴𝐴 𝑝𝐴𝐵,𝑓,𝑐,𝜌
𝑓𝐴𝐵 𝑝𝐵𝐵,𝑓,𝑐,𝜌

𝑓𝐵𝐵 × (𝑛𝑚
𝑚𝐴

) 𝑝𝐴,𝑚,𝑐
𝑚𝐴 𝑝𝐵,𝑚,𝑐

𝑚𝐵 , 

where 𝑝𝐴,𝑚,𝑐, 𝑝𝐵,𝑚,𝑐, 𝑝𝐴𝐴,𝑓,𝑐,𝜌, 𝑝𝐴𝐵,𝑓,𝑐,𝜌, and 𝑝𝐵𝐵,𝑓,𝑐,𝜌 are defined by Eqs. (9), (10), (14), (15), and (16), 

respectively. The MLE 𝜃 = (𝑝̂𝑓,𝑔, 𝑝̂𝑚,𝑔, 𝜌̂) is obtained by taking the derivatives of (the logarithm of) 𝐿(𝜃) 

and equating to zero. This results in a set of three equations, which are too tedious to reproduce here, 

and can be solved numerically to yield the MLE 𝜃 = (𝑝̂𝑓,𝑔, 𝑝̂𝑚,𝑔, 𝜌̂). In practice, we directly maximized the 

log-likelihood based on a grid search. (We discarded any parameter set 𝜃 leading to allele frequencies in 

the current generation outside the range [0,1] in Eqs. (14), (15), and (16).) 

In the case of random mating, 𝜌 = 0, and thus the parameters are 𝜃0 = (𝑝𝑓,𝑔, 𝑝𝑚,𝑔, 0). The likelihood is 

(19)  𝐿(𝜃0) = (
𝑛𝑓

𝑓𝐴𝐴,𝑓𝐴𝐵,𝑓𝐵𝐵
) 𝑝𝐴𝐴,𝑓,𝑐

𝑓𝐴𝐴 𝑝𝐴𝐵,𝑓,𝑐
𝑓𝐴𝐵 𝑝𝐵𝐵,𝑓,𝑐

𝑓𝐵𝐵 × (𝑛𝑚
𝑚𝐴

) 𝑝𝐴,𝑚,𝑐
𝑚𝐴 𝑝𝐵,𝑚,𝑐

𝑚𝐵 , 

where 𝑝𝐴𝐴,𝑓,𝑐, 𝑝𝐴𝐵,𝑓,𝑐, and 𝑝𝐵𝐵,𝑓,𝑐 are defined by Eqs. (11), (12), and (13), respectively. Taking the 

derivatives of 𝐿(𝜃0) with respect to 𝑝𝑓,𝑔 and 𝑝𝑚,𝑔 and equating to zero results in the following pair of 

equations, 

(20)  
𝑓𝐴𝐴

𝑝𝑚,𝑔
+

𝑓𝐴𝐵(1−2𝑝𝑓,𝑔)

(1−𝑝̂𝑚,𝑔)(1−𝑝̂𝑓,𝑔)
−

𝑓𝐵𝐵

1−𝑝̂𝑚,𝑔
= 0 

(21)  
𝑓𝐴𝐴

𝑝𝑓,𝑔
+

𝑓𝐴𝐵(1−2𝑝𝑚,𝑔)

(1−𝑝̂𝑚,𝑔)(1−𝑝̂𝑓,𝑔)
−

𝑓𝐵𝐵

1−𝑝𝑓,𝑔
+

𝑚𝐴

𝑝𝑓,𝑔
−

𝑚𝐵

1−𝑝𝑓,𝑔
= 0 

The solution of these equations yields the MLE under the null, 𝜃0 = (𝑝̂𝑓,𝑔, 𝑝̂𝑚,𝑔, 0). Here too, in practice 

we used a grid search to directly maximize the log-likelihood. 

The likelihood ratio is then, as in Eq. (8), 

(22)  𝐿𝑅 = 2 ln
𝐿(𝜃̂)

𝐿(𝜃̂0)
. 

