
Fastq-pair: efficient synchronization of paired-end 
fastq files. 
 

John A. Edwards1  and Robert A. Edwards2,* 
 
1Sigma Numerix Ltd. Coalville, Leicestershire, England 
2San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 
 
* Corresponding author 
Dr. Robert Edwards 
Department of Computer Science 
San Diego State University 
5500 Campanile Dr 
San Diego, CA 92182 
Email: redwards@mail.sdsu.edu 
Tel: 619 594 1672 
 
 
 
Keywords: fastq, next generation sequencing 
  

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/552885doi: bioRxiv preprint 

mailto:redwards@mail.sdsu.edu
https://doi.org/10.1101/552885
http://creativecommons.org/licenses/by/4.0/


 

Abstract 
 
Paired end DNA sequencing provides additional information about the sequence data that is 
used in sequence assembly, mapping, and other downstream bioinformatics analysis. Paired 
end reads are usually provided as two fastq-format files, with each file representing one end of 
the read. Many commonly used downstream tools require that the sequence reads appear in 
each file in the same order, and reads that do not have a pair in the corresponding file are 
placed in a separate file of singletons. Although most sequencing instruments capable of 
generating paired end reads produce files where each read has a corresponding mate, many 
downstream bioinformatics manipulations break the one-to-one correspondence between reads, 
and paired-end sequence files loose synchronicity, and contain either unordered sequences or 
sequences in one or other file without a mate. Trivial solutions to this problem require reading 
one or both of the DNA sequence files into memory but quickly become limited by computational 
resources for moderate to large sized sequence files that are common nowadays. Here, we 
introduce a fast and memory efficient solution, written in C for portability, that synchronizes 
paired-end fastq files for subsequent analysis and places unmatched reads into singleton files. 
 
Fastq-pair is freely available from https://github.com/linsalrob/fastq-pair and is released under 
the MIT license. 
 

fastq-pair 
Fastq-format files have become the dominant file format for sharing DNA sequences as they 
conveniently contain both the sequence and quality information in a single file (1). In addition, 
paired end sequencing has come to dominate sequencing approaches because of the additional 
information gained from knowing the distance between the pairs and potentially the longer 
sequences that can be acquired from by joining the overlapping pairs. For example, the 
sequence read archive contains twice as many paired end libraries as single read libraries (As 
of Feb 1st 2018 there were 2,233,015 paired end libraries and 1,110,884 single read libraries in 
the SRA). 
 
Many downstream tools that are used to join paired end read data (e.g. pear (2)), assemble 
DNA sequences (e.g. spades or meta-spades (3)), map reads to reference sequences (e.g. 
bowtie2 (4)), require that the paired sequences be synchronized. In particular these tools 
require that the two files that represent a single paired end sequencing run (i) have the same 
number of reads in each file and (ii) that the left and right (or forward and reverse, depending on 
your preferred terminology) sequences appear in the same order in each file. In contrast, 
several upstream applications do not provide paired-end sequences in synchronized files. For 

1 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/552885doi: bioRxiv preprint 

https://github.com/linsalrob/fastq-pair
https://paperpile.com/c/13PouI/9e8o
https://paperpile.com/c/13PouI/Bj5X
https://paperpile.com/c/13PouI/mJlp
https://paperpile.com/c/13PouI/8qOC
https://doi.org/10.1101/552885
http://creativecommons.org/licenses/by/4.0/


example, fastq-dump that is widely used to retrieve sequences from the sequence read archive 
(SRA) does not automatically synchronize the order of sequences in files and several trimming 
programs result in unordered paired end reads, although an undocumented option (--split-3) 
maybe appended to the fastq-dump command to request the sequences be split in order (5).  
 
As sequencing technology improves, fastq files are increasing in size, and files of many tens of 
gigabytes are not uncommon. This provides a challenge for resynchronizing paired end reads 
so that their reads follow the same order. We developed fastq-pair specifically to handle large 
fastq files in a memory and time efficient manner. 
 
We wrote fastq-pair to accept two fastq format files as input, and to generate four fastq files as 
the output. As per the standard (1), the sequence identifier in a fastq file consists of all of the 
non-whitespace characters on the identifier lines denoted by the leading @ symbol. Forward 
and reverse reads are typically identified by a trailing /f or /r on the sequence identifier, and left 
and right are typically identified by a trailing /1 and /2  on the sequence identifier. As most other 
software does, we currently presume that all fastq files do not wrap either the sequences or the 
quality information, and thus each sequence is represented by exactly four lines (the identifier 
line beginning with the @ symbol , the DNA sequence, the spacer line that begins with a + and 
indicates the end of the DNA sequence, and the quality score line) (1). 
 
