A cytoskeletal network maintains filament shape in the multicellular cyanobacterium Anabaena sp. PCC 7120

Benjamin L. Springstein ${ }^{1 *}$, Dennis J. Nürnberg ${ }^{2, \dagger}$, Ann-Katrin Kieninger ${ }^{3}$, Christian Woehle ${ }^{1 ¥}$, Julia Weissenbach ${ }^{1, \ddagger}$, Marius L. Theune ${ }^{1}$, Andreas O. Helbig ${ }^{4}$, Andreas Tholey ${ }^{4}$, Iris Maldener ${ }^{3}$, Tal Dagan ${ }^{1}$, Karina Stucken ${ }^{5 *+}$

${ }^{1}$ Institute of General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
${ }^{2}$ Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
${ }^{3}$ Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
${ }^{4}$ AG Proteomics \& Bioanalytics, Institute for Experimental Medicine, Christian-AlbrechtsUniversität zu Kiel, Kiel, Germany
${ }^{5}$ Department of Food Engineering, University of La Serena, La Serena, Chile.
${ }^{\dagger}$ Present address: Institute of Experimental Physics, Free University of Berlin, Berlin, Germany

* Present address: Max Planck Institute for Plant Breeding Research, Max Planck-Genomecenter Cologne, Cologne, Germany
\ddagger Present address: Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
* Corresponding authors: KS kstucken@userena.cl; BLS bspringstein@ifam.uni-kiel.de

Abstract

The determinants of bacterial cell shape are extensively studied in unicellular forms. Nonetheless, the mechanisms that shape bacterial multicellular forms remain understudied. Here we study coiled-coil rich proteins (CCRPs) in the multicellular cyanobacterium Anabaena sp. PCC 7120 (hereafter Anabaena). Our results reveal two CCPRs, termed LfiA and LfiB (for linear filament), which assemble into a heteropolymer that traverses the longitudinal cell axis. Two additional CCRPs, CypS (for cyanobacterial polar scaffold) and CeaR (for cyanobacterial elongasome activity regulator), form a polar proteinaceous scaffold and regulate MreB activity, respectively. Deletion mutants of these CCRPs are characterized by impaired filament shape and decreased viability. Our results indicate that the four CCRPs form a proteinaceous network that stabilizes the Anabaena multicellular filament. We propose that this cytoskeletal network is essential for the manifestation of the linear filament phenotype in Anabaena.

Introduction

Bacterial multicellularity ranges from transient associations, such as colonies and biofilms to permanent multicellular forms ${ }^{1}$. The basic characteristics of prokaryotic organisms that are considered as multicellular are mechanisms of cell-cell adhesion and intercellular communication ${ }^{2}$. Biofilms are considered as transient forms of prokaryotic multicellularity since they lack a reproducible multicellular shape ${ }^{3}$. The shape of the individual cell has been shown to have a strong impact on the spatial biofilm formation. Example is the different composition of cell morphologies within an Escherichia coli biofilm ${ }^{4}$. Studies of biofilm formation in Rhodobacter sphaeroides showed that wild type (WT) rod-shaped cells readily form biofilms on costal water surfaces, while coccoid-like cells that were treated with an inhibitor of MreB a well-known cell shape determinant - lacked the ability to form biofilms and failed to attach to surfaces ${ }^{5}$. Hence, cytoskeletal structures that determine cell shape through the remodeling of the peptidoglycan (PG) sheet are key regulators of biofilm formation, specifically in environments that are subjected to constant changes ${ }^{5-8}$. MreB, together with the elongasome
(a multi-enzyme complex), is a regulator of longitudinal PG biogenesis, and thus it plays a crucial role in the adaption to different environments and prokaryotic multicellularity.

The key hallmarks of permanent bacterial multicellularity are morphological differentiation and a well-defined and reproducible shape, termed patterned multicellularity ${ }^{3}$. Unlike biofilms, patterned multicellular structures are the result of either coordinated swarming or developmental aggregation behavior as in myxobacteria ${ }^{9}$. Additional factors include cell division, proliferation and cell differentiation as in sporulating actinomycetes ${ }^{10}$ and cyanobacterial filaments ${ }^{11,12}$. In myxobacteria as well as in actinomycetes, it has been shown that patterned multicellular traits are dependent on the coordinated function of different coiled-coil-rich proteins (CCRPs). Reminiscent of eukaryotic intermediate filaments (IFs) ${ }^{13,14}$, many bacterial CCRPs were shown to perform analogous cytoskeletal functions through their ability to self-assemble into distinct filaments in vitro and in vivo ${ }^{15-19}$. Unlike FtsZ or MreB ${ }^{20,21}$, bacterial IF-like CCRPs do not require any additional co-factors for polymerization in vitro ${ }^{22}$. For example, in Myxococcus xanthus, the coordinated swarming and aggregation into fruiting bodies is mediated by its gliding motility ${ }^{23}$, which strictly depends on the filament-forming CCRP AgIZ ${ }^{24}$. AgIZ is organized in a large multi-protein complex that governs gliding motility in synergy with MreB, which still retained its PG synthesis function but was also co-opted for gliding motility in M. xanthus ${ }^{25-28}$. Actinobacteria, such as Streptomyces species, grow by building new cell wall (i.e. PG) only at the cell poles, independent of MreB ${ }^{29,30}$, which is strikingly different from how most other bacteria grow ${ }^{31}$. This characteristic polar growth mode is organized by a cytoskeletal network of at least three CCRPs - DivIVA, Scy and FilP - that form the polarisome ${ }^{16,17,32,33}$. Similar to eukaryotic intermediate filaments (IFs), FilP and Scy self-assemble into filaments in vitro ${ }^{17,32}$, thereby fulfilling a major criterium of cytoskeletal proteins ${ }^{34}$. Although of essential importance for growth and cell shape, the polarisome is not directly involved in the hallmark patterned multicellular trait of Actinobacteria. In contrast, patterned multicellularity in Actinobacteria is governed by a highly reproducible and coordinated cell division event during sporulation where up to 100 FtsZ-driven Z-rings are
formed. This then leads to the formation of evenly spaced septa, resulting in long chains of spores ${ }^{3,35}$.

Cyanobacteria are characterized by a large phenotypic diversity, ranging from unicellular species to complex filamentous cyanobacteria of which some can undergo morphological differentiation ${ }^{36}$. Filamentous cyanobacteria that differentiate multiple cell types are considered the peak of prokaryotic complexity. The cell biology of multicellular cyanobacteria has been studied in the context of cytoplasmic continuity, intercellular communication, and cell differentiation ${ }^{37}$. Species of the Nostocaceae are characterized by the formation of linear filaments, where equally interspaced heterocysts (specialized cells for nitrogen fixation) are differentiated upon nitrogen starvation in a highly reproducible pattern ${ }^{37}$. Studies of multicellular growth in the model multicellular cyanobacterium Anabaena showed that FtsZ - the prokaryotic tubulin homolog - is an essential protein that localizes to future septum sites in a typical Z-ring structure, while MreB - the prokaryotic actin homolog determines the cell shape of a single cell within an Anabaena filament but is dispensable for filament viability ${ }^{38,39}$. Deletion of MreB 39 or of a class B penicillin-binding-protein (PBP) ${ }^{40}$ resulted in swollen and rounded cell morphotypes, a phenotype commonly associated with defects in PG biogenesis ${ }^{41,42}$. As a true-multicellular organism, Anabaena contains functional analogs to the eukaryotic gap-junctions, termed septal junctions, which facilitate intercellular communication ${ }^{43}$ by direct cell connections ${ }^{44}$. These structures involve the septum localized proteins SepJ, FraC and FraD ${ }^{37,45,46}$ and a nanopore array in the septal PG^{47}. The importance of SepJ, FraC and FraD for multicellularity in Anabaena is highlighted by a defect in filament integrity and a resulting loss of multicellularity under diazotrophic growth conditions in strains lacking any of the three genes ${ }^{46,48-50}$. Besides the canonical cytoskeletal proteins FtsZ and MreB, no other cytoskeletal proteins have been described in Anabaena. Here we study the contribution of coiled-coil-rich filament-forming proteins to the Anabaena phenotype. For this purpose, we predicted Anabaena CCRPs with presumed IF-like functions and evaluated their cytoskeletal properties using in vivo and in vitro approaches.

Results

Prediction of CCRP candidates in Anabaena

Potential filament-forming proteins were predicted computationally by surveying the Anabaena genome for CCRPs, which putatively have IF-like function ${ }^{15,24,32,51,52}$. Anabaena CCRPs were filtered according to the presence of a central rod-domain, which is characteristic to eukaryotic IF and prokaryotic IF-like proteins ${ }^{14,53,54}$. Similar to Bagchi et al. (2008), who identified the filament-forming CCRP FilP in Streptomyces coelicolor ${ }^{32}$, we defined the presence of a roddomain as 80 amino acids in coiled-coil conformation. This analysis resulted in the identification of 186 rod-domain-containing CCRPs (Supplementary File 1). The 186 CCRPs were further filtered to include only hypothetical proteins of unknown function, yielding a set of 13 candidates for further analysis (Supplementary Fig. 1 and Supplementary Table 1). The distribution of homologs to these 13 candidates in cyanobacteria showed that eight Anabaena CCRPs have homologs in multicellular cyanobacteria as well as in unicellular cyanobacteria while five have homologs present only in multicellular cyanobacteria (Fig. 1a; Supplementary Table 1).

Fig. 1: Cyanobacterial CCRPs polymerize in vitro and in vivo
(a) Distribution of protein candidate homologs in cyanobacteria. Organism names include the genus first letter and species first three letters. The presence of homologous genes is marked by a green rectangle. Organism names are shaded according to cell or colony morphology; blue: unicellular, green: filamentous, yellow: filamentous and heterocyst forming, pink: heterocyst forming and true branching or multiseriate filaments. Homologs accession numbers are supplied in Supplementary File 2. (b-c) Epifluorescence micrographs of NHS-Fluorescein-stained in vitro filaments formed by purified and renatured (b) LfiA-His ($1 \mathrm{mg} \mathrm{ml}^{-1}$), LfiB-His ($0.5 \mathrm{mg} \mathrm{ml}^{-1}$) and CypS-His (0.5 $\mathrm{mg} \mathrm{ml}^{-1}$) or (c) co-renatured LfiA-His and LfiB-His ($0.25 \mathrm{mg} \mathrm{ml}^{-1}$ each) in 25 mM HEPES, pH 7.4 (LfiB), HLB (LfiA and co-renatured LfiA/B) or PLB (CypS) renaturation buffer. (d) Merged GFP-fluorescence and chlorophyll autofluorescence (red) and bright field micrographs of Anabaena WT cells expressing LfiA-GFP or LfiB-GFP from $\mathrm{P}_{\text {petE }}$. LfiA-GFP-expressing cells were grown in BG11 without copper and induced for 2 d with $1 \mu \mathrm{M} \mathrm{CuSO} 4$. LfiB-GFP-expressing cells were grown in BG11o. (e) Merged GFP and/or eCFP fluorescence and chlorophyll autofluorescence (red) micrographs of Anabaena WT cells co-expressing LfiA-eCFP and LfiB-GFP from $P_{\text {petE }}$ and grown in BG110. Localization of LfiA/B grown in BG11 is depicted in Supplementary Fig. 7. (f) Electron micrographs of ultrathin sections of Anabaena WT and Anabaena cells co-expressing LfiA-eCFP and LfiB-GFP. Black arrows indicate electron-dense structures coinciding with the LfiA/B heteropolymer observed in Fig. 1e. Filaments appear to anchor or attach to the cell poles. (g) Alexa Fluor 488 and bright field micrographs of anti-His immunofluorescence staining of Anabaena WT and Anabaena cells expressing CypS-His from $\mathrm{P}_{\text {petE }}$ grown in liquid BG110 supplemented with $0.25 \mu \mathrm{M} \mathrm{CuSO} 4$ for 2 d . Polar sites loaded with CypS-His plugs coincide with sites of retracted chlorophyll autofluorescence observed prior to immunofluorescence (Supplementary Fig. 6b). (h) Merged GFP fluorescence and chlorophyll autofluorescence and bright field micrographs of Anabaena WT cells expressing CeaR-GFP from $P_{\text {petE }}$ grown on BG11. Notably, no enlarged cells were identified in the $\Delta c e a R$ mutant strain expressing CeaR-GFP from $\mathrm{P}_{\text {cear }}$ (Supplementary Fig. 8a), indicating that CeaR level in WT cells is tightly regulated. Inlay shows patchy and cell periphery-localized CeaR-GFP. N-terminal YFP translational fusion of CCRPs did not reveal coherent structures, suggesting that the N -terminus is essential for protein localization. Scale bars: $5 \mu \mathrm{~m}$, (e) $1.25 \mu \mathrm{~m}$, (f) 1.6 $\mu \mathrm{m}$ or (h inlay) $2.5 \mu \mathrm{~m}$.

In vivo and in vitro filamentation of CCRP candidates

Out of the 13 candidates, four CCRPs showed self-association and filamentation properties, including LfiA together with LfiB, CypS and All4981 (that will be investigated in a separate report). The remaining nine candidates failed to form filamentous structures in vivo and in vitro and consequently were excluded from further analysis. An exception is CeaR whose computational structural prediction suggested similarity to the well-characterized prokaryotic IF-like protein crescentin from Caulobacter crescentus ${ }^{15}$ (Supplementary Table 1). To evaluate the ability of candidate CCRPs to self-associate, we ectopically expressed C and N -terminally tagged (His ${ }_{6}$, YFP, eCFP or GFP) recombinant proteins and investigated in vitro polymerization properties and in vivo localization pattern. The assembly of CCRPs into filaments in vitro was tested by fluorescence microscopy using the NHS-Fluorescein dye, which was previously successfully used to visualize FtsZ filaments ${ }^{55}$. For this, we purified His $_{6}$-tagged candidates by Ni-NTA affinity chromatography under denaturing conditions and renatured them by dialysis followed by NHS-fluorescein staining. As a positive control for our approach we used crescentin ${ }^{15,56}$. The NHS-fluorescein staining of crescentin revealed an extensive filamentous network in our in vitro assay (Supplementary Fig. 2). As negative controls, we included empty vector-carrying BL21 (DE3) cells, GroEL1.2 from Chlorogloeopsis fritschii PCC 6912 (known to self-interact ${ }^{57}$) and the maltose binding protein (MBP), all of which were tested negatively for filament formation in vitro using our approach (Supplementary Fig. 2).

LfiA and LfiB are interdependent for polymerization in vitro and in vivo

Since the candidate proteins were annotated as hypothetical proteins, we initially investigated and confirmed the transcription of all four genes under standard (BG11) and diazotrophic (BG11) growth conditions (Supplementary Fig. 3a,b). An additional inspection of the genomic loci suggested that IfiA and IfiB are encoded in an operon structure, however, RT-PCR data indicated that they are not co-transcribed (Supplementary Fig. 3a,c). Applying our in vitro polymerization assay to LfiA revealed amorphous non-filamentous aggregates while LfiB assembled into sheet-like filamentous structures (Fig. 1b). Nonetheless, most LfiB precipitated
upon renaturation, suggesting that LfiB has only a partial capacity to form filaments. Next, inspired by the close genomic localization of IfiA and IfiB, we tested for co-polymerization of both proteins. Upon co-renaturation, LfiA and LfiB assembled into a meshworks of heteropolymers (Fig. 1c). This demonstrates that LfiA and LfiB are interdependent for filamentous assembly in vitro. To examine the in vivo localization pattern of LfiA and LfiB, we expressed translational GFP fusions of both proteins from the replicative pRL25C plasmid, a derivate of the pDU1 plasmid ${ }^{58}$, which is commonly used in experimental work in Anabaena ${ }^{39,59,60}$. The expression of LfiA-GFP and LfiB-GFP from their respective native promoters (as predicted using BPROM^{61}) revealed no discernible expression of LfiB-GFP (Supplementary Fig. 4a). Consequently, we investigated the in vivo localization of both proteins from the frequently used copper-regulated petE promoter $\left(\mathrm{P}_{\text {petE }}\right)^{59,60,62,63}$, which has been previously used to study the localization of FtsZ and MreB in Anabaena ${ }^{39,59,60}$. We generally observed that the $\mathrm{P}_{\text {pett- }}$-driven gene expression does not always lead to expression of the translational fusion protein in every cell under standard growth conditions (BG11 medium). Notably, this was not observed under diazotrophic growth conditions (i.e. BG110) or upon supplementation with additional CuSO_{4}, where we saw more pronounced expression. The expression of LfiA-GFP and LfiB-GFP from $\mathrm{P}_{\text {petE }}$ in Anabaena independently did not reveal filamentous structures (Fig. 1d). However, upon co-expression of LfiA-eCFP and LfiB-GFP from $P_{\text {petE }}$, a distinct filamentous structure along the longitudinal cell axis could be observed (Fig. 1e). To confirm that the localization of LfiA-GFP and LfiB-GFP is not affected by the wildtype (WT) IfiA or IfiB alleles, we localized both proteins in a $\Delta / f i A \Delta / f i B$ double mutant strain. This experiment revealed the same localization pattern as in the WT (Supplementary Fig. 4b), suggesting that co-polymerization is a dosage-dependent process. In support of this idea, we only observed pronounced in vitro co-polymerization with equal amounts of LfiA-His and LfiBHis (Supplementary Fig. 5). We further validated the co-polymerization of LfiA and LfiB by heterologous expression in the $\Delta l f i A \Delta / f i B$ double mutant background and in E. coli; both experiments revealed the same interdependent polymerization pattern (Supplementary Fig. 4c and 7). The intracellular localization of the LfiA/LfiB heteropolymer in Anabaena suggests that
the polymer is either anchored at the cell poles or specifically broken up during cell division, as LfiA/LfiB filaments were never observed to cross cell-cell borders and only traversed through not yet fully divided cells (Figs. 1e inlay and 1f). Our results so far suggest that LfiA and LfiB form a heteropolymer in vitro and in vivo and that heteropolymer assembly may depend on LfiA and LfiB relative dosage.

CypS localizes to the cell poles in Anabaena

The in vitro polymerization assay of CypS revealed that CypS assembled into star-like structures of short filamentous strings (Fig. 1b). The expression of CypS-GFP in Anabaena WT cells from the predicted native promoter ($\mathrm{P}_{\text {cyps }}$; using BPROM) did not reveal coherent fluorescence signals (Supplementary Fig. 6a). However, when expressed from $\mathrm{P}_{\text {petE }}$, CypSGFP was localized to the cytosol and the cell envelope (Supplementary Fig. 5a). The same localization to the cell envelope and the cytoplasm was also observed upon expression of CypS-GFP from $\mathrm{P}_{\text {cyps }}$ in a $\Delta c y p S$ mutant background (Supplementary Fig. 5a). Notably, CypSGFP only partially complemented the $\Delta c y p S$ mutant swollen cell phenotype (Supplementary Fig. 6a). Consequently, we examined whether the addition of a C-terminal His-tag may reconstitute the CypS WT phenotype and found that CypS-His forms a functional protein fusion (Supplementary Fig 9a,c). Immunolocalization of CypS-His in Anabaena WT revealed that the protein forms large plugs at the cell poles (Fig. 1g) that appeared to displace the thylakoid membranes (Supplementary Fig. 6b). This suggests that the comparably large C-terminal GFP tag negatively affects CypS localization in vivo. However, upon additional induction of CypSGFP expression, polar assemblies can also be seen (Supplementary Fig. 6a), suggesting that the GFP-tag only partially interferes with CypS localization. Further induction of CypS-His expression also resulted in the formation of swollen cells (Supplementary Fig. 6b), indicating that CypS has morphogenic properties. To test for a possible interplay between LfiA/LfiB and CypS we tested for the localization of LfiA/LfiB in the $\Delta c y p S$ mutant strain. This revealed that in the absence of CypS, LfiA and LfiB co-localization in the form of a filamentous structure is
lost (Supplementary Fig. 7). Our results thus indicate that CypS forms polar plugs that are putative anchor sites for the LfiA/LfiB filament.