Under the null, LR is asymptotically distributed as 𝜒2 with one degree of freedom, leading to a test we call 

LRTA (for admixture). 

For comparison, we also consider the LRTG test of Graffelman and Weir 22. In their test, the likelihood of 

the data is as in Eq. (6), except that 𝑝𝐴𝐴 and 𝑝𝐴𝐵 are parameters to be estimated, and 𝑝𝐵𝐵 = 1 − 𝑝𝐴𝐴 −
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𝑝𝐴𝐵 (i.e., 𝜃 = (𝑝𝐴𝐴, 𝑝𝐴𝐵, 𝑝𝑚)). The likelihood under the null is as in Eq. (7), and the likelihood ratio has a 

𝜒2 distribution with two degrees of freedom. 

Finally, we also use our results to propose a new 𝜒2 test 22. Suppose we have used Eqs. (20) and (21) to 

obtain the MLE (𝑝̂𝑓,𝑔, 𝑝̂𝑚,𝑔). The expected values for the genotypes of males and females under the null 

(𝜌 = 0) are 

(23)  Expected 𝑓𝐴𝐴, 𝑓𝐴𝐵, 𝑓𝐵𝐵, 𝑚𝐴, 𝑚𝐵 = 𝑛𝑓𝑝̂𝑚,𝑔𝑝̂𝑓,𝑔, 𝑛𝑓 (𝑝̂𝑚,𝑔(1 − 𝑝̂𝑓,𝑔) + 𝑝̂𝑓,𝑔(1 − 𝑝̂𝑚,𝑔)) , 𝑛𝑓(1 −

𝑝̂𝑚,𝑔)(1 − 𝑝̂𝑓,𝑔), 𝑛𝑚𝑝̂𝑓,𝑔, 𝑛𝑚(1 − 𝑝̂𝑓,𝑔) 

Then, given the observed values of 𝑓𝐴𝐴, 𝑓𝐴𝐵, 𝑓𝐵𝐵, 𝑚𝐴, 𝑚𝐵, a standard 𝜒2 statistic can be calculated, which 

would be asymptotically distributed as 𝜒2 with one degree of freedom. We call this test 𝜒2-ML. 

We also note that instead of the MLE 𝑝̂𝑓,𝑔 and 𝑝̂𝑚,𝑔, we could use a method of moments estimator, based 

on isolating 𝑝𝑓(𝑡) and 𝑝𝑚(𝑡) from Eqs. (1) and (2), 

(24)  𝑝̂𝑓,𝑔 = 2𝑝𝑓 − 𝑝𝑚 =
2(2𝑓𝐴𝐴+𝑓𝐴𝐵)

2𝑛𝑓
−

𝑚𝐴

𝑛𝑚
, 

(25)  𝑝̂𝑚,𝑔 = 𝑝𝑓 =
2𝑓𝐴𝐴+𝑓𝐴𝐵

2𝑛𝑓
. 

These estimates can then be substituted in Eq. (23), and a 𝜒2 statistic can be calculated. We call this test 

𝜒2-MM. In practice, we found that the 𝜒2-MM did not appropriately control the type I error rate (Table 

1), and we did not report further experiments with that test. 

Results 

We carried out several simulations to examine the behavior of our tests as compared to the LRTP and 

LRTG tests. We considered scenarios either under our tests' null hypothesis, as well as under a number of 

alternative hypotheses.  

Our first simulation was designed to examine the tests under their null hypothesis, namely sex-biased 

admixture with random mating thereafter. We started with a population of 400 males and 400 females, 

and a single locus with an initial allele frequency of 80% in females and 30% in males. Given the allele 

frequencies in one generation, we calculated the expected genotype frequencies in the subsequent 

generation based on Eqs. (9)-(13). Then, the genotypes of 400 males and 400 females were drawn based 

on multinomial distributions having these expected frequencies. We repeated the process up to six 

generations after admixture, and repeated the simulation 1000 times. 