Fastq-pair is instantiated by providing the file names for two files. The algorithm creates a hash 
of objects that contain the sequence identifier and the position in the file for all the identifiers in 
the first file. This significantly reduces the memory requirements for fastq-pair compared to trivial 
solutions that store sequence identifier, sequence, and quality scores. The file pointer to the first 
file remains accessible while the second file is read, and for each sequence in the second file, if 
the identifier is present in the hash the two sequences and their quality scores are written to the 
appropriate files and a flag is set to mark that the sequence has been seen. If the identifier is 
not present in the hash the sequence is written to the appropriate singletons file. After iterating 
through the second file, any sequences that were not seen are written to the appropriate 
singletons file. 
 
The algorithm has linear complexity for both memory consumption and execution time (Fig. 1). 
The size of the hash table may be altered by the user, and a larger table, while consuming more 
memory and taking slightly longer to instantiate will reduce look-up time to determine whether 
an identifier is in the hash. The default table size (100,003) is designed to enhance even 
distribution of elements through the table, and provides linear complexity even for large 
sequence files. 
 
The output from fastq-pair is four separate files. The synchronized files are named as the input 
with .paired.fq appended to the file name. The singleton files are named as the input with 
.single.fq appended to the file name. It was a deliberate decision to maintain the two singleton 
files separately rather than create a single file as (i) this allows a rapid method of determining 

2 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/552885doi: bioRxiv preprint 

https://paperpile.com/c/13PouI/N0vO
https://paperpile.com/c/13PouI/9e8o
https://paperpile.com/c/13PouI/9e8o
https://doi.org/10.1101/552885
http://creativecommons.org/licenses/by/4.0/


how many singleton reads there were from each file, and (ii) it lends itself to parallel processing 
of many files simultaneously as the file names are unique. 
 
There is one caveat: fastq-pair relies heavily on random access to the file stream, and therefore 
cannot process compressed files. At least one file would have to be decompressed into either 
memory or a temporary file which defeats the purpose of fastq-pair being memory efficient. 
 
Conclusion: fastq-pair provides a rapid, memory and time efficient approach for ensuring 
fastq-files contain the reads in the same order as required for many downstream processing 
steps. 
 

Acknowledgements 
 
We thank Vito Adrian Cantu and Katelyn McNair for comments on the manuscript. This work 
was supported by National Science Foundation grant number MCB-1441985 to RAE. 

References 
 
 

1. Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. 2010. The Sanger FASTQ file format 
for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids 
Res 38:1767–1771. 

2. Zhang J, Kobert K, Flouri T, Stamatakis A. 2014. PEAR: a fast and accurate Illumina 
Paired-End reAd mergeR. Bioinformatics 30:614–620. 

3. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko 
SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, 
Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to 
single-cell sequencing. J Comput Biol 19:455–477. 

4. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 
9:357–359. 

5. Edwards R. 2015. fastq-dump. https://edwards.sdsu.edu/research/fastq-dump 

  

3 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/552885doi: bioRxiv preprint 

http://paperpile.com/b/13PouI/9e8o
http://paperpile.com/b/13PouI/9e8o
http://paperpile.com/b/13PouI/9e8o
http://paperpile.com/b/13PouI/Bj5X
http://paperpile.com/b/13PouI/Bj5X
http://paperpile.com/b/13PouI/mJlp
http://paperpile.com/b/13PouI/mJlp
http://paperpile.com/b/13PouI/mJlp
http://paperpile.com/b/13PouI/mJlp
http://paperpile.com/b/13PouI/8qOC
http://paperpile.com/b/13PouI/8qOC
http://paperpile.com/b/13PouI/N0vO
https://doi.org/10.1101/552885
http://creativecommons.org/licenses/by/4.0/


Figure Legends 
 
Fig. 1. Empirical complexity analysis of the execution of fastq-pair. 422 fastq files from the 
sequence read archive, with sizes ranging from 66,854 to 127,235,892 sequences were 
processed with fastq-pair and the time and memory complexity measured using the unix 
application time. Time is the sum of user and system time in seconds, and memory is the 
maximum resident memory in mb. 
 

4 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/552885doi: bioRxiv preprint 

https://doi.org/10.1101/552885
http://creativecommons.org/licenses/by/4.0/


 
 
 
 
 

5 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/552885doi: bioRxiv preprint 

https://doi.org/10.1101/552885
http://creativecommons.org/licenses/by/4.0/