CeaR is morphogenic and is localized to the cell envelope and the Z-ring

Attempts to overexpress CeaR-His in E. coli for the in vitro polymerization assay were not successful, possibly due to the N-terminal transmembrane domains (TMDs; Supplementary Fig. 1). Removal of the CeaR N-terminal TMDs enabled overexpression in E. coli, but nonetheless no filamentous CeaR in vitro structures were observed. We note that genomes of unicellular cyanobacteria do not have a homologous gene to ceaR (Fig. 1a), and furthermore, unlike CypS, LfiA and LfiB, recombinant expression of CeaR-GFP in Synechocystis was unsuccessful. This suggests that CeaR function is specific to the multicellular cyanobacterial phenotype. Expression of a functional CeaR-GFP fusion protein (Supplementary Fig. 11b,d,e) from $\mathrm{P}_{\text {cear }}$ and from $\mathrm{P}_{\text {pett }}$ in Anabaena WT showed that the protein localized to the cell periphery in a patchy pattern (Fig. 1h, Supplementary Fig. 8a), yet it also accumulated at the septa or had localization at the Z-ring. Z-ring or septal localization was found in 25% of cells (589 out of 2301 counted cells) carrying $P_{\text {pete:: }}$ ceaR-gfp and in 17% of cells (206 out of 1237 counted cells) carrying $\mathrm{P}_{\text {cear }}$::ceaR-gfp. In addition, we observed that the expression of CeaRGFP from $\mathrm{P}_{\text {petE }}$ led to a swollen cell phenotype in a large proportion of cells (1754 (76\%) of 2301 counted cells) and a similar proportion of swollen cells when CeaR-GFP was expressed from $\mathrm{P}_{\text {cear }}$ ($789(64 \%)$ of 1237 counted cells; Fig. 1h, Supplementary Fig. 8a). A similar swelling of cells was also identified in Anabaena WT cells expressing untagged CeaR from $\mathrm{P}_{\text {cear }}$ (435 (32\%) of 1346 counted cells; Supplementary Fig. 8a). Strikingly, expression of both, CeaRGFP or untagged CeaR in the Δ ceaR mutant strain did not induce cell swelling (Supplementary Figs. 8a and 9a). The localization pattern of CeaR indicates that CeaR is associated with the FtsZ-driven divisome. In agreement with our suggestion, CeaR-GFP localization to the Z-ring was lost upon deletion of the N -terminal TMDs from CeaR (Supplementary Fig. 8a). This indicates that membrane anchorage is key for proper CeaR function and localization.

Anabaena CCRP deletion strains show defects in filament shape and viability

To further study the function of the four CCRPs, we generated $\Delta c y p S, \Delta c e a R$ and a double $\Delta / f i A \Delta I f i B$ mutant strain and examined their phenotype. Notably, single $\Delta / f i A$ or $\Delta / f i B$ mutant strains could not be generated, suggesting that the presence of only one of those proteins is lethal for Anabaena. Our results show that the $\Delta c y p S$ and $\Delta / f i A \Delta / f i B$ mutant strains were characterized by altered filament and cell shape phenotypes and reduced filament viability (Fig 2a, Supplementary Fig. 10a,b). Unlike the linear filament growth pattern of the Anabaena WT, both $\Delta c y p S$ and $\Delta / f i A \Delta / f i B$ mutant strains showed filaments with a zigzagged pattern (Fig. 2a, Supplementary Fig. 9d). Additionally, $\Delta c y p S$ and $\Delta / f i A \Delta / f i B$ cells were significantly larger and more rounded in comparison to the WT, reminiscent of $\Delta m r e B$ mutant ${ }^{39}$ (Fig. 2c). The defect phenotype of the $\Delta c y p S$ and $\Delta f f i A \Delta I f i B$ mutant strains could be complemented with pRL25C carrying $\mathrm{P}_{\text {cyps: }}::$ cyp S or $\mathrm{P}_{\text {lfifififi: }: / I f i A-l f i B, ~ r e s p e c t i v e l y ~(S u p p l e m e n t a r y ~ F i g . ~ 9 a, b) . ~ W e ~ a l s o ~}^{\text {a }}$ observed a slight decrease in cell volume in older Δ ceaR mutant cultures that also exhibited a shortened filament length phenotype (Fig. 2c, Supplementary Figs. 9d and 11c). This is in accordance with our observation of cell volume increase upon CeaR-GFP overexpression in Anabaena WT (Figs. 1h, Supplementary Fig. 8a). Our results thus show that CeaR expression level influences Anabaena cell shape and suggest a role of CeaR in PG biogenesis and cellshape determination.

Fig. 2: Anabaena CCRP mutant strains reveal altered filament and cell shape phenotypes
(a-b) Merged chlorophyll autofluorescence and bright field micrographs of (a) Anabaena WT, $\Delta / f i A \Delta / f i B$ and $\Delta c y p S$ mutant strains grown on BG11 plates and (b) Anabaena WT and $\Delta c e a R$ mutant strain grown in BG11 and 5 d after transfer into BG110. Similar to what was observed upon transfer into BG110, reduced $\Delta c e a R$ filament length was also observed during prolonged cultivation on BG11 plates (Supplementary Figs. 9d and 11c). Unlike in the WT, we commonly observed bright red fluorescent filaments in the $\Delta c e a R$ mutant (Fig. 3d, Supplementary Fig. 9e). Ultrastructures revealed that those structures do not consist of thylakoid membranes (Supplementary Fig. 15), leaving the nature of those filaments unknown. White triangles indicate zigzagged growth and translucent triangles show swollen cells. Scale bars: (a) $5 \mu \mathrm{~m}$ and (b) $10 \mu \mathrm{~m}$. (c) Cell roundness and volume of Anabaena WT, $\Delta / f i A \Delta / f i B$, $\Delta c y p S$ and $\Delta c e a R$ mutant strains grown on BG11 plates measured with Fiji imaging software. Anabaena WT: n = 537; $\Delta c e a R$: $\mathrm{n}=796$; $\Delta / f i A \Delta / f i B: \mathrm{n}=404$; $\Delta c e a R$: $\mathrm{n}=369$. (d) Anabaena WT, $\Delta / f i A \Delta / f i B, \Delta c y p S$ and $\Delta c e a R$ mutant strains were spotted onto BG11, BG11o or BG11 plates supplemented with lysozyme or Proteinase K in triplicates of serial dilutions of factor 10 and grown until no further colonies arose in the highest dilution ($\mathrm{n}=2$). (e) Mean exchange coefficients (E) of fluorescence recovery after photobleaching (FRAP) experiments from calcein-labelled Anabaena WT and CCRP mutant strains. Liquid Anabaena WT and $\Delta c e a R$ cultures were grown in BG11 and
partially transferred to BG11. 1 d prior labelling. Plate grown Anabaena WT, $\Delta f f i A \Delta / f i B$ and $\Delta c y p S$ mutant strains were grown on BG11 plates. Data present the number of recordings of bleached cells (n). Anabaena WT BG11 plate: $\mathrm{n}=21$; Anabaena WT liquid BG11: $\mathrm{n}=10$; Anabaena WT liquid BG110: $\mathrm{n}=11 ; \Delta c y p S$: $\mathrm{n}=23 ; \Delta$ ffiA Δ ffiB: $\mathrm{n}=$ 17; $\Delta c e a R$ liquid BG11: $n=16$; $\Delta c e a R$ liquid BG110: $n=6$. Representative FRAP micrographs are shown in Supplementary Fig. 12. Representative fluorescence recovery curves are shown in Supplementary Fig. 13. Values indicated with * are significantly different from the WT. *: P < 0.05, **: P < 0.01, ***: P < 0.001, ****: P < 0.0001. ns indicates no significant difference to the WT (using one-way ANOVA with Dunnett's multiple comparison test).

The round and swollen cell phenotypes of the $\Delta c y p S$ and $\Delta f f i A \Delta l f i B$ mutant strains are indicative of an impairment in cell wall integrity and/or defects in PG biogenesis as well as an elevated sensitivity to turgor pressure ${ }^{41,42,64,65}$. Similarly, the resemblance of the phenotypes of CeaR with MreB raised the hypothesis that the four investigated CCRPs could be involved in cell wall integrity or the PG biogenesis machinery. Consequently, we tested the sensitivity of the deletion strains to cell wall degrading enzymes and osmotic stressors. Our results show that the $\Delta c y p S$ mutant had elevated sensitivity to lysozyme, and both, the $\Delta c y p S$ and $\Delta / f i A \Delta f f i B$ mutant strains, were slightly more sensitive to Proteinase K compared to the WT (Fig 2d). These results suggest that both mutants have a defect in cell wall integrity. An increased sensitivity to lysozyme has been previously been associated with a defect in elongasome function ${ }^{39}$, suggesting that CypS could be associated with the Anabaena elongasome. Furthermore, $\Delta c y p S$ and $\Delta / f i A \Delta l f i B$ mutants were unable to grow in liquid culture (Supplementary Fig. 10a) with $\Delta c y p S$ mutant cells readily bursting upon transfer to liquid culture (Supplementary Fig. 10b), hinting for an elevated sensitivity to fluid shear stress or turgor pressure. In contrast, the $\Delta c e a R$ mutant was unaffected by the presence of cell wall stressors (Fig. 2d) and grew well in BG11 growth medium (Fig. 2b). However, upon nitrogen stepdown (i.e., transfer into $\mathrm{BG} 11_{0}$), the $\Delta c e a R$ mutant strain readily fragmented into shorter filaments that aggregated into large-scale cell clumps (Fig. 2b, Supplementary Figs. 10a and 11d,e). Cells in those clumps also gradually lost their chlorophyll auto-fluorescence signal (an indicator for a decreased viability) and ultimately died within a few days (Fig 2b, Supplementary Fig. 11a,b,d). This shows that filament viability in the $\Delta c e a R$ mutant is impaired under diazotrophic conditions. The defect in filament viability could be complemented with pRL25C carrying $\mathrm{P}_{\text {cear }}:$:ceaR or $\mathrm{P}_{\text {cear }}::$ ceaR-gfp (Supplementary Fig. 11b,d,e).

Previous studies showed that mutants of genes involved in intercellular communication in Anabaena show a similar, albeit more pronounced fragmentation phenotype (producing unicellular forms) when transferred from BG11 to BG110 due to the loss of diazotrophy ${ }^{46,48-50}$. Proper nutrient exchange through septal junctions is essential for Anabaena viability, especially under diazotrophic growth ${ }^{37}$. Consequently, we investigated the level of intercellular communication using FRAP experiments of calcein stained Anabaena CCRP mutant strains. Our results show that the $\Delta / f i A \Delta / f i B$ mutant is not impaired in intercellular solute diffusion while diffusion is reduced in the $\Delta c y p S$ mutant and virtually absent in the $\Delta c e a R$ mutant grown in liquid medium (Fig. 2e, Supplementary Figs. 12 and 13). Notably, solute diffusion was not decreased in young Δ ceaR mutant cells (i.e. cultures up to 10 days; Fig. 2e), indicating the effect of ceaR knockout on cell-cell communication depends on the culture age. This culture age effect on cell-cell communication is also reflected by the different $\Delta c e a R$ mutant filament length in younger and older (i.e. 3-4 weeks old) cultures. While young $\Delta c e a R$ mutant filaments showed normal filament lengths, filaments from older $\Delta c e a R$ mutant cultures were shortened (Supplementary Figs. 9d,e and 11c). To further investigate the underlying cause for the impaired cell-cell communication, we isolated sacculi and observed that the $\Delta c e a R$ and the $\Delta c y p S$ mutant partially contained significantly larger septa with decreased nanopore counts compared to the WT. We suggest that the larger septa may be responsible for the decrease in solute diffusion (Supplementary Fig. 14). In addition, we observed that some nanopores in the $\Delta c e a R$ mutant strain were large and irregular (Supplementary Fig. 14), which as well could contribute to the decreased efficiency in solute diffusion.

Anabaena CCRPs are involved in MreB function and localization

The swollen cell phenotype of Anabaena $\Delta m r e B$ mutant strain has been previously reported to have no effect on intracellular structures ${ }^{39}$. To assess whether the altered cell and filament shape of Anabaena CCRP mutant strains has any effect on intracellular arrangements, we compared ultrathin sections of Anabaena WT and CCRP mutant strains. Except for Δ ceaR mutant cells that contain a red fluorescent filament (Fig. 3d; Supplementary Figs. 9e and 15),
intercellular ultrastructures of the mutant strains were largely unaffected regardless of their impact on filament viability and shape (Supplementary Fig. 15). The red fluorescent filaments are not assemblies of thylakoid membranes but appear to be void entities, whose nature is yet to be identified. However, the observed cell wall defects and altered cell shape phenotypes indicates that CypS, LfiA/LfiB and CeaR function is related to PG biogenesis, possibly through association with FtsZ or MreB. To test for a link with the FtsZ-driven divisome, we visualized Z-ring placement in Anabaena WT and in each of the mutant strains by immunofluorescence. No alterations in Z-ring placement were observed, indicating that Z-ring formation is unaffected in the mutant strains (Supplementary Fig. 16). To test for an association with the elongasome, we compared the MreB localization in cells ectopically expressing a functional GFP-MreB fusion ${ }^{39}$ from $P_{\text {petE. }}$. Notably, unlike in the previously reported $P_{\text {petE }}:$:GFP-MreBCD overexpression strain ${ }^{39}$, we never saw polar aggregate-like structures in our GFP-MreBexpressing strain (Fig. 3a). This suggests that the previously observed aggregations in the GFP-MreBCD strain ${ }^{39}$ are specific to the mre operon overexpression rather than the overexpression of MreB only. In contrast, we observed short GFP-MreB filaments and occasionally GFP-MreB patches within the cells (Fig. 3a). When grown on BG11o plates, which we found to increase $\mathrm{P}_{\text {pete-driven expression levels, more pronounced GFP-MreB filaments }}$ were visible, readily spanning the whole cells (Supplementary Fig. 17). Expression of GFPMreB in the mutant strains revealed considerable alterations of GFP-MreB localization (Fig 3a). Even though GFP-MreB filaments were present in the $\Delta l f i A \Delta / f i B$ mutant strain, we only detected those in non-rounded cells that seemingly had a WT-like phenotype (Fig 3b inlay; 245 (24\%) of 1040 cells counted), whereas in rounded cells of zigzagged filaments, the GFP-MreB signals were restricted to the cell poles (Fig. 3b; 795 (76%) of 1040 counted cells). These observations suggest that LfiA/LfiB are important for proper localization of MreB. Unlike LfiA/LfiB, CypS seems to have no direct influence on GFP-MreB localization, as indicated by the WT-like localization of GFP-MreB in the $\Delta c y p S$ mutant strain (Fig. 3c). In contrast, in the $\Delta c e a R$ mutant, GFP-MreB only localized as aggregate-like patches and never formed filamentous strings as seen in the WT (Fig. 3d). This suggests that CeaR is important for proper

MreB polymerization. The negative effect of the absence of CeaR on GFP-MreB function and localization became even more evident during growth in liquid culture. There, $\mathrm{P}_{\text {pete-driven }}$ expression of GFP-MreB led to a prominent rounding of $\Delta c e a R$ mutant cells and a zigzagged filament shape (Fig. 3d). Despite being expressed from the $\mathrm{P}_{\text {petE, }}$, GFP-MreB signal intensity was strongly elevated in these cells, which suggests a role of CeaR in MreB turnover regulation. The induced cell rounding of the $\Delta c e a R$ mutant upon GFP-MreB expression argues for a defect in proper MreB function as the rounded phenotype resembles the previously described $\Delta m r e B$ mutant phenotype ${ }^{39}$. Similarly, the swollen cell phenotype of Anabaena cells expressing CeaR-GFP (Fig. 1h, Supplementary Fig. 8a) is reminiscent of the enlarged cells observed upon GFP-MreBCD overexpression ${ }^{39}$. An association of CeaR with MreB is further reinforced by a banded and helical-like assembly of CeaR-GFP in E. coli (Supplementary Fig. 8b), resembling the localization of YFP-MreB in E. colif ${ }^{66}$. Thus, our observations suggest that CeaR is involved in longitudinal PG synthesis by affecting MreB localization and function.

Fig. 3: CCRPs affect MreB localization and PG biogenesis
(a-d) Merged GFP fluorescence and chlorophyll autofluorescence and bright field micrographs of Anabaena WT, $\Delta / f i A \Delta l f i B, \Delta c y p S$ and $\Delta c e a R$ mutant strains expressing GFP-MreB from $\mathrm{P}_{\text {petE. }}$. Cells were either grown on BG 11 plates or in BG11 liquid medium prior visualization. White triangles indicate red fluorescent filaments within $\Delta c e a R$ mutant cells. Exposure time for GFP fluorescence excitation was 70 ms except for 14 ms in the $\Delta c e a R$ mutant grown in liquid BG11. Consequently, despite being expressed from the non-native $\mathrm{P}_{\text {petE }}$, absence of CeaR detrimentally affects GFP-MreB localization and turnover. (e) Merged BODIPY ${ }^{\text {M }}$ FL Vancomycin (Van-FL) fluorescence and chlorophyll autofluorescence and bright field micrographs of Anabaena WT, $\Delta f i A \Delta l f i B, \Delta c y p S$ and
$\Delta c e a R$ mutant strains stained with $5 \mu \mathrm{~g} \mathrm{ml}^{-1}$ Van-FL. As a result of the low Van-FL staining and for better visibility, Van-FL fluorescence intensity in $\Delta / f i A \Delta \Delta f i B$ and $\Delta c y p S$ mutants was artificially increased about twofold after image acquisition. Unlike in the WT and the other two mutants, $\Delta c e a R$ mutant cells show longitudinal Van-FL staining, indicating an altered PG biogenesis activity or localization of enzymes involved in PG biogenesis. (f) Analysis of the arithmetic mean fluorescence intensities of cells from Fig. 3e. For all measurements, Van-FL fluorescence intensity from cell septa was recorded using 130 ms exposure time from an area of $3.52 \mu \mathrm{~m}^{2}$. Sample size (n) was 200 stainings for each strain. Values indicated with * are significantly different from the WT. *: P < 0.05, **: P < 0.01, ***: $\mathrm{P}<0.001$, ****: $\mathrm{P}<0.0001$. ns indicates no significant different to the WT (using one-way ANOVA with Dunnett's multiple comparison test). Scale bars: $5 \mu \mathrm{~m}$.

PG biogenesis is altered in Anabaena CCRP mutants

To further assess the function of Anabaena CCRPs in MreB and elongasome-driven PG turnover, we stained active sites of PG synthesis by fluorescently labeled vancomycin (Van-FL). This revealed alterations in the PG remodeling between WT and CCRP mutant strains (Fig. 3e,f). While $\Delta / f i A \Delta / f i B$ and $\Delta c y p S$ mutants showed a similar Van-FL staining pattern compared to the WT, both mutants revealed a significantly reduced staining intensity (Fig 3e,f). Hence, it is likely that CypS and LfiA/LfiB are linked to PG biogenesis. Unlike the other two mutants, the $\Delta c e a R$ mutant is characterized by an increased mean intensity of Van-FL staining that is observed not only in the septal wall, as in the WT, but also in the lateral cell wall (Fig. 3e). Consequently, we suggest that CeaR acts as a regulator PG biogenesis and/or localization of the PG biogenesis machinery. This is in agreement with the altered expression and localization pattern of GFP-MreB in the $\Delta c e a R$ mutant (Fig. 3d). The suggested role of the four CCRPs in PG turnover is furthermore in agreement with the observed swollen cell phenotype in the $\Delta c y p S$ and $\Delta f f i A \Delta / f i B$ mutant and with the altered MreB localization in the mutant strains. Since we observed that CCRP mutants affect cell wall integrity, we next examined the heterocyst-development in the CCRP mutants. Heterocysts contain an extra cell envelope with specific heterocyst glycolipids and envelope polysaccharides ${ }^{37}$. Therefore, we cultivated the CCRP mutant strains on BG11 ${ }_{0}$ plates and inspected heterocyst-formation and staining pattern with alcian blue, a dye that specifically binds to the heterocysts polysaccharide sheet. Our results so far did not reveal an observable defect in heterocyst-development in any of the mutants (Supplementary Fig. 18).