In Table 1, we report the proportion of rejections (type I error rate) when running five tests on the above 

genotype counts: the LRTP test of You et al. 21 and the LRTG test of Graffelman and Weir 22, both of which 

test for departures from either HWE in females or equality of allele frequencies between males and 

females; and the LRTA, 𝜒2-ML, and 𝜒2-MM tests we have developed here for sex-biased admixed 

populations (Methods). Our LRTA test and the 𝜒2-ML test had an appropriate type I error rate (equal or 

close to the significance level 𝛼 = 0.05), which is expected, because we simulated random mating post-

admixture. In contrast, the LRTP and LRTG tests had much higher proportions of rejections, as expected 

due to the frequency differences between the sexes, which these tests are designed to detect. The type I 
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error rate decreased to its value under the null (0.05) after about ≈6 generations post-admixture, when 

allele frequency differences between males and females became very small. The 𝜒2-MM test did not 

control the type I error rate as well as the LRTA test and the 𝜒2-ML tests, possibly because the parameters 

(allele frequencies in the preceding generation) are not accurately estimated. We thus do not further 

consider this test. 

Number of generations 

since admixture 
LRTP LRTG 

LRTA 

(this paper) 

𝜒2-MM 

(this paper) 

𝜒2-ML  

(this paper) 

1 1 1 0.05 0.22 0.05 

2 0.97 0.97 0.04 0.09 0.04 

3 0.47 0.48 0.06 0.07 0.06 

4 0.17 0.18 0.04 0.05 0.05 

5 0.09 0.09 0.06 0.06 0.06 

6 0.10 0.10 0.06 0.06 0.06 

Table 1. The proportion of rejections (Type I error rate) under random mating in a sex-biased admixed population. 

We compared the LRTP test (You et al. 21), the LRTG test (Graffelman and Weir 22), and the LRTA, 𝜒2-MM, and 𝜒2-

ML tests developed in this paper. Our significance level was 𝛼 = 0.05. The lowest proportion in each row is 

highlighted in bold. 

Our second simulation was designed to examine the power of the various tests under the alternative 

hypothesis of non-random mating. We considered one locus with an allele frequency of 80% in both males 

and females. We then calculated the expected genotype frequencies under one generation of mating, but 

this time with an inbreeding coefficient 𝜌 equal to 0, 0.05, 0.1, 0.15, 0.2, 0.25, or 0.3, and simulated 

genotype frequencies in 400 females and 400 males based on the multinomial distribution with 

probabilities defined by Eqs. (9), (10), (14), (15), and (16). This simulation did not include sex-biased 

admixture, as the goal was to evaluate the power of our test under non-random mating, regardless of a 

history of admixture. We report the power of the various tests (at the 0.05 significance level and over 

1000 repeats) in Table 2. The power of the 𝜒2-ML test is always higher, followed closely by the LRTA test. 

The power of the LRTP and LRTG tests is slightly lower compared to our tests.  

Inbreeding coefficient LRTP LRTG 
LRTA 

(this paper) 

𝜒2-ML 

(this paper) 

0 0.04 0.04 0.05 0.05 

0.05 0.12 0.12 0.16 0.19 

0.1 0.37 0.37 0.49 0.52 

0.15 0.69 0.70 0.82 0.82 

0.2 0.92 0.92 0.95 0.97 
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0.25 0.99 0.99 1 1 

0.3 1 1 1 1 

Table 2. The proportion of rejections (power) of the various tests under non-random mating of increasing 

strengths (without admixture). The highest proportion in each row is highlighted in bold. 

Our third simulation was designed to validate that the LRTA and 𝜒2-ML tests are powerful also under sex-

biased admixture. We used the same approach as in our first simulation (Table 1), i.e., sex-biased 

admixture followed by random mating, except that after one generation, non-random mating was 

assumed with an inbreeding coefficient equal to 0.1, 0.2, or 0.3. We report the power of the LTRA and 𝜒2-

ML tests (at the 0.05 significance level and over 50 repeats) in Table 3. The power of the tests is unaffected 

by the historical admixture event (cf. Table 2). 