Anabaena CCRPs have the capacity to form an interconnected network and interact with SepJ and MreB

As our Anabaena CCRP mutant strains displayed similar phenotypes and the four Anabaena CCRPs were all linked to MreB function and localization as well PG biogenesis, we next investigated whether the four proteins interact with each other and with other known morphological determinants in Anabaena. Using bacterial two hybrid assays, we found that all of our four CCRPs were able to self-interact (Fig 4a). Additionally, all four CCRPs could crossinteract with each other (Fig. 4a) and we found that LfiA, LfiB and CeaR but not CypS, interacted with MreB. Additionally, CeaR weakly interacts with FtsZ (Fig. 4a, Supplementary Fig. 18), which is in agreement with the Z-ring-like in vivo localization of CeaR-GFP (Fig. 1h, Supplementary Fig. 8a). Furthermore, all proteins were identified as interaction partners of the septal protein SepJ, but not with FraC and FraD (Fig. 4a, Supplementary Fig. 19), two other septal junction proteins ${ }^{45}$. Since coiled-coil motifs are well-known protein-protein interaction domains ${ }^{67-69}$, they are putatively prone for false-positive results in the interaction assays. Indeed, interactions of coiled-coil containing proteins are usually considered to be specific ${ }^{67,70-}$ ${ }^{76}$; nonetheless, we further tested the interaction specificity of our four CCRPs - Cyps, LfiA, LfiB and CeaR - in the bacterial two-hybrid assay by including Alr3364, another Anabaena CCRP (Supplementary Fig. 1), as a negative control in our screening. Our results show that Alr3364 only weakly interacted (< 500 Miller Units/mg LacZ) with LfiA and LfiB and failed to interact with CypS and CeaR (Supplementary Fig. 20). This confirms that the strong interactions (all > 500 Miller Units/mg LacZ) observed between CypS, LfiA, LfiB and CeaR are indeed specific interactions. We attempted to further confirm our interaction results with affinity co-elution experiments. However, we found that Ni-NTA-bound Anabaena CCRPs readily precipitated upon transfer from denaturing to native buffer conditions, precluding further coelution studies. Additionally, we observed that non-denaturing conditions failed to purify overexpressed CCRPs from E. coli, confirming their inherent insoluble nature, a property known to eukaryotic IFs ${ }^{54,77}$. Instead, we surveyed for further interaction partners in Anabaena WT cells expressing CeaR-GFP or LfiA-GFP by co-immunoprecipitation experiments
(Supplementary Fig. 21) and analyzed co-precipitated proteins by LC-MS/MS analytics (Supplementary File 3). This analysis confirmed that LfiA and LfiB interact with each other in vivo and validated the association of CeaR and LfiA with MreB in Anabaena (Supplementary Fig. 21c). Corroborating a role of CeaR in PG biogenesis and MreB function, CeaR was also found to be associated with three penicillin binding proteins (Supplementary Fig. 21c), which are known regulators of PG synthesis and are part of the elongasome ${ }^{78,79}$. Furthermore, both, CeaR and LfiA, co-precipitated ParA, and CeaR was additionally found to be associated with MinD (Supplementary Fig. 21c). Both ParA and MinD belong to a protein family of Walker-Atype ATPases and mediate plasmid and chromosome segregation ${ }^{77,80,81}$. To test for a similar function in our CCRPs, we compared the DNA distribution among the CCRP mutant cells as measured by distribution of 4 ',6-Diamidin-2-phenylindol (DAPI) staining intensity. For that, we calculated the width of the DAPI focal area as the range of DAPI staining around the maximum intensity focus (± 10 grey intensity in arbitrary units). This revealed that the staining focal area size was significantly different among the four tested strains ($P=3.14 \times 10^{-41}$, using Kruskalwallis). Post-hoc comparison showed that the focal area size in the $\Delta c e a R$ mutant was larger than the others, and the area size in Anabaena WT was not significantly different than $\Delta c y p S$. The DAPI signal observed in the $\Delta / f i A \Delta / f i B$ mutant appears as the most condensed, and indeed, the $\Delta / f i A \Delta / f i B$ mutant focal DAPI area was smallest in comparison to the other strains (alpha=0.05, using Tukey test; Supplementary Fig. 22ab). Unlike the $\Delta c e a R$ mutant and the WT, DAPI signals in the $\Delta / f i A \Delta / f i B$ and $\Delta c y p S$ mutant strains were also observed between two neighboring cells (Supplementary Fig 21a), indicating that DNA distribution is not properly executed during cell division in those strains.
a

b

Fig. 4: Anabaena CCRPs form a putative cytoskeletal network that links the septal junction protein SepJ and the MreB cytoskeleton
(a) Graphical visualization of beta-galactosidase assay results of E. coli BTH101 cells co-expressing indicated translational fusion constructs of Anabaena proteins with the T18 and T25 subunit, investigating all possible pairwise combinations. Corresponding data are shown in Supplementary Fig. 19. Blue spots indicate strong verified interactions (>500 Miller units mg^{-1}) while light blue dots mark moderate interactions (<500 Miller units mg^{-1}) and no interactions are depicted with yellow-colored dots. Dots marked with " X " were previously reported by RamosLeón et al. (2015) ${ }^{82}$. (b) A model for an interconnected cytoskeletal network in Anabaena. Septal junctions, comprised of, among others, SepJ (grey), are directly connected to the CypS polar scaffold (yellow) that provides anchoring sites for the LfiA/B filament (orange). (i) Similar to α-tubulin and β-tubulin, the LfiA/B heteropolymer could be composed of alternating LfiA (red) and LfiB (blue) monomers. (ii) However, based on in vivo localizations, in vitro polymerization, domain predictions and structural similarities to eukaryotic plectin, it is more likely that LfiA acts as a cytolinker protein for LfiB, enabling proper polymerization. The LfiA/B filament spans through the cells, anchoring to CypS but never passes through the septal junctions. The identified Anabaena filament stabilizing effect of LfiA/B could then be relayed to the neighboring cells via interactions with CypS, CeaR (light blue), SepJ and MreB (purple). MreB localization is adapted from Hu et al. (2007) ${ }^{39}$ in which MreB plugs accumulate at the septa (indicated in the dividing cell on the left) but also forms cell-traversing filaments (right cell). MreB activity and localization is dependent on CeaR. Furthermore, according to FRAP results, it is conceivable that CeaR regulates Anabaena filament viability through interaction with SepJ.

Discussion

Here we provide evidence for the capacity of three Anabaena CCRPs - CypS, LfiA together with LfiB - to form IF-like polymers in vitro and in vivo. The characterization of multiple CCRPs in our study was possible thanks to the easy to use and comparably high-throughput approach for the screening of novel filament-forming CCRPs using the NHS-Fluorescein dye. Our approach supplies an alternative for the examination of protein-filament formation by electron microscopy; instead it allows for a simplified protocol for the detection of protein filaments using fluorescence microscopy. In accordance with previous studies of eukaryotic IF proteins ${ }^{83,84}$, Anabaena CCRPs N-terminally tagged with a YFP-tag failed to produce a discernible
structures/fluorescence signal. This suggests that the N -terminus is essential for localization or function of the Anabaena CCRPs and supports our observations of CypS and LfiA/LfiB as bona fide prokaryotic CCRPs with IF-like function. While the previously described prokaryotic IF-like proteins form homopolymers ${ }^{15,24,32,52,85}$, LfiA and LfiB assemble into a heteropolymer comprising the two proteins. Furthermore, LfiA and LfiB have the capacity to co-polymerize in a heterologous E. coli system, similarly to other known CCRPs such as Scc from Leptospira biflexa ${ }^{85}$ or crescentin ${ }^{86,87}$. We note, however, that the results from our in vivo experiments of LfiA/LfiB co-polymerization are based on artificial expression of the two CCRPs. We hypothesize that the absence of a LfiA/LfiB heteropolymer in strains expressing LfiA-GFP or LfiB-GFP alone (with the WT alleles still present) may be due to a dosage-dependent effect, where the presence of unequal concentration of LfiA and LfiB in the cell leads to protein aggregates. Our observation of LfiA-GFP or LfiB-GFP aggregates when they were expressed alone in the $\Delta / f i A \Delta / f i B$ mutant strain supports the dosage effect hypothesis. Also, in our in vitro polymerization assay, LfiA and LfiB only formed clear filamentous structures when both proteins are present in equal concentrations. Furthermore, the genomic neighbourhood of LfiA and LfiB suggests that the LfiA/LfiB heteropolymer formation is relying on co-translational assembly (e.g., as observed for LuxA/LuxB ${ }^{88}$). Co-translational assembly of the WT LfiA/LfiB would lead to an efficient binding of the two subunits such that the expression of one unit only in excess (i.e., LfiA-GFP or LfiB-GFP) would lead to the formation of aggregates.

Our results demonstrate that the four CCRPs described here form an interconnected cytoskeletal network in Anabaena. The network is likely anchored to the cell poles through the interaction with the septal junction protein SepJ. Together with the cell shape-determining protein MreB ${ }^{89}$, Anabaena CCRPs possibly contribute to the cell shape and relay filament shape-stabilizing properties to neighboring cells, thereby maintaining the linear Anabaena filament phenotype (Fig. 4b). The interaction of Anabaena CCRPs with SepJ suggests that not only filament integrity ${ }^{46,48}$ but also filament shape is strongly dependent on proper septal junction function and stability. Hence the four CCRPs are likely involved in filament integrity, similarly to the integral membrane proteins SepJ and FraC/FraD. The Anabaena CCRPs might
constitute stabilizing platforms or scaffolds for other proteinaceous structures, similarly to the stabilizing function of the eukaryotic cytoskeleton for cell-cell contacts (i.e. desmosomes) ${ }^{90}$. Notably, LfiA shares structural similarities with the spectrin repeats of plectin (Supplementary Table 1), a well-described eukaryotic cytolinker protein. Plectins link the three eukaryotic cytoskeletal systems (actin filaments, microtubules and IFs), thereby contributing to the resistance to deformation of vertebrate cells ${ }^{90,91}$. They furthermore stabilize desmosomes and are hence directly involved in cell-cell connection integrity ${ }^{92}$. An analogous cytolinker function of LfiA could explain why LfiB alone did not form filaments and suggests that LfiB requires LfiA as the linking protein for polymerization. Based on the structural similarity to spectrin, it is also conceivable that LfiA and LfiB possess similar functions as α and β-spectrin. Together, spectrin α / β-heteropolymers produce a cell shape-maintaining interconnected cytoskeletal network (the so called spectre) below the plasma membrane of erythrocytes ${ }^{93}$. Furthermore, similar to $\mathrm{LfiA} / \mathrm{LfiB}$, spectrins are directly linked to the actin cytoskeleton ${ }^{90}$. This link of LfiA/LfiB to the actin-like MreB cytoskeleton is evident in the altered localization of GFP-MreB in the $\Delta l f i A \Delta / f i B$ mutant strain. The observed-PG staining pattern where PG staining was strongly elevated in the $\Delta c e a R$ mutant strain suggests that in Anabaena WT, CeaR acts to (down)regulate MreB or elongasome function (hence its name: cyanobacterial elongasome regulator). Although less pronounced, PG staining was decreased in both $\Delta c y p S$ and $\Delta / f i A \Delta / f i B$ mutants, suggesting that CypS and LfiA/LfiB could act as positive regulators of elongasome function. These observations further imply an association of CypS with the elongasome, despite the failure of CypS to directly interact with MreB (Fig. 4a). MreB and the elongasome are the main determinants of the PG exoskeleton, which provides the cell with structural integrity and resistance to turgor pressure ${ }^{79,94}$. Notably, both $\Delta c y p S$ and $\Delta / f i A \Delta / f i B$ mutant strains were unable to grow in liquid culture, hinting for a defect in the resistance to turgor pressure. The growth defect in liquid culture of the $\Delta c y p S$ and $\Delta l f i A \Delta / f i B$ mutant strains may result from altered elongasome functionality due to the absence of CypS and $\mathrm{LfiA} / \mathrm{LfiB}$. The association of Anabaena CCRPs with proper elongasome function is further supported by the elevated sensitivity of the $\Delta c y p S$ mutant strain to lysozyme, similar to the $\Delta m r e B$ mutant strain ${ }^{39}$. An
interaction of prokaryotic IF-like proteins with MreB and PG synthesis has been previously described in other bacteria. Examples are the gliding motility in M. xanthus, where a multiprotein complex, including the IF-like CCRP AgIZ and MreB was found to coordinate type Amotility ${ }^{25}$. Similarly, the curved morphotype of C. crescentus is induced by crescentin, which modulates PG biogenesis by exuding local mechanical forces to the cell membrane ${ }^{22,56}$. Thus, our results are in agreement with a functional link between IF-like CCRPs and the MreB cytoskeleton in bacteria.

The conserved combination of all four CCRPs in heterocystous cyanobacteria that form linear filaments (or false branching; Fig. 1a) suggests that the linear filament formation has a selective advantage. Both $\Delta c y p S$ and $\Delta l f i A \Delta / f i B$ mutants had a zigzagged phenotype and were unable to grow in liquid culture. The zigzagged mutants provide more accessible surface for the acting mechanical forces in liquid ${ }^{95}$, including fluid shear stress ${ }^{96}$, ultimately resulting in forces that cannot be endured by the abnormal mutant filaments. Notably, while the selective advantage of cell shape is considered to be mostly a manifestation of biotic and abiotic selective factors in the cell environment ${ }^{97}$, the selective advantage of multicellular shapes is likely related to the efficiency of intercellular communication and transport ${ }^{95}$. Indeed, the results of our FRAP experiments show that the efficiency of flow in the zigzagged $\Delta c y p S$ mutant filament is reduced. Furthermore, the $\Delta c e a R$ mutant failed to grow in diazotrophic conditions where transport of metabolites in the filament is considered essential for Anabaena viability. A similar observation has been made for knockout mutant strains of SepJ, FraC and FraD that are essential for Anabaena multicellularity ${ }^{46,49,50}$. Additionally, the decrease in solute diffusion in the $\Delta c e a R$ mutant strain suggests that CeaR is involved in the buildup or stabilization of the septal junctions. This notion is further supported by the abnormal nanopore formation observed in some Δ ceaR mutant septa. Our results thus suggest that CeaR is important for Anabaena multicellularity while CypS, LfiA and LfiB serve as regulators of Anabaena patterned multicellularity. The evolution of patterned multicellularity is considered an important step towards a sustainable division of labor and the development of cell differentiation ${ }^{3}$. Our study
reveals the role of cytoskeletal proteins in the evolution and maintenance of bacterial multicellular form.

Acknowledgments

We thank Katrin Schumann, Myriam Barz, Lisa Stuckenschneider, Lisa-Marie Philipp and Claudia Menzel for their assistance in the experimental work. We thank Tanita Wein for critical comments on the manuscript. FRAP experiments were done at the Facility for Imaging by Light Microscopy (FILM) at Imperial College London. We thank Tine Pape for assistance with graphic illustrations (funded by the cluster of excellence "The Future Ocean" at Kiel University). The study was supported by the German science foundation (DFG) (Grant No. STU513/2-1 awarded to KS). DJN was supported by the BBSRC as part of the joint NSF Ideas Lab grant on 'Nitrogen: improving on nature' (grant BB/L011506/1). IM and AK were supported by German science foundation (DFG) (Grant SFB766).

Author contribution

BLS and KS designed the study. BLS established and performed the experimental work with contributions from MT and JW. CW and TD performed comparative genomics analysis. DJN and AKK performed FRAP assays and AKK and IM carried out ultrathin structures and nanopore analyses. AOH and AT analyzed protein samples by mass spectrometry. BLS, TD and KS drafted the manuscript with contributions from all coauthors.

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Fig. 1:Domain architecture of IF-like protein candidates

Depiction of coiled-coil domains of protein candidates and Crescentin from Caulobacter crescentus based on the COILS algorithm ${ }^{98}$ with a window width of 21 . The scale on top is given in amino acid residues (aa) and amino acid sequences in coiled-coil conformation are depicted by black bars, transmembrane domains are shown in orange bars, while non-coiled-coil sequences are represented by black lines. Tetratricopeptide repeats (TRPs) are shown as grey bars. Cyanobacterial proteins are given as cyanobase locus tags.

Supplementary Fig. 2: In vitro polymerization assay controls

NHS-fluorescein fluorescence micrographs of purified and renatured Crescentin-His, MBP-His and GroEL1.2 from Chlorogloeopsis fritschii PCC 6912 ($0.5 \mathrm{mg} \mathrm{ml}^{-1}$ each) as well as purified cell-free extracts of E. coli BL21 (DE3) carrying empty vector (pET21a(+)) in HLB. Notably, GroEL1.2, able to self-interact57, collapses into indistinct aggregates, showing that oligomerizing proteins do not form filaments in our assay. Proteins and cell-free extracts (empty vector) were dialyzed in a step-wise urea-decreasing manner and stained with an excess of NHSFluorescein. Scale bars: $10 \mu \mathrm{~m}$.

b

C

Supplementary Fig. 3: Anabaena CCRPs are expressed at standard growth conditions

(a,b) RT-PCR of whole RNA from Anabaena WT cultures grown in (a) BG11 or (b) BG11o liquid medium from (a) three or (b) two independent biological replicates. Gene transcripts were verified using internal gene primers (rnpB: \#1/\#2; cypS: \#3/\#4; ceaR: \#5/\#6; IfiA: \#7/\#8; IfiB: \#9/\#10; IfiA and lfiB: \#7/\#10). As negative control (neg), PCR reactions were performed with water instead of cDNA or RNA and as a positive control (pos) Anabaena gDNA was included. PCR fragments were resolved on a 2% agarose gel in TAE buffer. For each RT-PCR reaction, 100 ng cDNA was used. Absence of residual genomic DNA in DNase l-treated samples was verified with (a) 100 ng DNase I-treated RNA (RNA control) or (b) 100 ng DNase I-treated RNA that was subjected to cDNA synthesis reaction lacking reverse transcriptase (w/o RT). No common transcript for IfiA with IfiB was detected, suggesting that both proteins are not encoded in an operon.
(c) Depiction of the genomic environment of IfiA (blue) and IfiB (grey) within the Anabaena genome and their respective in silico predicted promoters depicted by black arrows (as predicted by BPROM ${ }^{61}$). Promoters of IfiA are predicted to reside 204 bp and 543 bp upstream of the open reading frame (ORF) and promoters of $l f i B$ are located 22 bp and 450 bp upstream of the ORF, thereby residing within the IfiA ORF.

Supplementary Fig. 4: Heterologous expression of LfiA and LfiB

(a) Merged GFP fluorescence and chlorophyll autofluorescence (red) and bright field micrographs of Anabaena WT cells expressing LfiA-GFP or LfiB-GFP from $P_{\text {lfiA }}$ and $P_{\text {lfib }}$. No expression of LfiB-GFP is detectable from $P_{\text {lfib }}$ while expression of LfiA-GFP from $P_{\text {IfiA }}$ leads to similar patchy clumps within the cells as observed from $P_{\text {petE }}$ in Fig. 1d. Scale bars: $5 \mu \mathrm{~m}$.
(b) Merged GFP fluorescence and chlorophyll autofluorescence and bright field micrographs of $\Delta / f i A \Delta / f i B$ mutant strain expressing LfiA-GFP or LfiB-GFP from $\mathrm{P}_{\text {pette }}$. Cells were grown on BG11 growth plates. For expression of LfiA-GFP, BG11 plates were supplemented with $1 \mu \mathrm{M} \mathrm{CuSO} 4$. This experiment shows that LfiA-GFP and LfiB-GFP from $\mathrm{P}_{\text {petE }}$ (Fig. 1d) expression and localization in Anabaena WT is not affected by native LfiA or LfiB present in the WT background. Scale bars: $5 \mu \mathrm{~m}$.
(c) Detection of protein-protein interactions with the GFP-fragment reassembly assay ${ }^{99}$. Merged GFP fluorescence and bright field micrographs of E. coli BL21(DE3) cells co-expressing NGFP-link (empty pET11a-link-NGFP) and -link-CGFP (empty pMRBAD-link-CGFP), NGFP-link and LfiB-CGFP, NGFP-LfiA and link-CGFP, NGFP-LfiA and LfiB-CGFP, LfiA-NGFP and link-CGFP or LfiA-NGFP and LfiB-CGFP. Cells were grown to an OD_{600} of 0.5 , induced with 0.2% L-arabinose and 0.05 mM IPTG and incubated for 48 h at $20^{\circ} \mathrm{C}$. Transparent triangles point to structures resembling LfiB-His in vitro polymers. White triangles indicate FilP-GFP-like ${ }^{32}$ filamentous structures that resemble structures indicated with translucent triangles but span longer distances. Co-expression of both, LfiA and LfiB leads to an elongated cell phenotype. FilP-like structures and elongated cells can already be seen upon co-expression of NGFP-LfiA with LfiB-CGFP but only upon co-expression of LfiA and LfiB with C-terminal GFP-fragments leads to a clear filamentous cell phenotype and abundant intracellular filamentous structures. This suggests that the N terminus is important for heteropolymerization. Scale bars: $5 \mu \mathrm{~m}$.

LfiA-His + LfiB-His (5:1)

LfiA-His + LfiB-His (1:1)

LfiA-His + LfiB-His (1:5)

Supplementary Fig. 5: Co-polymerization of LfiA and LfiB is dosage-dependent
NHS-fluorescein micrographs of purified and co-renatured LfiA-His and LfiB-His in HLB. LfiA-His and LfiB-His were combined in different ratios, either with a fivefold excess of LfiA-His (left image; corresponding to $0.25 \mathrm{mg} \mathrm{ml}^{-1}$ LfiA-His and $0.05 \mathrm{mg} \mathrm{ml}^{-1}$ LfiB-His), a fivefold excess of LfiB-His (right image; corresponding to $0.25 \mathrm{mg} \mathrm{ml}^{-1}$ LfiB-His and $0.05 \mathrm{mg} \mathrm{ml}^{-1}$ LfiA-His) or an equal concentration of LfiA-His and LfiB-His (central image; $0.25 \mathrm{mg} \mathrm{ml}^{-1}$ each). Proteins were dialyzed in a stepwise urea-decreasing manner and stained with an excess of NHS-Fluorescein. Fine heteropolymers only form when equal concentrations of LfiA-His and LfiB-His are present. In concert with the partial self-polymerization capacity of LfiB-His (Fig. 1b), certain filamentous structures are also detected in the LfiB-His excess samples. However, most protein still precipitated under those conditions. Scale bars: $10 \mu \mathrm{~m}$.

Supplementary Fig. 6: CypS in vivo localization is tag orientation-dependent
(a) Merged GFP fluorescence and chlorophyll autofluorescence micrographs of Anabaena WT and $\Delta c y p S$ mutant strain expressing CypS-GFP from $\mathrm{P}_{\text {petE }}$ or $\mathrm{P}_{\text {cyps. }}$. Strains carrying $\mathrm{P}_{\text {cyps: }}:$ cypS-gfp were grown in BG11, while the strains carrying $\mathrm{P}_{\text {petE: }}:$ cyps-gfp are grown in indicated media with or without CuSO_{4} supplementation. White triangles indicate membrane localization, which is most pronounced in dividing cells. Further induction of protein expression shows polar localization of CypS-GFP, similar to CypS-His. In the presence of native cypS (i.e. Anabaena WT), no CypS-GFP expression was detected from $\mathrm{P}_{\text {cyps }}$, indicating that CypS dosage is tightly controlled in the WT. Control is likely exerted at the transcriptional level as overexpression from $P_{\text {petE }}$ still produces detectable protein in the WT background. Scale bars: $5 \mu \mathrm{~m}$.
(b) Merged bright field and chlorophyll autofluorescence micrographs of Anabaena WT cells expressing CypS-His from $\mathrm{P}_{\text {petE }}$ grown in $\mathrm{BG} 11_{0}$ supplemented with $0.25 \mu \mathrm{M} \mathrm{CuSO}_{4}$ (upper image) or with $2.5 \mu \mathrm{M} \mathrm{CuSO} 4$ for 2 d (lower image). White triangles mark cell septa with the most prominent retraction of chlorophyll signal away from the poles. White stars indicate swollen cells. White arrow points to a heterocyst. Note that the areas devoid of chlorophyll signal are occupied by CypS-His plugs (Fig. 1g), suggesting that CypS forms a dense proteinaceous meshwork at the cell poles. Scale bars: $5 \mu \mathrm{~m}$.

Supplementary Fig. 7: Anabaena CCRPs affect LfiA/B in vivo localization

Mergend GFP-fluorescence and chlorophyll autofluorescence and bright field micrographs of Anabaena WT and Anabaena mutant strains co-expressing LfiA-eCFP and LfiB-GFP from $P_{\text {petE. }}$. First, second and fourth images are maximum intensity projections of a Z-stack. Localization of the LfiA/B filament is slightly altered in the $\Delta c e a R$ mutant strain and fully deranged in the $\Delta c y p S$ mutant strain. This suggests that CypS is involved in LfiA/B polar attachment, possibly by providing a proteinaceous scaffold for LfiA/B anchorage. Also, $\Delta c y p S$ mutant strain expressing LfiA/B showed a decrease in filament viability. Colonies arose upon transformation with the LfiA/B-expressing construct but did not grow upon re-streaking on fresh plates. Lack of fluorescence signal in some of the depicted cells is likely due to the phenotypic variation of copy numbers of the pRL25C plasmid in different cells within an Anabaena filament ${ }^{100}$. Scale bars: $5 \mu \mathrm{~m}$.

Supplementary Fig. 8: In vivo localization of CeaR-GFP in Anabaena and E. coli

(a) Merged GFP-fluorescence and chlorophyll autofluorescence and bright field micrographs of Anabaena WT or Δ ceaR mutant strain expressing CeaR-GFP, CeaR-GFP without the N-terminal transmembrane domain (first 52 aa removed; trunc-ceaR) or CeaR form $P_{\text {petE }}$ or $P_{\text {cear }}$. Additional expression of CeaR-GFP from $P_{\text {ceaR }}$ or $P_{\text {petE }}$ and CeaR from $\mathrm{P}_{\text {ceaR }}$ induces a swollen cell phenotype. This phenomenon is not present upon expression of CeaR-GFP or CeaR (Supplementary Fig. 9a) from $\mathrm{P}_{\text {ceaR }}$ in the $\Delta c e a R$ mutant strain, indicating that ceaR expression or protein level is tightly regulated in Anabaena WT. Expression of truncated CeaR-GFP in Anabaena WT cells was induced for 1 d with $0.2 \mu \mathrm{M} \mathrm{CuSO}_{4}$. Scale bars: $5 \mu \mathrm{~m}$.
(b) GFP-fluorescence and bright field micrographs of E. coli BL21 (DE3) cells expressing CeaR-GFP. Cells were grown till an OD_{600} of 0.5 and induced for 48 h at $20^{\circ} \mathrm{C}$ with 0.05 mM IPTG. White triangles indicate banded and helical localization of CeaR-GFP. Scale bar: $5 \mu \mathrm{~m}$.

Supplementary Fig. 9: Mutant phenotype complementation and culture age-dependency of Anabaena mutant phenotypes
(a) Morphological complementation of Anabaena CCRP mutant strains as a result of native expression of IfiA-IfiB, cypS and ceaR from pRL25C. Notably, CypS-His expressed from $\mathrm{P}_{\text {petE }}$ also complemented the morphological defect of the $\Delta c y p S$ mutant strain and rescues the linear Anabaena filament shape. The ability to complement the mutant phenotypes using the pRL25C plasmid shows that pDU1-based plasmids can be successfully employed to rescue WT phenotypes despite their variation in the relative copy number ${ }^{100}$. Scale bars: $5 \mu \mathrm{~m}$.
(b,c) Complementation of (b) $\Delta l f i A \Delta I f i B$ and (c) $\Delta c y p S$ mutant strains by expressing IfiA-lfiB from $\mathrm{P}_{\text {lfiA/B }}$ or cypS-his from $P_{\text {petE }}$ from the replicative pRL25C plasmid. Note, not all tested clones successfully complemented the mutant growth defects in liquid culture, likely due to the phenotypic variation caused by the copy number variation of pRL25C ${ }^{100,101}$.
(d) Merged bright field and chlorophyll autofluorescence micrographs of (a) Anabaena WT and $\Delta / f i A \Delta / f i B, \Delta c y p S$ and $\Delta c e a R$ mutant strains grown on BG11 plates for an elevated time period (about 3 weeks) or (d) $\Delta c e a R$ mutant strain grown on BG11 plates for about one week. White triangles indicate red fluorescent filaments. Note: a decreased viability of the $\Delta c y p S$ mutant strain is evident by a decreased chlorophyll autofluorescence signal. Scale bars: $5 \mu \mathrm{~m}$.

b chlorophyll autofluorescence

Supplementary Fig. 10: Anabaena CCRP mutant strains show growth defects in liquid culture

(a) Anabaena WT, $\Delta c y p S$, Δ ffiAA $\Delta f i B$ and $\Delta c e a R$ mutant strains were grown on BG11 plates, transferred to liquid strain can somewhat manage to survive in BG11o liquid medium without agitation. Nevertheless, prolonged incubation usually led to cell death. On the contrary, $\Delta c e a R$ mutant cells are not viable when grown in liquid media with agitation.
(b) Merged bright field and chlorophyll autofluorescence micrographs of $\Delta c y p S$ mutant strain resuspended in BG11 liquid medium from BG11 plates. Cells were visualized immediately after transfer. White triangles indicate material released from cells upon cell rupture. Scale bars: $5 \mu \mathrm{~m}$.

Supplementary Fig. 11: Fragmentation and decreased viability of the $\Delta c e a R$ mutant strain
(a) Anabaena WT and Δ ceaR mutant strain were grown in BG11, washed three times in BG11 or BG110, adjusted to an OD_{750} of 0.1 and then grown in triplicates at standard growth conditions. OD_{750} values were recorded once a day for 20 d . Error bars show the standard deviation $(\mathrm{n}=3)$.
(b) Anabaena WT grows in BG11 and BG11o while the $\Delta c e a R$ mutant strain only grows in BG11. Growth in BG110 can, however, be rescued using the pRL25C plasmid bearing $\mathrm{P}_{\text {cear: }}:$ ceaR or $\mathrm{P}_{\text {cear: }}:: c e a R$-gfp, showing that the CeaR-GFP fusion protein is active.

743
(c) Filament length (number of cells per filament) of Δ ceaR mutant strain from young and older cultures grown in BG11 liquid medium. Filament length of filaments with up to 19 cells were individually counted while filaments with with more than 20 cells are listed with ≥ 20.
(d) Merged bright field and chlorophyll autofluorescence micrographs of Anabaena WT, $\Delta c e a R$ mutant and the Δ ceaR mutant carrying a pRL25C plasmid bearing $\mathrm{P}_{\text {cear }}::$ ceaR or $\mathrm{P}_{\text {ceaR: }}:$ ceaR-gfp. Micrographs show cells from Supplementary Fig. 11b 48 h after transfer to BG11。. The $\Delta c e a R$ mutant fragments into short filaments that clump together with cells losing their chlorophyll auto-fluorescence signal. However, the $\Delta c e a R$ mutant fragmentation/aggregation can be fully complemented with a pRL25C plasmid bearing $\mathrm{P}_{\text {ceaR }}:: c e a R$ or $\mathrm{P}_{\text {cear }}:: c e a R$ $g f p$.
(e) Micrographs of Δ ceaR mutant and Δ cear mutant expressing CeaR-GFP from $\mathrm{P}_{\text {ceaR }}$ on the pRL25C plasmid 48 h after transfer to BG110

Calcein

754

Supplementary Fig. 12: Anabaena CCRP mutant strains display defects in cell-cell solute diffusion
Representative calcein fluorescence micrographs depicting intercellular molecular exchange following laser-based bleaching of calcein fluorescence in Anabaena WT or Δ ceaR mutant strain grown in liquid BG11 and liquid BG110 as well as in Anabaena WT and $\Delta l f i A \Delta / f i B$ and $\Delta c y p S$ mutant strains grown on BG11 plates. White triangles indicate bleached cells. Translucent triangles show diffusion barriers present in the $\Delta c e a R$ mutant strain. Fluorescence images show respective cells prior bleaching, immediately after bleaching ($\mathrm{t}=0$) and after 20 seconds after bleaching ($\mathrm{t}=20 \mathrm{~s}$). Images show representative examples. Scale bars: $5 \mu \mathrm{~m}$.

Supplementary Fig. 13: Exchange coefficients of FRAP assays
Fluorescence recovery curves with their predicted exchange coefficient values $(E)^{43}$ for selected bleached cells of Anabaena WT or $\Delta c e a R$ mutant strain grown in liquid BG11 and liquid BG110 as well as in Anabaena WT and $\Delta / f i A \Delta l f i B$ and $\Delta c y p S$ mutant strains grown on BG11 plates. Fluorescence values are given in arbitrary units (a.u.) ${ }^{43}$ over a time course of 20 s post bleaching.

Supplementary Fig. 14: Septal nanopore array

(a) The number of nanopores is shown correlated to the septum size. In contrast to the WT, Anabaena CCRP mutants show a subset of large septa ($>2200 \mathrm{~nm}$) with few nanopores.
(b) Representative transmission electron microscopy images of indicated strains are shown. The dotted line divides the septa into a diameter of $<2200 \mathrm{~nm}$ (left) and $>2200 \mathrm{~nm}$ (right) derived from (a). Scale bars: 250 nm .
(c) Number of pores per septum (</> 2200 nm). Student's t-test (mutants vs. WT). P-values are indicated (ns: not significant, ${ }^{*} P<0.05$, ${ }^{* * *} \mathrm{P}<0.001$). P-values were calculated from the following number of septa: $\mathrm{n}(\mathrm{WT})=12$; n $(\Delta c y p S<2200 n m)=3 ; \mathrm{n}(\Delta c e a R<2200 n m)=8 ; \mathrm{n}(\Delta c y p S>2200 n m)=5 ; \mathrm{n}(\Delta c e a R>2200 \mathrm{~nm})=6$. WT data were derived from Bornikoel, et al ${ }^{102}$.
(d) Nanopore diameter. Floating bars show the mean value from the number of analyzed nanopores. Sample size was $\mathrm{n}(\mathrm{WT})=1061 ; \mathrm{n}(\Delta c y p S<2200 \mathrm{~nm})=315 ; \mathrm{n}(\Delta c e a R<2200 \mathrm{~nm})=371 ; \mathrm{n}(\Delta c y p S>2200 \mathrm{~nm})=174 ; \mathrm{n}(\Delta c e a R$ $>2200 \mathrm{~nm})=42$.

Supplementary Fig. 15: Ultrastructure of Anabaena WT and CCRP mutant strains
Ultrathin sections of Anabaena WT and Anabaena CCRP mutant strains grown on BG11 plates. White triangles indicate unusual structures in the $\Delta c e a R$ mutant that coincide with the observed red fluorescent filaments in the $\Delta c e a R$ mutant visualized by live cell fluorescence microscopy (Fig. 3d, Supplementary Fig. 9e).

BG11

BG11-0

Supplementary Fig. 16: FtsZ localization is unaffected in Anabaena CCRP mutant strains

Alexa Flour-488 fluorescence and bright field micrographs of Anabaena WT and $\Delta c e a R, \Delta f f i A \Delta l f i B$ and $\Delta c y p S$ mutant strains grown on BG11 or BG11o growth plates. Cells were subjected to immunofluorescence staining using anti-FtsZ primary antibody and Alexa Fluor-488 coated secondary antibody essentially as described by RamosLeón et al. ${ }^{82}$. Cells were mounted in ProLong Diamond antifade mountant (Thermo Fischer Scientific). Scale bars: $5 \mu \mathrm{~m}$.

Supplementary Fig. 17: GFP-MreB forms extensive filaments in Anabaena WT

Merged GFP fluorescence and chlorophyll autofluorescence and bright field micrographs of Anabaena WT expressing GFP-MreB from $P_{\text {petE }}$. Cells were grown on BG11 ${ }_{0}$ growth plates. Maximum intensity projections of a Zstack. Scale bar: $5 \mu \mathrm{~m}$.

BG11-0

Supplementary Fig. 18: Alcian blue staining is unaltered in Anabaena CCRP mutant strains

Bright field micrographs of Anabaena WT and $\Delta c e a R$, $\Delta / f i A \Delta / f i B$ and $\Delta c y p S$ mutant strains grown on BG11o plates. Cells were either observed directly by bright field microscopy or previously stained with 0.5% alcian blue (final concentration). Heterocysts are indicated by white arrows. Scale bars: $5 \mu \mathrm{~m}$.

Figure description follows on page 47.

Supplementary Fig. 19: Anabaena possess a complex cytoskeletal network that is linked to a septal junction protein

Beta-galactosidase assays of E. coli BTH101 cells co-expressing indicated T25 and T18 translational fusions of all possible pair-wise combinations. E. coli cells carrying the respective plasmids were subjected to beta-galactosidase assay as described by Karimova et al. ${ }^{103}$ in triplicates from three independent colonies grown for 2 d at $20^{\circ} \mathrm{C}$. Quantity values are given in Miller Units per milligram LacZ of the mean results from three independent colonies. Negative: N-terminal T25 fusion construct of the respective protein co-transformed with empty pUT18C. Positive: Zip/Zip control. Error bars indicate standard deviations ($\mathrm{n}=3$). *: $\mathrm{P}<0.05$, **: $\mathrm{P}<0.01$, ***: $\mathrm{P}<0.001$, ****: $\mathrm{P}<$ 0.0001 (Dunnett's multiple comparison test and one-way ANOVA).

Supplementary Fig. 20: Interaction of Anabaena IF-like CCRPs is specific in a bacterial two hybrid system

Beta-galactosidase assays of E. coli BTH101 cells co-expressing indicated T25 and T18 translational fusions of all possible pair-wise combinations. E. coli cells carrying the respective plasmids were subjected to beta-galactosidase assay as described by Karimova et al. ${ }^{103}$ in triplicates from three independent colonies grown for 2 d at $20^{\circ} \mathrm{C}$. Quantity values are given in Miller Units per milligram LacZ of the mean results from three independent colonies. Negative: N-terminal T25 fusion construct of the respective protein co-transformed with empty pUT18C. Positive: Zip/Zip control. Error bars indicate standard deviations ($n=3$). Values indicated with * are significantly different from the WT. **: $\mathrm{P}<0.01$ (Dunnett's multiple comparison test and one-way ANOVA).
a
b

C

CeaR-GFP	LfiA-GFP
All4981	LfiB
MreB	MreB
ParA	ParA
MinD	
SepJ	
All2981 (PBP1a)	
All2952 (PBP1a)	
Alr0718 (PBP2)	
Alr3365	
Alr4550 (S-layer protein)	
PBP: Penicillin-binding protein	

Supplementary Fig. 21: Identification of proteins interacting with Anabaena CCRPs

(a,b) Cell-free extracts of Anabaena WT expressing (a) CeaR-GFP or (b) LfiA-GFP from $\mathrm{P}_{\text {petE }}$ were subjected to coimmunoprecipitation using anti-GFP magnetic beads (μ MACS GFP isolation Kit; Miltenyi Biotec). CeaR-GFPexpressing cells were grown in BG11 without copper and protein expression was induced for 1 d with $0.5 \mu \mathrm{M} \mathrm{CuSO} 4$. LfiA-GFP expressing cells were grown in BG110 without copper and protein expression was induced for 5 d with $0.5 \mu \mathrm{M} \mathrm{CuSO}_{4}$. Anabaena WT cells were grown in BG11 and BG110 supplemented with $0.5 \mu \mathrm{M} \mathrm{CuSO} 4$ for 1 or 5 d , respectively. Cells were lysed in PBS-N and pooled duplicates of precipitated proteins of two independent experiments were analyzed by mass spectrometry and 25μ l of the co-precipitate were resolved in a (a) 10% SDSpolyacrylamide gel or in a (b) 4-15\% TGX precast gel (Bio-Rad) and detected by Quick Coomassie stain (Serva).
(c) Excerpt of the identified specific interactors of CeaR-GFP and LfiA-GFP. The full list is listed in Supplementary File 3. Notably, CeaR directly interacts with All4981, another filament forming protein in Anabaena (covered in a separate report) as well as Alr3365 that lies directly downstream of alr3364 in the Anabaena genome, which we also identified in our screening for CCRPs in Anabaena (Supplementary Fig. 1). Both, CeaR and LfiA, interact with ParA, hinting for a putative role in chromosome or plasmid segregation in Anabaena.

Supplementary Fig. 22: Condensation of intracellular DNA in Anabaena CCRPs

(a) DAPI fluorescence and merged bright field and chlorophyll autofluorescence micrographs of Anabaena WT and $\Delta c e a R, \Delta f i A \Delta l f i B$ and $\Delta c y p S$ mutant strains grown on BG11 growth plates. Cells were resuspended in BG11 and incubated with $10 \mu \mathrm{~g} \mathrm{ml}^{-1}$ DAPI (final concentration). White arrows indicate strings of DNA that traverse from one cell to the other. Notably, no such strings are observed in dividing cells (white star), suggesting that it is an effect that occurs after complete cell division. Scale bars: $5 \mu \mathrm{~m}$.
(b) Plot profile showing the DAPI signal intensities of pixels (grey value) along Anabaena WT and Anabaena mutant cells ($\mathrm{n}=151$ for each strain) in arbitrary units (a.u.) and arranged to the respective peak maxima. The focal area size in the Δ ffiA $\Delta / f i B$ mutant was smallest in comparison to the other strains, Δ ceaR was larger than the others, and the area size in WT was not significantly different than $\Delta c y p S$ (alpha $=0.05$, using Tukey test). Notably, the comparison of cell size among the strains reveals a similar result: the $\Delta / f i A \Delta l f i B$ mutant cell size was smallest in comparison to the other strains, $\Delta c e a R$ was larger than the others, and the area size in WT was not significantly different than the $\Delta c y p S$ mutant ($P=1.75 \times 10^{-54}$, using Kruskal-wallis; alpha= 0.05 , using Tukey test). Consequently, we compared the area of the focal DAPI staining decided by the cell size among the strains. This reveals that this ratio is smallest in $\Delta c e a R$, largest in $\Delta c y p S$ and not significantly different between $\Delta f f i A \Delta f f i B$ and the WT.