Inbreeding coefficient 
LRTA 

(this paper) 

𝜒2-ML (this 

paper) 

0.1 0.48 0.49 

0.2 0.98 0.98 

0.3 1 1 

Table 3. The power of the LRTA and  𝜒2-ML tests in populations with sex-biased admixture and increasing strength 

of non-random mating. 

Finally, we applied our methods to real data from the 1000 Genomes project 42 (1kG). We selected 

American populations in which sex-biased, cross-continental recent admixture was likely. While 

admixture in these populations has mostly ended 5-10 generations ago (e.g., 43-46), some SNPs may have 

not yet reached equilibrium, or were affected by more recent minor gene flow events. Our goal in this 

analysis was to determine whether our tests indeed reject less SNPs due to deviation from HWE. However, 

as the power of our tests was higher compared to the other methods (Table 2), the proportion of rejected 

SNPs may not be informative, since many rejected SNPs could be genuinely affected by genotyping errors. 

We considered instead a subset of SNPs where there was a significant evidence for allele frequency 

difference between the sexes, based on the test of Zheng et al.19, at P<0.05. 

In Table 4, we report for each population the number of SNPs with a significant frequency difference 

between males and females, followed by the proportion of those SNPs rejected by each of the LRTP and 

LRTG tests as well as by our LRTA and 𝜒2-ML tests. It can be seen that the proportion of rejected SNPs is 

lowest with our LRTA test. This result, along with the power simulations (Table 2), suggest that the LRTA 

test is likely to retain the maximal number of accurately genotyped SNPs for downstream analyses, while 

at the same time accurately detecting SNPs with true deviation from random mating. However, we note 

that in the absence of ground truth information on genotyping error status in 1kG, we cannot provide a 

formal proof of this claim. 
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Population 
#sex-biased 

SNPs 
LTRP LRTG 

LRTA 

(this 

paper) 

𝜒2-ML 

(this 

paper) 

ACB (African Caribbeans in Barbados) 34206 0.38 0.38 0.09 0.12 

ASW (Americans of African Ancestry in SW 

USA) 
33217 0.25 0.25 0.07 0.12 

CLM (Colombians from Medellin, 

Colombia) 
22815 0.40 0.4 0.11 0.16 

MXL (Mexican Ancestry from Los Angeles 

USA) 
12778 0.40 0.4 0.11 0.16 

PEL (Peruvians from Lima, Peru) 14562 0.37 0.37 0.09 0.10 

PUR (Puerto Ricans from Puerto Rico) 21455 0.41 0.41 0.11 0.12 

Table 4. The proportion of rejected SNPs (at 𝛼 = 0.05) under the LRTP, LRTG, and LRTA tests in 1kG populations. 

We restricted our comparison to SNPs with a statistically significant frequency difference between the sexes. The 

lowest proportion in each row is highlighted in bold. 

Discussion 

In this paper, we proposed new tests for deviations from HWE on the X chromosome for sex-biased 

admixed populations. The X chromosome is unique in that allele frequencies do not reach equilibrium 

within one generation after perturbation, even when the population is otherwise randomly mating and 

all genotypes are observed without errors. Thus, the X chromosome requires a specialized test for HWE, 

even beyond accounting for the different ploidy between the sexes. Here, we proposed new likelihood 

ratio and 𝜒2 tests to address this gap. We showed that our tests have the expected size (type I error rate) 

under sex-biased admixture and random mating thereafter, whereas other tests have high error rates, in 

particular when admixture was very recent. Additionally, our test has equal or higher power compared to 

the other tests considered. We also demonstrated that our tests reject fewer X chromosome SNPs in real 

1000 Genomes populations. We thus recommend the application of our tests when performing quality 

control on the X chromosome. Our tests are available as an R package called HWadmiX at 

https://github.com/dbackenroth/HWadmix. Avenues for extending our approach can be the 

development of exact tests, Bayesian tests, or tests for multiple alleles. 
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