8 Supplementary Table 1: Characteristics of protein candidates

Locus tag	Genus	Subsection	Homolog distribution	Predicted proteins of similar structure (I-TASSER)	Conserved domains	Others 859
crescentin	C. crescentus	n/a	n/a	Cytoplasmic domain of bacterial cell division protein EzrA	SMC_N, CCDC158	Validated IF-like protein ${ }^{86,107-109}$
cypS (alr0931)	Anabaena	IV	I, II, III, IV, V	Cytoplasmic domain of bacterial cell division protein EzrA	SMC_N, CCDC158 DUF3084, Neuromodulin_N	
all4981	Anabaena	IV	III, IV, V	TTC7B/Hyccin Complex or Clathrin coat	TPR	4 bp overlap to all4982
$\begin{aligned} & \text { IfiA } \\ & \text { (alr4504) } \end{aligned}$	Anabaena	IV	I, II, III, IV, V	Spectrin repeats 7, 8, and 9 of the plakin domain of plectin	SMC_N	IfiB localized
$\begin{aligned} & \text { IfiB } \\ & \text { (alr4505) } \end{aligned}$	Anabaena	IV	I, II, III, IV, V	Cytoplasmic domain of bacterial cell division protein EzrA	SMC_N, DUF3552	downstream of IfiA
ceaR (all2460)	Anabaena	IV	III, IV, V	Cytoplasmic domain of bacterial cell division protein EzrA	SMC_N, TerB_C, CALCOCO1, Spc7	Two N-terminal TMHs
alr0347	Anabaena	IV	I, II, III, IV, V	Bacillus subtilis Smc coiled-coil middle fragment	Filament superfamily	
alr3364	Anabaena	IV	II, III, IV, V	Cytoplasmic domain of bacterial cell division protein EzrA	SMC_N, FtsK, DUF4696	
all8023	Anabaena	IV	IV	Human ATR-ATRIP complex	SMC_N, Pentapeptide, Yjbl	
alr4393	Anabaena	IV	I, II, III, IV, V	Cytoplasmic domain of bacterial cell division protein EzrA	SMC_N, DUF3084	
alr4911	Anabaena	IV	I, II, III, IV, V	Structure of the Smc head domain with a coiled coil and joint derived from Pyrococcus yayanosii	SMC_N, P-loop_NTPase DNA_S_dndD, Spc7, SbcC	
all4935	Anabaena	IV	IV	Cytoplasmic domain of bacterial cell division protein EzrA	DUF4114, DUF3084	
alr2043	Anabaena	IV	IV, V	Human ATR-ATRIP complex (replication stress response)	SMC_N, Tubulin_2	
alr3988	Anabaena	IV	I, II, III, IV, V	Two dynein tail domains bound to dynactin and BICDR1	SMC_N, SbcC	

The first column indicates the respective locus tags of protein candidates and Crescentin. The second and third column indicate the respective subsection of the corresponding genus according to Rippka et al. (1979) ${ }^{36}$. Column four lists the subsections that contain homologous proteins to the respective candidate. Column five contains proteins predicted to be structurally similar to the protein candidates in the PDB (Protein Data Bank) based on I-TASSER ${ }^{104-106}$. The sixth column indicates predicted sub-domains of protein candidates identified by BLAST CDS. Column seven states other features of interest. Abbreviations: (TMH) Transmembrane helix; (DUF) Domain of unknown function; (CCDC158) Coiled-coil domain-containing protein 158; (SMC) Structural maintenance of chromosomes; (SbcC) DNA repair exonuclease SbcCD ATPase; (CALCOCO1) Calcium binding and coiled-coil domain; (TRP): Tetratricopeptide repeat; (Spc7) Spc7 kinetochore protein; (TerB_C) TerB-C occurs C-terminal of TerB in TerB-N containing proteins, putative metal chelating; (Filament superfamily) Intermediate filament protein; (FtsK) DNA segregation ATPase FtsK; (Pentapeptide) Pentapeptide repeats often found in many cyanobacterial proteins with unknown function (predicted to be a β-helix); (Yjbl) Uncharacterized protein containing pentapeptide repeats; (DNA_S_dndD) DNA sulfur modification protein DndD; (Tubulin_2 superfamily) Tubulin like; Many of the residues conserved in Tubulin (pfam00091) are also conserved in this family; (P-loop_NTPase) P-loop containing Nucleoside Triphosphate Hydrolases superfamily. n/a: not applicable.

Material and methods

Bacterial strains and growth conditions
Anabaena WT was obtained from the Pasteur Culture Collection (PCC) of cyanobacteria (France). Cells were grown photoautotropically in BG11 or without combined nitrogen (BG110) at constant light with a light intensity of $30 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$. When appropriate, $5 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}$ spectinomycin (Sp), $5 \mu \mathrm{~g} \mathrm{ml}^{-1}$ streptomycin (Sm) or $30 \mathrm{\mu g} \mathrm{ml}^{-1}$ neomycin (Nm) was added to strains carrying respective plasmids or chromosomal insertions. In some cases, basal copperregulated petE-driven expression of gene candidates in Anabaena cells was lethal or growth inhibiting, therefore these strains were grown in BG11 without copper and protein expression was later induced by the addition of CuSO_{4} at indicated concentrations to the culture. E. coli strains DH5a, DH5aMCR, XL1-blue and HB101 were used for cloning and conjugation by triparental mating. BTH101 was used for BACTH system and BL21 (DE3) was used for expression of His $\boldsymbol{\epsilon}_{-}$and GFP-tagged proteins in E. coli. All strains were grown in LB medium containing the appropriate antibiotics at standard concentrations. Supplementary Tables 2-5 list all used bacterial strains, plasmids and oligonucleotides.

Prediction of coiled-coil rich proteins

Genome sequence of Anabaena (GCA_000009705.1) was analyzed by the COILS algorithm ${ }^{98}$ as described by Bagchi et al. ${ }^{32}$. The algorithm was run with a window width of 21 and the cutoff for amino acids in coiled-coil conformation was set to ≥ 80 amino acid residues. The resulting set of protein candidates was further manually examined with online available bioinformatic tools (NCBI Conserved Domain Search, NCBI BLAST, TMHMM Server, PSORTb, I-TASSER). Protein candidates exhibiting BLAST hits involved in cytoskeletal processes or similar domain architectures as known IF proteins like CreS, FilP, vimentin, desmin or keratin were selected, and enzymatic proteins as well as proteins predicted to be involved in other cellular processes were excluded.

Distribution of homologs in cyanobacteria
Cyanobacteria species tree is according to Dagan et al. ${ }^{110}$ with the root of the tree as recently inferred by Tria, Landan and Dagan ${ }^{111}$. Homologs to the Anabaena proteins were detected by amino acid sequence similarity using stand-alone BLAST ${ }^{112}$ ver. 2.2.26. Protein sequences that were found as BLAST hits with a threshold of E -value $\leq 1 \times 10^{-5}$ were further compared to the Anabaena protein by global alignment using needle ${ }^{113}$. Hits having $\geq 30 \%$ identical amino
acids in the global alignment were considered as homologs. The phylogenetic tree was visualized with $\mathrm{iTOL}{ }^{114}$.

Genomic DNA and RNA isolation and cDNA synthesis
Genomic DNA (gDNA) from Anabaena was isolated using the GeneJET Plant Genomic DNA Purification Kit (Thermo Fischer Scientific) and the DNeasy Plant Mini Kit (QIAGEN) according to the manufacturer's instructions from 10 ml cyanobacterial cultures.

RNA from Anabaena WT was isolated using the Direct-zol ${ }^{\text {TM }}$ RNA MiniPrep Kit (Zymo Research) according to the manufacturer's instructions. RNA was isolated in technical triplicates from 10 ml cultures. Isolated RNA was treated with DNA-free ${ }^{\text {TM }}$ Kit (2 units rDNAs/reaction; Thermo Fischer Scientific) and 200 ng RNA was reverse transcribed using the qScript ${ }^{T M}$ cDNA Synthesis Kit (Quanta Biosciences). RT-PCR of cDNA samples for mpB, cypS, ceaR, IfiA, IfiB and IfiA+/fiB was done using primer pairs \#1/\#2, \#3/\#4, \#5/\#6, \#7/\#8, \#9/\#10, \#7/\#10, respectively.

Transformation

Transformation of chemically competent E. coli was performed by the standard heat shock procedure ${ }^{115}$. Anabaena was transformed by triparental mating according to Ungerer and Pakrasi ${ }^{116}$. Briefly, 100μ l of overnight cultures of DH5a carrying the conjugal plasmid pRL443 and DH5aMCR carrying the cargo plasmid and the helper plasmid pRL623, encoding for three methylases, were mixed with $200 \mu \mathrm{l}$ Anabaena culture (for transformation into Anabaena mutant strains, cells were scraped from the plate and resuspended in $200 \mu \mathrm{l}$ BG11). This mixture was directly applied onto sterilized nitrocellulose membranes placed on top of BG11 plates supplemented with 5% LB medium. Cells were incubated in the dark at $30^{\circ} \mathrm{C}$ for $6-8 \mathrm{~h}$ with subsequent transfer of the membranes to BG11 plates. After another 24 h , membranes were transferred to BG11 plates supplemented with appropriate antibiotics.

Plasmid construction

Ectopic expression of Anabaena protein candidates was achieved from a self-replicating plasmid ($\mathrm{pRL} 25 \mathrm{C}^{117}$) under the control of the copper-inducible petE promoter ($\mathrm{P}_{\text {petE }}$) or the native promoter (predicted by BPROM ${ }^{61}$) of the respective gene. All constructs were verified by Sanger sequencing (Eurofins Genomics).

Initially, we generated pTHS1 (pRL25C, $\mathrm{P}_{\text {petE: }}: /$ /fiA-gfp), which served as template for many other pRL25C-based plasmids employed in this study. For this, $\mathrm{P}_{\text {pete }}$ and IfiA were amplified from Anabaena gDNA using primers \#11/\#12 and \#13/\#14, respectively. gfpmut3.1 was amplified from pJET1.2 containing $P_{\text {pett }}$-gfp ${ }^{118}$ using primers \#15/\#16. This gfpmut3.1 (hereafter gfp) is deprived of its internal Ndel site and contains a 5 ' linker sequence of 12 alternating codons encoding for alanine and serine. The PCR fragments were next ligated into PCR-amplified pRL25C (using primers \#17/\#18) by Gibson assembly.

For pTHS2 (pRL25C, $\left.\mathrm{P}_{\text {pett: }}: / / f i B-g f p\right)$ and $\mathrm{pTHS3}$ ($\mathrm{pRL25C}, \mathrm{P}_{\text {pett }}::$:ceaR-gfp), IfiB and ceaR were amplified from Anabaena gDNA using primers \#19/\#20 or \#21/\#22, respectively and ligated into PCR-linearized pTHS1 (using primers \#23/\#24; thereby removing only IfiA and leaving $\mathrm{P}_{\text {petE }}$ and $g f p$ in the vector) by Gibson assembly.

For pTHS4 (pRL25C, $\mathrm{P}_{\text {petE: }: \text { :cypS-gfp), cypS was amplified by PCR from Anabaena gDNA }}$ using primers \#36/\#38, introducing Ndel and Sacl sites, and then ligated into pJET1.2-
 site. The $\mathrm{P}_{\text {petE: }: \text { :cypS-gfp fragment was excised by BamHI and EcoRI and ligated into BamHI }}$ and EcoRI-digested pRL25C.

For pTSH5 (pRL25C, $\mathrm{P}_{\text {petE:: }}$:trunc-ceaR-gfp), pTHS3 was amplified using primers \#148/\#148 and re-ligated using Quick Ligase (NEB). Thereby, the first 153 bp from ceaR were removed

For pTHS6 ($\mathrm{P}_{\text {pete:: }}$:cypS-his), cypS-his was amplified from pTHS8 using primers \#25/\#26 and ligated into PCR-linearized pRL25C (using primers \#24/\#27) by Gibson assembly.

For pTHS7 (pRL25C, $\mathrm{P}_{\text {pete-IfiA-ecfp, }} \mathrm{P}_{\text {pete-IfiB-gfp), }} \mathrm{P}_{\text {pete-IfiA }}$ was amplified from pTHS1 using primers \#28/\#29 and ligated into Clal-digested pRL25C by Gibson assembly together with myc-link-ecfp (initially amplified with primers \#30/\#31, purified and then again amplified with primers \#32/\#33). This construct was digested by BamHI and ligated by Gibson assembly with PCR-amplified $\mathrm{P}_{\text {petE::IfiB-gfp }}$ from pTHS2 (using primers \#34/\#35).
pET21a(+) plasmids bearing C-terminal His-tag translational fusions of CCRPs were generated by restriction-based cloning techniques. For this, cypS, IfiA, IfiB or ceaR were amplified by PCR from Anabaena gDNA using primers \#36/\#37, \#39/\#40, \#41/\#42 or \#43/\#44, respectively, introducing Ndel and Xhol sites. Ndel and Xhol-digested fragments were then ligated into $\mathrm{pET21a}(+)$ using Quick Ligase (NEB). This procedure yielded plasmids pTHS8, pTHS9, pTHS10 and pTSH11, respectively.
pET21a(+) bearing C-terminal gfp translational fusions were generated based on pTHS12 (pET21a(+), $\mathrm{P}_{\mathrm{T} 7:: c y p S-g f p) . ~ F o r ~ t h i s, ~ c y p S ~ w a s ~ a m p l i f i e d ~ b y ~ P C R ~ f r o m ~ A n a b a e n a ~ g D N A ~ w i t h ~}^{\text {P }}$ primers $36 \# \# 38$, introducing Ndel and Sacl sites, and ligated into Ndel and Sacl-digested
pJET1.2 bearing $\mathrm{P}_{\text {pete-gfp. }}$ cypS-gfp was excised by Ndel and EcoRI and ligated into Ndel and EcoRI-digested pET21a(+), generating pTHS12. For pTHS13 (pET21a(+), PT7::ceaR-gfp), ceaR-gfp was amplified by PCR from pTHS3 using primers \#47/\#48 and ligated into PCRlinearized pTHS12 (primers \#49/\#50) by Gibson assembly.

GFP-fragment reassembly plasmids were generated by Gibson assembly. For this aim, IfiA was amplified by PCR from Anabaena gDNA with primer 51/52 or 53/54 and ligated into Xhol and BamHI or Nhel digested pET11a-link-NGFP, generating pTHS15 or pTHS16. IfiB was amplified by PCR from Anabaena gDNA with primers $55 / 56$ and ligated into Ncol and Aatll digested pMRBAD-link-CGFP, generating pTHS17.

Clonings for bacterial two-hybrid plasmids were done using Gibson assembly of PCRlinearized pKNT25, pKT25, pUT18 or pUT18C plasmids, using primers \#57/\#58 for pKNT25 and pUT18, primers \#59/\#60 for pKT25 and primers 61/62 for pUT18C. For each gene, three primer combinations were used for amplification from Anabaena gDNA. The first primer pair was always used for cloning of the respective gene into pKNT25 and pUT18 while the second and third primer pairs were used for cloning into pKT25 or pUT18C, respectively: cypS (primers \#63/\#64, \#65/\#66 or \#67/\#68), IfiA (primers \#69/\#70, \#71/\#72 or \#73/\#74), IfiB (primers \#75/\#76, \#77/\#78 or \#79/\#80), ceaR (primers \#81/\#82, \#83/\#84 or \#85/\#86), sepJ (primers \#87/\#88, \#89/\#90 or \#91/\#92), ftsZ (primers \#93/\#94, \#95/\#96 or \#97/\#98), mreB (primers \#99/\#100, \#101/\#102 or \#103/\#104), fraC (primers \#105/\#106, \#107/\#108 or \#109/\#110) and fraD (primers \#111/\#112, \#113/\#114 or \#115/\#116). This yielded plasmids pTHS17-pTHS52, respectively.

Like for $\mathrm{P}_{\text {petE-driven expression, native expression of }}$ Anabaena CCRPs was mediated from the pRL25C plasmid. For pTHS56 (pRL25C, $\mathrm{P}_{\text {cyps: }}:$ cypS-gfp), $\mathrm{P}_{\text {cyps }}$ was amplified from Anabaena gDNA using primers \#150/\#151 and ligated into BamHI and EcoRI-digested pRL25C by Gibson assembly together with cypS-gfp, which was amplified from pTHS4 using primers \#152/\#153.

For pTHS57 (pRL25C, $\mathrm{P}_{\text {cear }}:: c e a R$-gfp), $\mathrm{P}_{\text {cear }}$ was amplified from Anabaena gDNA using primers \#154/\#155 and ligated into BamHI and EcoRI-digested pRL25C by Gibson assembly together with ceaR-gfp, which was amplified from pTHS3 using primers \#156/\#153.

For pTHS58 (pRL25C, P Plifi: :IfiA-gfp), $\mathrm{P}_{\text {lifi }}$ was amplified from Anabaena gDNA using primers \#157/\#158 and ligated into BamHI and EcoRI-digested pRL25C by Gibson assembly together with IfiA-gfp, which was amplified from pTHS1 using primers \#159/\#153.

For pTHS59 (pRL25C, $\mathrm{P}_{\text {ffiB }}:: / f i \mathrm{fiB}$-gfp), $\mathrm{P}_{\text {lfiB }}$ was amplified from Anabaena gDNA using primers \#160/\#161 and ligated into BamHI and EcoRI-digested pRL25C by Gibson assembly together with IfiB-gfp, which was amplified from pTHS2 using primers \#162/\#153.

For pTHS60 (pRL25C, $\mathrm{P}_{\text {cyps:: }}$:cypS-his), $\mathrm{P}_{\text {cyps }}$ was amplified from Anabaena gDNA using primers \#150/\#151 and ligated into BamHI and EcoRI-digested pRL25C by Gibson assembly together with cypS-his, which was amplified from pTHS8 using primers \#152/\#163.

For pTHS61 (pRL25C, $\mathrm{P}_{\text {cear: }}:$ ceaR), $\mathrm{P}_{\text {cear: }}:$ ceaR was amplified from Anabaena gDNA using primers \#154/\#164 and ligated into BamHI and EcoRI-digested pRL25C by Gibson assembly.

For pTHS58 (pRL25C, PlifiAB::IfiA-IfiB), P PlifiAB::IfiA-IfiB was amplified from Anabaena gDNA using primers \#157/\#165 and ligated into BamHI and EcoRI-digested pRL25C by Gibson assembly.

Anabaena mutant strain construction

All Anabaena mutant strains were generated using the pRL278-based double homologous recombination system employing the conditionally lethal sacB gene ${ }^{119}$. For this, 1500 bp upstream and downstream of the gene to be replaced were generated by PCR from Anabaena gDNA. Upstream and downstream regions of cypS and ceaR, were amplified using primers \#121/\#122 and \#123/\#124 or \#125/\#126 and \#127/\#128, respectively. Upstream region of IfiA was amplified using primers \#129/\#130 and downstream region of IfiB was amplified using primers \#131/\#132. The respective upstream and downstream homology regions flanking the CS. 3 cassette (amplified with primer \#119/\#120 from pCSEL24) were then inserted into PCRamplified pRL278 (using primer \#117/\#118) by Gibson assembly, yielding pTHS55, pTHS56 and pTHS57, respectively. Anabaena transformed with those plasmids was subjected to several rounds of re-streaking on new plates (about 5-8 rounds for each strain). To test for fully segregated clones, colony PCRs were performed. For this, Anabaena cells were resuspended in $10 \mu \mathrm{l}$ sterile $\mathrm{H}_{2} \mathrm{O}$ of which $1 \mu \mathrm{l}$ was used for standard PCR with internal gene primers \#3/\#4, \#5/\#6 and \#7/\#10 for $\Delta c y p S, \Delta c e a R$ and $\Delta / f i A \Delta / f i B$, respectively. Correct placement of the CS. 3 cassette was then further confirmed using primers CS. 3 cassette primers with primers binding outside of the 5 ' and 3 ' flanks used for homologous recombination (\#137/\#118 and \#117/\#138 for $\Delta c y p S, \# 135 / \# 118$ and \#117/\#136 for Δ ceaR and \#133/\#118 and \#117/\#134 for $\Delta / f i A \Delta / f i B)$.

For analysis of mutant viability, growth curves of Anabaena WT and $\Delta c e a R$ mutant strain were performed. For this, cells were grown in BG11 liquid medium, washed three times by centrifugation ($6500 \times \mathrm{g}, \mathrm{RT}, 3 \mathrm{~min}$) in BG 11 or BG 11 , adjusted to an OD_{750} of 0.1 and then grown in triplicates at standard growth conditions in 15 ml culture volumes. OD_{750} values were recorded once a day for 24 d .

Fluorescence microscopy
Bacterial strains grown in liquid culture were either directly applied to a microscope slide or previously immobilized on a 2% low-melting agarose in PBS ($10 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}, 140 \mathrm{mM} \mathrm{NaCl}$, $2.7 \mathrm{mM} \mathrm{KCl}, 1.8 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}, \mathrm{pH} 7.4$) agarose pad and air dried before microscopic analysis. Epifluorescence was done using an Axio Imager.M2 light microscope (Carl Zeiss) equipped with Plan-Apochromat 63x/1.40 Oil M27 objective and the AxioCam MR R3 imaging device (Carl Zeiss). GFP, Alexa Fluor 488 and BODIPY™ FL Vancomycin (Van-FL) fluorescence was visualized using filter set 38 (Carl Zeiss; excitation: 470/40 nm band pass (BP) filter; emission: 525/50 nm BP). Chlorophyll auto-fluorescence was recorded using filter set 15 (Carl Zeiss; excitation: 546/12 nm BP; emission: 590 nm long pass). When applicable, cells were previously incubated in the dark at RT for about 5 min with $10 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}$ DAPI (final concentration) to stain intracellular DNA. For visualization of DAPI fluorescence filter set 49 (Carl Zeiss; excitation: G 365 nm ; emission: 455/50 nm) was employed. For confocal laser scanning microscopy, the LSM 880 Axio Imager 2 equipped with a C-Apochromat $63 \times 1.2 \mathrm{~W}$ Korr M27 objective and an Airyscan detector (Carl Zeiss) was used and visualization of GFP, eCFP and chlorophyll autofluorescence was done using Zen black smart setup settings. Also, to investigate putative alterations of the polysaccharide sheath of Anabaena mutants, cells were grown on BG11o agar plates, re-suspended in BG11o liquid medium and stained with 0.05% alcian blue (final concentration). Polysaccharide staining of Anabaena cells immobilized on an agarose pad was then observed with an Axiocam ERc 5s color camera (Carl Zeiss). E. coli BL21 (DE3) cells expressing C-terminally GFP-tagged protein candidates were were grown over night in LB and then diluted 1:40 in the same medium the following day. Cells were grown for 2 h at $37^{\circ} \mathrm{C}$, briefly acclimated to $20^{\circ} \mathrm{C}$ for 10 min and induced with 0.05 mM IPTG at $20^{\circ} \mathrm{C}$. Protein localization of GFP-tagged proteins was then observed after indicated time points of cells immobilized on an agarose pad.

For ultra-structure analysis, Anabaena filaments were fixed with 2.5% glutaraldehyde, immobilized in 2% agaorse, treated with 2% potassium permanganate and dehydrated through a graded ethanol series. The fixed cells were infiltrated by ethanol:EPON (2:1 to 1:2 ratio) and embedded in pure EPON. Ultrathin sections were prepared with a Leica UC6iUltramicrotome, transferred to formvar coated copper grids and post-stained with uranyl acetate and lead citrate ${ }^{120}$. Micrographs were recorded at a Philips Tecnai10 electron microscope at 80 kV .

Peptidoglycan sacculi were isolated from filaments grown on BG11 agar plates by the method of Kühner et al. ${ }^{121}$ with the following modifications: Cells were sonicated (Branson Sonifier 250; duty cycle 50%, output control $1,2 \mathrm{~min}$) prior to boiling in 0.1 M Tris-HCl pH 6.8 with 3% SDS. After incubation in a sonifier waterbath, the samples were incubated with α-Chymotrypsin (600 $\mu \mathrm{g} \mathrm{ml}{ }^{-1}$) at $37^{\circ} \mathrm{C}$ over night in $50 \mathrm{mM} \mathrm{Na} 3 \mathrm{PO}_{4}$ buffer pH 6.8 . After inactivation of the enzyme, the sample was sonified again and loaded on a formvar/carbon film coated copper grid (Science Services GmbH, Munich) and stained with 1 \% (w/v) uranyl acetate as described previously ${ }^{122}$. Images were taken with a Philips Tecnai10 electron microscope at 80 kV .

Calcein labelling and fluorescence recovery after photobleaching (FRAP) experiments

Anabaena WT and mutant strains were either grown on BG11 plates and resuspended in BG11 or directly taken from liquid cultures, washed several times in BG11, resuspended in 0.5 ml BG11 and incubated with $10 \mu \mathrm{l}$ calcein-AM ($1 \mathrm{mg} \mathrm{ml}^{-1}$ in DMSO). The cells were incubated in the dark at $30^{\circ} \mathrm{C}$ for 1 hour and then subjected to four washing steps with 1 ml BG11. Subsequently, cells were resuspended in a small volume of BG11, spotted on BG11 agar plates ($1 \% \mathrm{w} / \mathrm{v}$) and air dried. Samples were visualized by using an inverted confocal laser scanning microscope (Leica TCS SP5) with a x63 oil immersion objective (HCX PL APO 63x $1.40-0.60$ OIL CS). Fluorescence was excited at 488 nm and emission monitored by collecting across a window of 500 to 530 nm with a maximally opened pinhole ($600 \mu \mathrm{~m}$). FRAP experiments were carried out by an automated routine as previously described (Mullineaux et al. EMBO). After recording an initial image, selected cells were bleached by increasing the laser intensity by a factor of 5 for two subsequent scans and the fluorescence recovery followed in 0.5 s intervals for 30 s was recorded using the Leica LAS X software. Exchange coefficients (E) were then calculated according to Mullineaux et al. and Nieves-Morión et al. ${ }^{43,101}$.

BODIPY $^{\text {TM }}$ FL Vancomycin (Van-FL) staining
Van-FL staining of BG11-grown filaments of the Anabaena WT and mutant strains was essentially performed as previously described by Lehner et al. ${ }^{47}$ and Rudolf et al. ${ }^{123}$. Briefly, cells were resuspended in BG11 medium, washed once in BG11 by centrifugation ($6500 \times \mathrm{g}$, $4 \mathrm{~min}, \mathrm{RT}$) and incubated with $5 \mathrm{\mu g} \mathrm{ml}^{-1} \mathrm{Van-FL}$ (dissolved in methanol). Cells were incubated in the dark for 1 hour at $30^{\circ} \mathrm{C}$, washed three times with BG11 and immobilized on an agarose pad. Van-FL fluorescence signals were then visualized using epifluorescence microscopy with an excitation time of 130 ms . Arithmetic mean fluorescence intensities were then recorded from the septa between two cells with a measured area of $3.52 \mu \mathrm{~m}^{2}$ using the histogram option of the Zen blue 2.3 software (Carl Zeiss).

Data analysis

Cell length, volume and roundness were determined using the imaging software ImageJ. Cell volume was calculated based on the assumption of an elliptic cell shape of Anabaena cells using the Major Axis and Minor Axis values given by ImageJ and the formula for the volume of an ellipse ($V=\frac{4}{3} \pi a b c$):

$$
\text { - } V=\frac{4}{3} \pi\left(\left(\frac{\text { Major Axis }}{2}\right)^{2} \frac{\text { Minor Axis }}{2}\right)
$$

Distribution of DAPI fluorescence signals was done in ImageJ with the Plot Profile option along 151 single cells with rectangle tool. The resulting grey values were arranged according to the maximum intensity focus and the width of the DAPI focal area was calculated as the range of DAPI staining around the maximum (± 10 grey value in arbitrary units).

Bacterial two-hybrid and beta galactosidase assays

Chemically competent E. coli BTH101 cells were co-transformed with 5 ng of plasmids carrying the respective T18 and T25 translational fusion constructs, plated onto LB plates supplemented with $200 \mu \mathrm{~g} \mathrm{~m}^{-1}$ X-gal, 0.5 mM IPTG, Amp, Km and grown at $30^{\circ} \mathrm{C}$ for $24-36 \mathrm{~h}$. Interactions were quantified by beta-galactosidase assays from three independent colonies. For this aim, cultures were either grown over night at $30^{\circ} \mathrm{C}$ or for two days at $20^{\circ} \mathrm{C}$ in LB Amp, $\mathrm{Km}, 0.5 \mathrm{mM}$ IPTG and beta-galactosidase activity was recorded as described in the manufacturer's instructions (Euromedex; BACTH System Kit Bacterial Adenylate Cyclase Two-Hybrid System Kit) in a 96 well plate according to Karimova, Davi and Ladant ${ }^{103}$.

Chemically competent E. coli BL21 (DE3) were co-transformed with indicated plasmid combinations, plated on LB Amp, Km and grown over night at $37^{\circ} \mathrm{C}$. Liquid overnight cultures of single colonies of the respective plasmid-bearing E. coli strains were then diluted 1:40 in the same medium the following day. Cells were grown for 2 h at $37^{\circ} \mathrm{C}$, briefly acclimated to $20^{\circ} \mathrm{C}$ for 10 min and protein expression was induced with 0.05 mM IPTG and 0.2% L-arabinose. Pictures of induced cultures grown at $20^{\circ} \mathrm{C}$ were taken after 48 h of cells immobilized on an agarose pad.

Co-immunoprecipitation
About 20-30 ml of the respective Anabaena culture was pelleted by centrifugation ($4800 \times \mathrm{g}$, $10 \mathrm{~min}, \mathrm{RT}$), cells were washed twice by centrifugation ($4800 \times \mathrm{g}, 10 \mathrm{~min}, \mathrm{RT}$) with 40 ml PBS and then resuspended in 1 ml lysis buffer (PBS-N: PBS supplemented with 1% NP-40) supplemented with protease inhibitor cocktail (PIC; cOmplete ${ }^{\text {tw }}$, EDTA-free Protease Inhibitor Cocktail, Sigma-Aldrich). Cells were lysed using the VK05 lysis kit (Bertin) in a Precellys® 24 homogenizer (3 strokes for 30 seconds at 6500 rpm) and cell debris was pelleted by centrifugation ($30 \mathrm{~min}, 21,100 \times \mathrm{g}, 4^{\circ} \mathrm{C}$). $50 \mu \mathrm{l} \mu \mathrm{MACS}$ anti-GFP MicroBeads (Miltenyi Biotec) was added to the resulting cell-free supernatant and incubated for 1 h at $4^{\circ} \mathrm{C}$ with mild rotation. Afterwards, the sample was loaded onto μ Columns (Miltenyl Biotec), washed two times with 1 ml lysis buffer and eluted in 50μ l elution Buffer (50 mM Tris HCl pH 6.8, 50 mM DTT, 1% SDS, 1 mM EDTA, 0.005% bromphenol blue, 10% glycerol; Miltenyl Biotec). Until further use, samples were stored at $-80^{\circ} \mathrm{C}$.

Mass spectrometry analysis
Coomassie stained gel bands were excised and protein disulfide bonds were reduced with 10 mM dithiotreitol at $56^{\circ} \mathrm{C}$ for 45 min and alkylated with 55 mM iodoacetamide at RT for 30 min in the dark. The gel bands were washed 50 mM ammonium bicarbonate and subsequently dehydrated with acetonitrile. $10 \mu \mathrm{l}$ trypsin ($5 \mathrm{ng}_{\mathrm{\mu l}^{-1}}$ in 25 mM ammonium bicarbonate) were added and the gel bands were rehydrated for 5 min at $37^{\circ} \mathrm{C}$. Samples were digested over night at $37{ }^{\circ} \mathrm{C}$. Prior to peptide extraction samples were acidified with 10% formic acid. After transferring the supernatant into a new Eppendorf tube, 5\% formic acid was added to the gel bands and incubated for 10 min . Subsequently the samples were sonicated for 1 min in icecooled water and the supernatant was combined with the one from the step before. Two additional extraction steps with 60% acetonitrile/1\% formic acid and 100% acetonitrile were
performed in the same manner. The combined supernatants were dried in the SpeedVac and the samples were reconstituted in $30 \mu \mathrm{~L} 3 \%$ acetonitrile/0.1\% trifluoroacetic acid. LC-MS/MS analysis was performed using a Dionex U3000 nanoUHPLC coupled to a Q Exactive Plus mass spectrometer (both from Thermo Scientific). The LC-MS/MS parameters were as follows: Six microliter were injected and loaded on a trap column (Acclaim Pepmap 100 C18, $10 \mathrm{~mm} \times$ $300 \mu \mathrm{~m}, 3 \mu \mathrm{~m}, 100 \AA$, Dionex) and washed for 3 min with 2% ACN/0.05\% TFA at a flow-rate of $30 \mu \mathrm{~L} \mathrm{~min}{ }^{-1}$. separation was performed using an Acclaim PepMap 100 C 18 analytical column ($50 \mathrm{~cm} \times 75 \mu \mathrm{~m}, 2 \mu \mathrm{~m}, 100 \AA$, Dionex) with a flow-rate of $300 \mathrm{~nL} / \mathrm{min}$ and following eluents: A ($0.05 \% \mathrm{FA}$) and B ($80 \% \mathrm{ACN} / 0.04 \% \mathrm{FA}$); linear gradient $5-40 \%$ B in $60 \mathrm{~min}, 50-90 \%$ B in 5 $\mathrm{min}, 90 \%$ B for $10 \mathrm{~min}, 90-5 \%$ B in 1 min and equilibrating at 5% B for 11 min . Ionization was performed with 1.5 kV spray voltage applied on a non-coated PicoTip emitter ($10 \mu \mathrm{~m}$ tip size, New Objective, Woburn, MA) with the source temperature set to $250^{\circ} \mathrm{C}$. MS data were acquired from 5 to 85 min with MS full scans between 300 and $1,800 \mathrm{~m} / \mathrm{z}$ at a resolution of 70,000 at $\mathrm{m} / \mathrm{z} 200$. The 10 most intense precursors with charge states $\geq 2+$ were subjected to fragmentation with HCD with NCE of 27%; isolation width of $3 \mathrm{~m} / \mathrm{z}$; resolution, 17,500 at m / z 200. Dynamic exclusion for 30 s was applied with a precursor mass tolerance of 10 ppm . Lock mass correction was performed based on the polysiloxane contaminant signal of 445.120025 m / z. Additional wash runs were performed between samples from gel bands to reduce carry over while cytochrome C was used to monitor mass accuracy and LC quality control. The acquired $\mathrm{MS} / \mathrm{MS}$ data were searched with the SequestHT algorithm against the entire reviewed Uniprot protein database of Nostoc sp. PCC 7120 including plasmids (6922 sequences in total). Static modifications applied were carbamidomethylation on cysteine residues, while oxidation on methionine residues was set as dynamic modification. Spectra were searched with full enzyme specificity. A MS mass tolerance of 10 ppm and a MS/MS tolerance of 0.02 Da was used. Proteins were identified with at least three unique peptides with a FDR confidence ≤ 0.01 (high).

Immunofluorescence

Immunolocalization of CypS-His and FtsZ in Anabaena was essentially performed as described by Ramos-León et al. ${ }^{82}$. For visualization of FtsZ, Anabaena WT and mutant strains were streaked from growth plates (BG11 and BG11。 plates), resuspended in a small volume of distilled water and air-dried on Polysine ${ }^{\circledR}$ adhesion slides (Menzel) at RT followed by fixation and permeabilization with 70% ethanol for 30 min at $-20^{\circ} \mathrm{C}$. Cells were allowed to air dry for 30 min at RT and then washed two times with PBST (PBS supplemented with 0.1% (v / v) Tween-20) for 2 min. Unspecific binding sites were blocked for 30 min at RT with blocking buffer (1x Roti®-ImmunoBlock in PBST; Carl Roth) and afterwards rabbit anti-FtsZ (Agrisera;

1:150 diluted) antibody in blocking buffer was added to the cells and incubated for 1.5 h at RT in a self-made humidity chamber followed by five washing steps with PBST. $7.5 \mathrm{~g} \mathrm{ml}^{-1}$ Alexa Fluor 488-conjugated goat anti-rabbit $\operatorname{lgG}(\mathrm{H}+\mathrm{L})$ secondary antibody (Thermo Fischer Scientific) in blocking buffer was added to the cells and incubated for 1 h at RT in the dark in a self-made humidity chamber. Subsequently, cells were washed five times with PBST, air dried and mounted with ProLong ${ }^{\text {TM }}$ Diamond Antifade Mountant (Thermo Fischer Scientific) overnight at $4{ }^{\circ} \mathrm{C}$. Immunolocalization of FtsZ was then analyzed by epifluorescence microscopy. Similarly, in vivo localization of CypS-His expressed in Anabaena was evaluated by immunolocalization of $\mathrm{BG11}{ }_{0}$ grown liquid cultures, induced with $0.25 \mu \mathrm{M} \mathrm{CuSO} 44$ for two days, and compared to Anabaena WT cells using mouse anti-His primary antibody (1:500 diluted; Thermo Fischer Scientific).

Spot assays

Spot assays were essentially performed as described by Dörrich et al. ${ }^{124}$. Anabaena WT and mutant strains were grown on BG11 growth plates, resuspended in BG11 liquid medium and adjusted to an OD_{750} of 0.4 . Cells were then spotted in triplicates of 5μ onto the respective growth plates containing either no additives (BG11 or BG110), $50 ~ \mu \mathrm{~g} \mathrm{ml}^{-1}$ Proteinase K or $100 \mathrm{mg} \mathrm{ml}^{-1}$ lysozyme in serial $1 / 10$ dilutions and incubated under standard growth conditions until no further colonies arose in the highest dilution.

Protein purification and in vitro filamentation assays
For protein purification, E. coli BL21 (DE3) cells carrying His-tagged protein candidates were grown in overnight cultures at $37^{\circ} \mathrm{C}$ and 250 rpm . The next day, overnight cultures were diluted $1: 40$ in the same medium and grown at $37^{\circ} \mathrm{C}$ until they reached an OD_{600} of $0.5-0.6$. Protein expression was induced with 0.5 mM IPTG for $3-4 \mathrm{~h}$ at $37^{\circ} \mathrm{C}$ and 250 rpm . Afterwards, cell suspensions of 50 ml aliquots were harvested by centrifugation, washed once in PBS and stored at $-80{ }^{\circ} \mathrm{C}$ until further use. For in vitro filamentation assays, cell pellets were resuspended in urea lysis buffer (ULB: $50 \mathrm{mM} \mathrm{NaH} 2 \mathrm{PO}_{4}, 300 \mathrm{mM} \mathrm{NaCl}, 25 \mathrm{mM}$ imidazole, 6 M urea; pH 8.0) and lysed in a Precellys® 24 homogenizer (3 x 6500 rpm for 30 s) using the 2 ml microorganism lysis kit (VK01; Bertin) or self-packed Precellys tubes with 0.1 mm glass beads. The resulting cell debris was pelleted by centrifugation at $21,000 \times g\left(30 \mathrm{~min}, 4^{\circ} \mathrm{C}\right)$ and the supernatant was incubated with 1 ml HisPur ${ }^{\text {TM }}$ Ni-NTA resin (Thermo Fischer Scientific) for 1 h at $4^{\circ} \mathrm{C}$ in an overhead rotator. The resin was washed 5 times with 4 x resin-bed volumes ULB and eluted in urea elution buffer (UEB: ULB supplemented with 225 mM imidazole). Total
protein concentration was measured using the Qubit® 3.0 Fluorometer (Thermo Fischer Scientific) and generally adjusted to $0.5-1.0 \mathrm{mg} \mathrm{ml}^{-1}$ before dialysis. Filament formation of purified proteins was induced by overnight dialysis against polymerization buffer (PLB: 50 mM PIPES, $100 \mathrm{mM} \mathrm{KCl}, \mathrm{pH} 7.0$; HLB: 25 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.4$; or 25 mM HEPES pH 7.5) at $20^{\circ} \mathrm{C}$ and 180 rpm with three bath changes using a Slide-A-Lyzer ${ }^{\mathrm{TM}}$ MINI Dialysis Device (10K MWCO, 0.5 ml or 2 ml ; Thermo Fischer Scientific). Purified proteins were stained with an excess of NHS-Fluorescein (dissolved in DMSO; Thermo Fischer Scientific) and in vitro filamentation was analyzed by epifluorescence microscopy.

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files). The datasets generated during and/or analyzed during the current study are available from the corresponding authors on reasonable request.

Supplementary Table 2: Cyanobacterial strains used in this study

Strain	Genotype	Resistance Marker	Source
Anabaena sp. PCC 7120	WT		Pasteur culture collection of Cyanobacteria (PCC)
BLS1	Anabaena $\Delta c y p S::$ CS.3	Sp, Sm	This study
BLS2	Anabaena ($\Delta / f i A \Delta / f i B)::$ CS.3	Sp, Sm	This study
BLS3	Anabaena $\Delta c e a R::$ CS.3	Sp, Sm	This study

$\mathrm{Sp}=$ spectinomycin, Sm = streptomycin
Supplementary Table 3: E. coli strains used in this study

Strain	Genotype	Resistance	Source
DH5 ${ }^{\text {MCR }}$	F- endA1 supE44 thi-1 λ^{-} recA1 gyrA96 relA1 deoR Δ (lacZYA-argF)U169 Ф80d/acZ $\Delta \mathrm{M} 15 \mathrm{mcrA} \Delta(m r r$ hsdRMS mcrBC)		Grant et al., $1990\left({ }^{125}\right)$
BL21 (DE3)	F^{-}ompT gal dcm lon hsdS $\mathrm{S}_{\mathrm{B}}\left(\mathrm{r}_{B^{-}} \mathrm{m}_{B^{-}}\right) \lambda(\mathrm{DE} 3[\mathrm{lacl}$ lacUV5-T7p07 ind1 sam7 nin5]) [malB $\left.{ }^{+}\right]_{k-12}\left(\lambda^{\mathrm{S}}\right)$		Studier et al., 1986 (${ }^{126}$)
BTH101	$\mathrm{F}^{-} \text {, cya-99, araD139, galE15, galK16, rpsL1 (Str } \mathrm{r}_{\mathrm{r}} \text {, }$ hsdR2, mcrA1,mcrB1	Sm	Euromedex
XL1-blue	endA1 gyrA96(nal ${ }^{\text {R }}$) thi-1 recA1 relA1 lac glnV44 $\mathrm{F}^{\prime}\left[:: T \mathrm{Tn} 10\right.$ proAB ${ }^{+}$lacl ${ }^{9} \Delta($ lacZ $\left.) \mathrm{M} 15\right]$ hsdR17(rk- mk^{+})	Tet	Stratagene
HB101	$\mathrm{F}^{-} \mathrm{mcrB}$ mrr hsdS20($\mathrm{r}_{\mathrm{B}}^{-} \mathrm{mB}^{-}$) recA13 leuB6 ara-14 proA2 lacY1 galK2 xyl-5 mtl-1 rpsL20(Smr) glnV44 λ -	Sm	Boyer \& RoullandDessoix, $1969\left({ }^{127}\right)$

Supplementary Table 4: Plasmids used in this study

Name	Description	Resistance	Source
pET21a(+)	Bacterial vector for expressing N-terminal T7 and/or C-terminal His6-tagged proteins in E. coli	Amp	Novagen
pRL25C	Shuttle cosmid vector for cyanobacteria and E. coli	Km, Nm	Wolk et al., $1988(117)$
pRL623	Methylation plasmid	Cm	Wolk et al., $1988(117)$
pRL443	Conjugation plasmid	Amp	Wolk et al., $1988\left({ }^{117}\right)$
pRL278	Suicide vector used for homologous recombination in cyanobacteria; contains sacB for positive selection of double recombination events	Km, Nm	Wolk et al., $1988\left({ }^{117}\right)$
pKNT25	Plac::-T25	Km	Euromedex
pKT25	Plac::T25-	Km	Euromedex
pUT18	Plac::-T18	Amp	Euromedex
pUT18C	Plac::T18-	Amp	Euromedex
pKT25-zip	pKT25; Plac::T25-zip	Km, Nm	Euromedex
pUT18C-zip	pUT18C, Plac::T18-zip	Amp	Euromedex

pET11a-linkNGFP	IPTG-inducible expression vector for translational fusion of target gene with a N terminal gfp fragment in E. coli	Amp	Wilson et al., $\left.2004{ }^{(99}\right)$
pMRBAD-linkCGFP	L-arabinose-inducible expression vector for translational fusion of target gene with a Cterminal gfp fragment in E. coli	Km	Wilson et al., $\left.2004{ }^{(99}\right)$
pAM5084	Ptrc::ecfp-kaiC	Amp	Cohen et al., 2014 (${ }^{128}$)
pCSEL24	Integrates into the nucA-nuiA region of Anabaena	Amp, Sm, Sp	Olmedo-Verd et al., 2006 (${ }^{129}$)
pJET1.2-PpetEgfp	pJET1.2 vector containing $\mathrm{P}_{\text {petE }}:: g f p^{\text {a) }}$	Amp	Stucken et al., $2012\left({ }^{118}\right)$
pTHS1	pRL25C, $\mathrm{P}_{\text {petE: }}$:/fiA-gfp	Km, Nm	This study
pTHS2	pRL25C, $\mathrm{P}_{\text {petE: }}: / f f i B-g f p$	Km, Nm	This study
pTHS3	pRL25C, $\mathrm{P}_{\text {pete: }}$: ceaR-gfp	Km, Nm	This study
pTHS4	pRL25C, $\mathrm{P}_{\text {pete: }}$:cypS-gfp	Km, Nm	This study
pTHS5	pRL25C, $\mathrm{P}_{\text {petE: }}$:trunc-ceaR-gfp (truncated ceaR without the N-terminal transmembrane domain; first 156 base pairs removed)	Km, Nm	This study
pTHS6	pRL25C, P ${ }_{\text {pete: }}$:cypS-his	Km, Nm	This study
pTHS7	pRL25C, $\mathrm{P}_{\text {pete: }: /: / f i A-e c f p ~}{ }^{\mathrm{b}}$, $P_{\text {petE: }: / I f i B-g f p ~}$	Km, Nm	This study
pTHS8	pET21a(+), Ртт::cypS-his	Amp	This study
pTHS9	pET21a(+), Pт7::IfiA-his	Amp	This study
pTHS10	pET21a(+), Ртт::IfiB-his	Amp	This study
pTHS11	pET21a(+), Pт7::ceaR-his	Amp	This study
pTHS12	pET21a(+); P ${ }_{\text {т7 }}:$:cypS-gfp	Amp	This study
pTHS13	pET21a(+), P ${ }_{\text {т7 }}$: $:$ ceaR-gfp	Amp	This study
pTHS14	pET11a-link-NGFP, P ${ }_{\text {т7 }}:$:ngfp-lfiA	Amp	This study
pTHS15	pET11a-link-NGFP, P ${ }_{\text {т7 }}:$:/fiA-ngfp	Amp	This study
pTHS16	pMRBAD-link-CGFP, Para::/fiB-cgfp	Km	This study
pTHS17	pKNT25, Plac::cypS-T25	Km, Nm	This study
pTHS18	pKT25, Plac:: T25-cypS	Km, Nm	This study
pTHS19	pUT18, Plac::cypS-T18	Amp	This study
pTHS20	pUT18C, Plac::T18-cypS	Amp	This study
pTHS21	pKNT25, Plac::IfiA-T25	Km, Nm	This study
pTHS22	pKT25, Plac::T25-IfiA	Km, Nm	This study
pTHS23	pUT18, Plac::IfiA-T18	Amp	This study
pTHS24	pUT18C, Plac::T18-IfiA	Amp	This study
pTHS25	pKNT25, $\mathrm{P}_{\text {lac }}: / \mathrm{lfiB}$-T25	Km, Nm	This study
pTHS26	pKT25, Plac::T25-IfiB	Km , Nm	This study
pTHS27	pUT18, Plac::IfiB-T18	Amp	This study
pTHS28	pUT18C, Plac::T18-IfiB	Amp	This study
pTHS29	pKNT25, Plac::ceaR-T25	Km, Nm	This study
pTHS30	pKT25, Plac::T25-ceaR	Km, Nm	This study
pTHS31	pUT18, Plac::ceaR-T18	Amp	This study

pTHS32	pUT18C, P Pac::T18-ceaR	Amp	This study
pTHS33	pKNT25, Plac::sepJ-T25	Km, Nm	This study
pTHS34	pKT25, Plac:: T25-sepJ	Km, Nm	This study
pTHS35	pUT18, Plac::sepJ-T18	Amp	This study
pTHS36	pUT18C, Plac::T18-sepJ	Amp	This study
pTHS37	pKNT25, Plac::ftsZ-T25	Km, Nm	This study
pTHS38	pKT25, Plac::T25-ftsZ	Km, Nm	This study
pTHS39	pUT18, Plac::ftsZ-T18	Amp	This study
pTHS40	pUT18C, Plac::T18-ftsZ	Amp	This study
pTHS41	pKNT25, Plac::mreB-T25	Km, Nm	This study
pTHS42	pKT25, Plac::T25-mreB	Km, Nm	This study
pTHS43	pUT18, $\mathrm{P}_{\text {lac }}:$:mreB-T18	Amp	This study
pTHS44	pUT18C, P Pac::T18-mreB	Amp	This study
pTHS45	pKNT25, Plac::fraC-T25	Km, Nm	This study
pTHS46	pKT25, Plac:: T25-fraC	Km, Nm	This study
pTHS47	pUT18, Plac::fraC-T18	Amp	This study
pTHS48	pUT18C, Plac::T18-fraC	Amp	This study
pTHS49	pKNT25, $\mathrm{P}_{\text {lac }}:$:fraD-T25	Km, Nm	This study
pTHS50	pKT25, Plac:: T25-fraD	Km, Nm	This study
pTHS51	pUT18, Plac::fraD-T18	Amp	This study
pTHS52	pUT18C, Plac::T18-fraD	Amp	This study
pTHS53	pRL278 containing 1500 bp upstream and downstream of cypS flanking the CS. 3 cassette	Nm, Km, Sm, Sp	This study
pTHS54	pRL278 containing 1500 bp upstream and downstream of ceaR flanking the CS. 3 cassette	$\mathrm{Nm}, \mathrm{Km}, \mathrm{Sm}$, Sp	This study
pTHS55	pRL278, containing 1500 bp upstream of IfiA and 1500 bp downstream of IfiB flanking the CS. 3 cassette	$\mathrm{Nm}, \mathrm{Km}, \mathrm{Sm}$, Sp	This study
pTHS56	pRL25C, $\mathrm{P}_{\text {cyps }}$::cypS-gfp	Nm, Km,	This study
pTHS57	pRL25C, P ${ }_{\text {cear: }}$:ceaR-gfp	Nm, Km,	This study
pTHS58	pRL25C, P ${ }_{\text {lfiA }}$:IfiA-gfp	Nm, Km,	This study
pTHS59	pRL25C, $\mathrm{P}_{\text {Ifib }}$: $/ f f i B-g f p$	Nm, Km,	This study
pTHS60	pRL25C, $\mathrm{P}_{\text {cyps }}$::cypS-his	Nm, Km,	This study
pTHS61	pRL25C, $\mathrm{P}_{\text {cear }}:$:ceaR	Nm, Km,	This study
pTHS62	pRL25C, $\mathrm{P}_{\text {lfiA } / \mathrm{B}}$:IfiA-IfiB	Nm, Km,	This study

$\mathrm{Km}=$ kanamycin, $\mathrm{Nm}=$ neomycin, $\mathrm{Amp}=$ ampicillin; $\mathrm{Cm}=$ chloramphenicol

- a) Modified gfpmut3.118 in which the internal Ndel site was removed by replacing CAT by the synonymous CAC codon. The GFP is N-terminally preceded by 12 alanine and serine residues. Abbreviated: gfp.
- b) eCFP from Cohen et al. (2014) ${ }^{128}$ was adjusted for C-terminal translational fusion instead of N -terminal fusion. For this, a N -terminal Myc sequences followed by a seven amino acid linker (GSGSGSG) and an additional stop codon at the C-terminus were added.

Supplementary Table 5: Oligonucleotides used in this study

\#	Given name	Sequence (5' - > 3')
1	mpB intern A	TGCTGGATAACGTCCAGTGC
2	rnpB_intern_B	GGTTTACCGAGCCAGTACCTC
3	Nos295_intern_ A	CAAAGTCAGGCGATGAGTGA
4	Nos295_intern_ B	GGAACCGCATTACCAGAAGT
5	Nos842_intern_ A	TCGGGCAGAAATTACCCAGT
6	Nos842_intern_ B	TGCCATTCTTCAGGCAAAGC
7	Nos903_intern_ A	TCAGCTAGACGTAAAGAGTGGC
8	Nos903_intern_ B	TAATTCTGCTGGGAATGCAGC
9	Nos904_intern_	TGGAATTAGCGAAGGGGTGG
10	Nos904_intern_ B	TGTTCATAGCCATCTGTTGCCA
11	petE_903_Fwd	GAGATTATCAAAAAGGATCCCAGTACTCAGAATTTTTTGCTGAGGTAC T
12	petE_903_Rev	TTGAGTGCAACTGTCGTCATGGCGTTCTCCTAACCTGTAGTTTTATTT TT
13	pRL25- Nos903 Fwd	CTACAGGTTAGGAGAACGCCATGACGACAGTTGCACTCAAAGATAG
14	pRL25- Nos903_Rev	GCACTAGCAGATGCACTAGCTTTAGCCGTAGAACTATCAAAAGCTCT CATTGC
15	GFP_903_Fwd	TTGATAGTTCTACGGCTAAAGCTAGTGCATCTGCTAGTGCTAGT
16	GFP_903_Rev	CTTTCGTCTTCAAGAATTCTTTATTTGTATAGTTCATCCATGCCATGTG TAATCC
17	pRL25c903 V_F	TGGATGAACTATACAAATAAAGAATTCTTGAAGACGAAAGGGCC
18	$\begin{aligned} & \text { pRL25c- } \\ & 903 \vee R-R \end{aligned}$	GCAAAAAATTCTGAGTACTGGGATCCTTTTTGATAATCTCATGACCAA AATCC
19	Nos904-2A	CTACAGGTTAGGAGAACGCCATGGCAGTCAAAAAGTTAACAGACAAA AAC
20	Nos904_2B	GCACTAGCAGATGCACTAGCTTTATTTTTCACTTGACTTTTTTGCCTGT TCTAAAGC
21	Nos842_2A	TACAGGTTAGGAGAACGCCATGCAACAAGTCATAGTAAGTAATCGAT T
22	Nos842_2B	CACTAGCAGATGCACTAGCGGATGCGTATCTAGCTATTAGATGTTC
23	pRL25c_NEB_F wd	GCTAGTGCATCTGCTAGTGCTAGTG
24	$\begin{aligned} & \text { pRL25c_NEB_R } \\ & \text { ev } \end{aligned}$	GGCGTTCTCCTAACCTGTAGTTTTATTTTTCT
25	Nos295His_2A	TACAGGTTAGGAGAACGCCATGCTGTATTTAGCAGAAGTACAAAAG
26	Nos295His_2B	CCTTTCGTCTTCAAGAATTCTTCAGTGGTGGTGGTGGTG
27	MBP7_1A	AGAATTCTTGAAGACGAAAGGGCC
28	petE_2A	ACTACCGCATTAAAGCTTATCAGTACTCAGAATTTTTTGCTGAGGTAC
29	Nos903_2B	TTCGCTGATAAGCTTCTGTTCTTTAGCCGTAGAACTATCAAAAGCTCT C
30	$\begin{aligned} & \text { Linker_eCFP_3 } \\ & \text { A } \end{aligned}$	GGCTCTGGATCGGGTTCAGGAATGGTGAGCAAGGGCGAG
31	eCFP 3B	CTGCTGCTTACTTGTACAGCTCGTCCATGCC

32	$\begin{aligned} & \text { MYC_Linker_3A } \\ & 2 \end{aligned}$	GAACAGAAGCTTATCAGCGAAGAAGATCTGGGCTCTGGATCGGGTT CAG
33	eCFP_3B2	TCATGTTTGACAGCTTATCATTTACTTGTACAGCTCGTCCATGCC
34	$\begin{aligned} & \text { petE_BamHI_2 } \\ & \text { A } \end{aligned}$	TTGGTCATGAGATTATCAAAAAGCAGTACTCAGAATTTTTTGCTGAGG
35	$\begin{aligned} & \text { GFP_BamHI_2 } \\ & \text { B } \end{aligned}$	ATTGATTTAAAACTTCATTTTTAATTTAAAAGTTATTTGTATAGTTCATC CATGCCATGTG
36	Nos295_Ndel_F wd	GCTACATATGCTGTATTTAGCAGAAGTACAAA
37	$\begin{aligned} & \text { Nos295_Xhol_w } \\ & \text { o_R } \end{aligned}$	GCTACTCGAGAGATGCCAACAACTCAGG
38	$\begin{aligned} & \text { Nos295_Sacl_w } \\ & \text { o_R } \end{aligned}$	GCTAGAGCTCAGATGCCAACAACTCAGG
39	Nos903_Ndel_F	GCTACATATGACGACAGTTGCACTCA
40	Nos903_Xhol_R _w/o	GCTACTCGAGTTTAGCCGTAGAACTATCAAAAGC
41	Nos904_Ndel_F	GCTACATATGGCAGTCAAAAAGTTAACAGAC
42	$\begin{aligned} & \text { Nos904_Xhol_w } \\ & \text { o_R } \end{aligned}$	GCTACTCGAGTTTATTTTTCACTTGACTTTTTGCCT
43	Nos842_Ndel_F	GCTACATATGCAACAAGTCATAGTAAGTAATCG
44	$\begin{aligned} & \text { Nos842_Xhol_w } \\ & \text { o_R } \end{aligned}$	GCTACTCGAGGGATGCGTATCTAGCTATTAGATG
45	```Nos903_pET_2 A```	GTTTAACTTTAAGAAGGAGATATACATATGACGACAGTTGCACTCAAA G
46	$\begin{aligned} & \text { Nos904_pET_2 } \\ & \text { A } \end{aligned}$	GTTTAACTTTAAGAAGGAGATATACATATGGCAGTCAAAAAGTTAACA GAC
47	$\begin{aligned} & \text { Nos842_pET_2 } \\ & \text { A } \end{aligned}$	GTTTAACTTTAAGAAGGAGATATACATATGCAACAAGTCATAGTAAGT AATCG
48	$\begin{aligned} & \text { GFP_pET21a_2 } \\ & \text { B } \end{aligned}$	AGTGGTGGTGGTGGTGGTGTTTGTATAGTTCATCCATGCCATGTGTA ATC
49	pET21a_1A	CACCACCACCACCACCAC
50	pET21a_1B	ATGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGG
51	903_split_A	AAGGTGGCTCTGGCTCTGGCTCGAGCATGACGACAGTTGCACTCAA AG
52	903_split_B	CGGGCTTTGTTAGCAGCCGTTATTTAGCCGTAGAACTATCAAAAGCT CTC
53	903_split_A2	TTAACTTTAAGAAGGAGATATACATATGACGACAGTTGCACTCAAAG
54	903_split_B2	CCATGGTGATGGTGGTGATGAGATGCACTAGCTTTAGCCGTAGAACT ATCAAAAGCTCT
55	904_split_A	TTTAACTTTAAGAAGGAGATATACCATGGCAGTCAAAAAGTTAACAGA CA
56	904_split_B	TTACCGCTTCCACCCGACGTTTTATTTTTCACTTGACTTTTTGCCTGTT C
57	N-term_1A	GAGGATCCCCGGGTACC
58	N-term_1B	TAGAGTCGACCTGCAGGCA
59	pKT25_1A	CCCCGGGTACCTAAGTAAGTAAG
60	pKT25_1B	ATCCTCTAGAGTCGACCCTGC
61	pUT18C_1A	CCGAGCTCGAATTCATCGAT
62	pUT18C_1B	TACCCGGGGATCCTCTAGAGT
63	MB_5A	TGCCTGCAGGTCGACTCTAATGCTGTATTTAGCAGAAGTACAAAAG
64	MB_5B	TCGGTACCCGGGGATCCTCAGATGCCAACAACTCAGGC
65	MB_6A	AGGGTCGACTCTAGAGGATATGCTGTATTTAGCAGAAGTACAAAAGC
66	MB_6B	CTTACTTAGGTACCCGGGGAGATGCCAACAACTCAGGC
67	MB_8A	TCTAGAGGATCCCCGGGTAATGCTGTATTTAGCAGAAGTACAAAAG

68	MB_8B	TCGATGAATTCGAGCTCGGAGATGCCAACAACTCAGGC
69	MB_17A	TGCCTGCAGGTCGACTCTAATGACGACAGTTGCACTCAAAG
70	MB_17B	TCGGTACCCGGGGATCCTCTTTAGCCGTAGAACTATCAAAAGCTCTC
71	MB_18A	AGGGTCGACTCTAGAGGATATGACGACAGTTGCACTCAAAG
72	MB_18B	CTTACTTAGGTACCCGGGGTTTAGCCGTAGAACTATCAAAAGCTCTC
73	MB_20A	TCTAGAGGATCCCCGGGTAATGACGACAGTTGCACTCAAAG
74	MB_20B	TCGATGAATTCGAGCTCGGTTTAGCCGTAGAACTATCAAAAGCTCTC
75	MB_21A	TGCCTGCAGGTCGACTCTAATGGCAGTCAAAAAGTTAACAGACAA
76	MB_21B	TCGGTACCCGGGGATCCTCTTTATTTTTCACTTGACTTTTTGCCTGTT C
77	MB_22A	AGGGTCGACTCTAGAGGATATGGCAGTCAAAAAGTTAACAGACAA
78	MB_22B	CTTACTTAGGTACCCGGGGTTTATTTTTCACTTGACTTTTTGCCTGTT c
79	MB_24A	TCTAGAGGATCCCCGGGTAATGGCAGTCAAAAAGTTAACAGACAA
80	MB_24B	TCGATGAATTCGAGCTCGGTTTATTTTTCACTTGACTTTTTGCCTGTT C
81	MB_25A	TGCCTGCAGGTCGACTCTAATGCAACAAGTCATAGTAAGTAATCGAT
82	MB_25B	TCGGTACCCGGGGATCCTCGGATGCGTATCTAGCTATTAGATGTTC
83	MB_26A	AGGGTCGACTCTAGAGGATATGCAACAAGTCATAGTAAGTAATCGAT
84	MB_26B	CTTACTTAGGTACCCGGGGGGATGCGTATCTAGCTATTAGATGTTC
85	MB_28A	TCTAGAGGATCCCCGGGTAATGCAACAAGTCATAGTAAGTAATCGAT
86	MB_28B	TCGATGAATTCGAGCTCGGGGATGCGTATCTAGCTATTAGATGTTC
87	MB_41A	TGCCTGCAGGTCGACTCTAATGGGGCGATTTGAGAAGC
88	MB_41B	TCGGTACCCGGGGATCCTCACCTTCTGCATTGGCAGG
89	MB_42A	AGGGTCGACTCTAGAGGATATGGGGCGATTTGAGAAGC
90	MB_42B	CTTACTTAGGTACCCGGGGACCTTCTGCATTGGCAGG
91	MB_44A	TCTAGAGGATCCCCGGGTAATGGGGCGATTTGAGAAGC
92	MB_44B	TCGATGAATTCGAGCTCGGACCTTCTGCATTGGCAGG
93	MB_49A	ATGCCTGCAGGTCGACTCTAATGACACTTGATAATAACCAAGAGCTT ACC
94	MB_49B	CTCGGTACCCGGGGATCCTCATTTTTGGGTGGTCGCCGTC
95	MB_50A	CAGGGTCGACTCTAGAGGATATGACACTTGATAATAACCAAGAGCTT ACC
96	MB_50B	TACTTACTTAGGTACCCGGGGATTTTTGGGTGGTCGCCGTC
97	MB_52A	CTCTAGAGGATCCCCGGGTAATGACACTTGATAATAACCAAGAGCTT ACC
98	MB_52B	TATATCGATGAATTCGAGCTCGGATTTTTGGGTGGTCGCCGTC
99	MB_53A	ATGCCTGCAGGTCGACTCTAATGGGGCTTTTTAGGAACTTTCG
100	MB_53B	CTCGGTACCCGGGGATCCTCCATATTTCGAGATCGTCCGCTAAAAAC
101	MB_54A	CAGGGTCGACTCTAGAGGATATGGGGCTTTTTAGGAACTTTCG
102	MB_54B	TACTTACTTAGGTACCCGGGGCATATTTCGAGATCGTCCGCTAAAAA C
103	MB_56A	CTCTAGAGGATCCCCGGGTAATGGGGCTTTTTAGGAACTTTCG
104	MB_56B	TATATCGATGAATTCGAGCTCGGCATATTTCGAGATCGTCCGCTAAA AAC
105	MB_69A	ATGCCTGCAGGTCGACTCTAATGTTTGAAGATTTGACTATACCCAGG
106	MB_69B	CTCGGTACCCGGGGATCCTCCCTATTACGTATCAATAAAATAATAGTT ATAGCGGTG
107	MB_70A	CAGGGTCGACTCTAGAGGATATGTTTGAAGATTTGACTATACCCAGG

108	MB_70B	TACTTACTTAGGTACCCGGGGCCTATTACGTATCAATAAAATAATAGT TATAGCGGTG
109	MB_72A	CTCTAGAGGATCCCCGGGTAATGTTTGAAGATTTGACTATACCCAGG
110	MB_72B	ATATCGATGAATTCGAGCTCGGCCTATTACGTATCAATAAAATAATAG TTATAGCGGTG
111	MB_73A	ATGCCTGCAGGTCGACTCTAGTGAATTTATTATTTAAAGACCTTTTCG GAATATT
112	MB_73B	CTCGGTACCCGGGGATCCTCCTGCTGCGGTGGCGCTG
113	MB_74A	GGGTCGACTCTAGAGGATGTGAATTTATTATTTAAAGACCTTTTCGGA AT
114	MB_74B	TACTTACTTAGGTACCCGGGGCTGCTGCGGTGGCGCTG
115	MB_76A	CTAGAGGATCCCCGGGTAGTGAATTTATTATTTAAAGACCTTTTCGGA AT
116	MB_76B	TATATCGATGAATTCGAGCTCGGCTGCTGCGGTGGCGCTG
117	pRL271_Fwd	GAGCTCGCGAAAGCTTGCATG
118	pRL271_Rev	CTCGAGATCTAGATATCGAATTTCTGCCAT
119	CS.3_Fwd	GATCCGTGCACAGCACCTTG
120	CS.3_Rev	TTATTTGCCGACTACCTTGGTGATCT
121	295KO_2A	ATTCGATATCTAGATCTCGAGACTCAACATAATCATCGGTATATACCG AAAT
122	295KO_2B	CAAGGTGCTGTGCACGGATCACCGTTCTTCCTCTTGTGTACTTGA
123	295KO_4A	CCAAGGTAGTCGGCAAATAACAATTCAAAATTCAAAATTCAAAATATT TAGGACTTACG
124	295KO_4B	ATGCAAGCTTTCGCGAGCTCTGTAAATTTCTCACTAAGTGATGGATC AACACT
125	842KO_2A	ATTCGATATCTAGATCTCGAGATGGATAATCCAGCAATGTCGGC
126	842KO_2B	AAGGTGCTGTGCACGGATCATTGCTGATTTTTAGCGTAGTTAAGCTT T
127	842KO_4A	CAAGGTAGTCGGCAAATAAAATTTAATATCCCTAGCTCATCGTAAAAT TTTTATAAAAATATG
128	842KO_4B	ATGCAAGCTTTCGCGAGCTCTTTAAAACTAGAACTATGAACTAGCTC GCTAAAC
129	903KO_2A	ATTCGATATCTAGATCTCGAGAAGCAACGGCAACGCC
130	903KO_2B	AAGGTGCTGTGCACGGATCATTTCAACTCCCTTGATTAGATAATGATT AATCGAG
131	904KO_4A	CAAGGTAGTCGGCAAATAAAATACAAATAATAAAAATAAATAAAAAGA CGTAACGAAAATTACG
132	904KO_4B	TGCAAGCTTTCGCGAGCTCGTAGTGGGTTTCGCACAAGCTATC
133	903KO_Seq_A	TGCGAATTCCAGTAGGTCTTGGTAA
134	904KO_Seq_B	GGTGGCGCAGAAGTATTTTTG
135	842KO_Seq_A	TCAACAGTCAACAGTCAATAGTGAAGG
136	842KO_Seq_B	TTCATCTACACCGATATCTTGACCC
137	295KO_Seq_A	GCCATCCTAGCTCTGATTTGATC
138	295KO_Seq_B	CAGGGTTATCGGTAAGGAATCG
139	Fragment1.FOR	GATTTCGAACCCGGGGTACCACCTGTAGAGAAGAGTCCCTGAATATC AA
140	Fragment1.REV	TTTTTCGTATTTTCCCTCATTGAATTAATCTCCTACTTGACTTTATGAG TTGGGA
141	Fragment4.FOR	TGGATGAACTATACAAATAAACCGGTGTTTGGATTGTCGG
142	Fragment4.REV	CCCTGCAGGTCGAGGAATTCGCTGTCGAAGTTGAACATCAGTAAGC
143	$\begin{aligned} & \text { Nos903_pIGA_2 } \\ & \text { A } \end{aligned}$	TAAAGTCAAGTAGGAGATTAATTCAATGACGACAGTTGCACTCAAAG
144	Fragment3.FOR	ATTTAATGACTGCCTTAGTCGCTAGTGCATCTGCTAGTGCTAGT

145	Fragment3.REV	CCGACAATCCAAACACCGGTTTATTTGTATAGTTCATCCATGCCATGT GTAATCC
146	Vector.FOR	TGATGTTCAACTTCGACAGCGAATTCCTCGACCTGCAGGG
147	Vector.REV	AGGGACTCTTCTCTACAGGTGGTACCCCGGGTTCGAAATCG
148	842_petE_F	CTACAGGTTAGGAGAACGCCATGGATAAGCGACGGAGGAAT
149	petE_842_R	CTCCGTCGCTTATCCATGGCGTTCTCCTAACCTGTAGTTTTATTTTTC T
150	$\underset{\text { A }}{\text { p29__25C_long }}$	TTTTGGTCATGAGATTATCAAAAAGATTGACGCAGCATGGC
151	pNos295_Rev	ACCGTTCTTCCTCTTGTGTACT
152	Nos295_pNos2 95_A	CACAAGAGGAAGAACGGTGTGCTGTATTTAGCAGAAGTACAAAAG
153	GFP_25C_R	AGGCCCTTTCGTCTTCAAGTTATTTGTATAGTTCATCCATGCCATGTG T
154	$\begin{aligned} & \text { p842_25C_long } \\ & \text { A } \end{aligned}$	TTTTGGTCATGAGATTATCAAAAAGTCTCTCTATCCCCAAGTACAATT TCTCC
155	pNos842_2B	CTTGTTGCATATTGCTGATTTTTAGCG
156	Nos842_pNos8 42_3A	AATCAGCAATATGCAACAAGTCATAGTAAGTAATCGATTTATTTTAG
157	p903_25C_long A	TTTTGGTCATGAGATTATCAAAAAGACCCGACACTCTTGAGG
158	pNos903_2B	ACTGTCGTCATATTTCAACTCCCTTG
159	Nos903_pNos9 $03 \text { _3A }$	GGAGTTGAAATATGACGACAGTTGCACTCAAAG
160	$\begin{aligned} & \text { pNos } 904 _25 \mathrm{C} \\ & \mathrm{~F} \end{aligned}$	ATtTTGGTCATGAGATTATCAAAAAGAGAAATATCAGCTAGACGTAAA GAGTGG
161	pNos904_2B	TGACTGCCATAAAAACCTCTATTTATTGC
162	Nos904_pNos9 04_3A	AGAGGTTTTTATGGCAGTCAAAAAGTTAACAGACAAAAAC
163	295_His_25C_R	GGCCCTTTCGTCTTCAAGTTAGTGGTGATGGTGATGATGAGATGC
164	Nos842_25C_B	GAGGCCCTTTCGTCTTCAAGTCAGGATGCGTATCTAGCTATTAGATG
165	$\begin{aligned} & \text { Nos904_25C_B } \\ & \text { a } \end{aligned}$	GGCCCTTTCGTCTTCAAGTTATTTATTTTTCACTTGACTTTTTGCCTGT

Employed enzymatic cut sites are underlined.

References

1. Shapiro, J. A. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52, 81-104 (1998).
2. Lyons, N. A. \& Kolter, R. On the evolution of bacterial multicellularity. Curr. Opin. Microbiol. 24, 21-28 (2015).
3. Claessen, D., Rozen, D. E., Kuipers, O. P., Søgaard-Andersen, L. \& Van Wezel, G. P. Bacterial solutions to multicellularity: A tale of biofilms, filaments and fruiting bodies. Nat. Rev. Microbiol. 12, 115-124 (2014).
4. Smith, W. P. J. et al. Cell morphology drives spatial patterning in microbial communities. Proc. Natl. Acad. Sci. 114, E280-E286 (2017).
5. Lin, T.-Y., Santos, T. M. A., Kontur, W. S., Donohue, T. J. \& Weibel, D. B. A CardiolipinDeficient Mutant of Rhodobacter sphaeroides Has an Altered Cell Shape and Is Impaired in Biofilm Formation. J. Bacteriol. 197, 3446-3455 (2015).
6. Lam, H. et al. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science 325, 1552-1555 (2009).
7. Kolodkin-Gal, I. et al. D-amino acids trigger biofilm disassembly. Science 328, 627-629 (2010).
8. Typas, A. et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143, 1097-1109 (2010).
9. Reichenbach, H. The ecology of the myxobacteria. Environ. Microbiol. 1, 15-21 (1999).
10. Flärdh, K., Richards, D. M., Hempel, A. M., Howard, M. \& Buttner, M. J. Regulation of apical growth and hyphal branching in Streptomyces. Curr. Opin. Microbiol. 15, 737743 (2012).
11. Flores, E. \& Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39-50 (2010).
12. Rossetti, V. \& Bagheri, H. C. Advantages of the division of labour for the long-term population dynamics of cyanobacteria at different latitudes. Proceedings. Biol. Sci. 279, 3457-3466 (2012).
13. Fuchs, E. \& Weber, K. INTERMEDIATE FILAMENTS: Structure, Dynamics, Function and Disease. Annu. Rev. Biochem. 63, 345-382 (1994).
14. Köster, S., Weitz, D. A., Goldman, R. D., Aebi, U. \& Herrmann, H. Intermediate filament mechanics in vitro and in the cell: From coiled coils to filaments, fibers and networks. Curr. Opin. Cell Biol. 32, 82-91 (2015).
15. Ausmees, N., Kuhn, J. R. \& Jacobs-Wagner, C. The bacterial cytoskeleton: An intermediate filament-like function in cell shape. Cell 115, 705-713 (2003).
16. Fuchino, K. et al. Dynamic gradients of an intermediate filament-like cytoskeleton are recruited by a polarity landmark during apical growth. Proceedings of the National Academy of Sciences 110, E1889-E1897 (2013).
17. Holmes, N. A. et al. Coiled-coil protein Scy is a key component of a multiprotein assembly controlling polarized growth in Streptomyces. Proceedings of the National Academy of Sciences 110, E397-E406 (2013).
18. Fenton, A. K., Hobley, L., Butan, C., Subramaniam, S. \& Sockett, R. E. A coiled-coilrepeat protein 'Ccrp' in Bdellovibrio bacteriovorus prevents cellular indentation, but is not essential for vibroid cell morphology. FEMS Microbiology Letters 313, 89-95 (2010).
19. Waidner, B. et al. A novel system of cytoskeletal elements in the human pathogen Helicobacter pylori. PLoS Pathogens 5, (2009).
20. Ent, F. van den, Amos, L. A. \& Löwe, J. Prokrayotic origin of the actin cytoskeleton. Nature 413, 39-44 (2001).
21. de Boer, P., Crossley, R. \& Rothfield, L. The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359, 254-256 (1992).
22. Lin, L. \& Thanbichler, M. Nucleotide-independent cytoskeletal scaffolds in bacteria. Cytoskeleton 70, 409-423 (2013).
23. Kaiser, D. \& Crosby, C. Cell movement and its coordination in swarms of Myxococcus xanthus. Cell Motil. 3, 227-245 (1983).
24. Yang, R. et al. AgIZ Is a Filament-Forming Coiled-Coil Protein Required for Adventurous Gliding Motility of Myxococcus xanthus. J. Bacteriol. 186, 6168-6178 (2004).
25. Nan, B., Mauriello, E. M. F., Sun, I. H., Wong, A. \& Zusman, D. R. A multi-protein complex from Myxococcus xanthus required for bacterial gliding motility. Mol. Microbiol. 76, 1539-1554 (2010).
26. Nan, B. et al. Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. Proc. Natl. Acad. Sci. 108, 2498-2503 (2011).
27. Mauriello, E. M. F. et al. Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MgIA. EMBO J. 29, 315-326 (2010).
28. Schumacher, D. \& Søgaard-Andersen, L. Regulation of Cell Polarity in Motility and Cell Division in Myxococcus xanthus. Annu. Rev. Microbiol. Regul. 71, 61-78 (2017).
29. Letek, M. et al. DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum. J. Bacteriol. 190, 3283-3292 (2008).
30. Puffal, J., García-Heredia, A., Rahlwes, K. C., Siegrist, M. S. \& Morita, Y. S. Spatial control of cell envelope biosynthesis in mycobacteria. Pathog. Dis. 76, fty027 (2018).
31. Surovtsev, I. V \& Jacobs-Wagner, C. Subcellular organization: a critical feature of bacterial cell replication. Cell 172, 1271-1293 (2018).
32. Bagchi, S., Tomenius, H., Belova, L. M. \& Ausmees, N. Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces. Mol. Microbiol. 70, 1037-1050 (2008).
33. Hempel, A. M., Wang, S., Letek, M., Gil, J. A. \& Flärdh, K. Assemblies of DivIVA mark sites for hyphal branching and can establish new zones of cell wall growth in Streptomyces coelicolor. J. Bacteriol. 190, 7579-7583 (2008).
34. Wagstaff, J. \& Löwe, J. Prokaryotic cytoskeletons: protein filaments organizing small cells. Nat. Rev. Microbiol. (2018). doi:10.1038/nrmicro.2017.153
35. Schwedock, J., McCormick, J. R., Angert, E. R., Nodwell, J. R. \& Losick, R. Assembly of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of Streptomyces coelicolor. Mol. Microbiol. 25, 847-858 (1997).
36. Rippka, R., Stanier, R. Y., Deruelles, J., Herdman, M. \& Waterbury, J. B. Generic

Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiology 111, 1-61 (1979).
37. Herrero, A., Stavans, J. \& Flores, E. The multicellular nature of filamentous heterocystforming cyanobacteria. FEMS Microbiol. Rev. 40, 831-854 (2016).
38. Zhang, C.-C. C., Hugenin, S., Friry, A., Huguenin, S. \& Friry, A. Analysis of genes encoding the cell division protein FtsZ and a glutathione synthetase homologue in the cyanobacterium Anabaena sp. PCC 7120. Res. Microbiol. 146, 445-455 (1995).
39. Hu, B., Yang, G., Zhao, W., Zhang, Y. \& Zhao, J. MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 63, 1640-1652 (2007).
40. Burnat, M., Schleiff, E. \& Flores, E. Cell envelope components influencing filament length in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 196, 4026-4035 (2014).
41. Cho, H., Uehara, T. \& Bernhardt, T. G. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159, 1310-1311 (2014).
42. Fenton, A. K., Mortaji, L. EI, Lau, D. T. C., Rudner, D. Z. \& Bernhardt, T. G. CozE is a member of the MreCD complex that directs cell elongation in Streptococcus pneumoniae. Nat. Microbiol. 2, 1-9 (2016).
43. Mullineaux, C. W. et al. Mechanism of intercellular molecular exchange in heterocystforming cyanobacteria. EMBO J. 27, 1299-1308 (2008).
44. Wilk, L. et al. Outer membrane continuity and septosome formation between vegetative cells in the filaments of Anabaena sp. PCC 7120. Cell. Microbiol. 13, 1744-1754 (2011).
45. Weiss, G. L., Kieninger, A.-K., Maldener, I., Forchhammer, K. \& Pilhofer, M. Structure and function of a bacterial gap junction analog. bioRxiv 462465 (2018). doi:10.1101/462465
46. Flores, E. et al. Septum-localized protein required for filament integrity and diazotrophy in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 189, 3884-3890 (2007).
47. Lehner, J. et al. Prokaryotic multicellularity: A nanopore array for bacterial cell communication. FASEB J. 27, 2293-2300 (2013).
48. Nayar, A. S., Yamaura, H., Rajagopalan, R., Risser, D. D. \& Callahan, S. M. FraG is necessary for filament integrity and heterocyst maturation in the cyanobacterium Anabaena sp. strain PCC 7120. Microbiology 153, 601-607 (2007).
49. Merino-Puerto, V. et al. FraC/FraD-dependent intercellular molecular exchange in the filaments of a heterocyst-forming cyanobacterium, Anabaena sp. Mol. Microbiol. 82, 8798 (2011).
50. Merino-Puerto, V., Mariscal, V., Mullineaux, C. W., Herrero, A. \& Flores, E. Fra proteins influencing filament integrity, diazotrophy and localization of septal protein SepJ in the heterocyst-forming cyanobacterium Anabaena sp. Mol. Microbiol. 75, 1159-1170 (2010).
51. Herrmann, H. \& Aebi, U. Intermediate Filaments: Molecular Structure, Assembly Mechanism, and Integration Into Functionally Distinct Intracellular Scaffolds. Annu. Rev. Biochem. 73, 749-789 (2004).
52. Specht, M., Schätzle, S., Graumann, P. L. \& Waidner, B. Helicobacter pylori Possesses Four Coiled-Coil-Rich Proteins That Form Extended Filamentous Structures and Control Cell Shape and Motility. J. Bacteriol. 193, 4523-4530 (2011).
53. Herrmann, H., Bär, H., Kreplak, L., Strelkov, S. V. \& Aebi, U. Intermediate filaments: From cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 8, 562-573 (2007).
54. Kelemen, G. H. Intermediate Filaments Supporting Cell Shape and Growth in Bacteria BT - Prokaryotic Cytoskeletons: Filamentous Protein Polymers Active in the Cytoplasm of Bacterial and Archaeal Cells. in (eds. Löwe, J. \& Amos, L. A.) 161-211 (Springer International Publishing, 2017). doi:10.1007/978-3-319-53047-5_6
55. Camberg, J. L., Hoskins, J. R. \& Wickner, S. CIpXP protease degrades the cytoskeletal protein, FtsZ, and modulates FtsZ polymer dynamics. Proc Natl Acad Sci U S A 106, 10614-10619 (2009).
56. Charbon, G., Cabeen, M. T. \& Jacobs-Wagner, C. Bacterial intermediate filaments: In vivo assembly, organization, and dynamics of crescentin. Genes and Development 23, 1131-1144 (2009).
57. Weissenbach, J. et al. Evolution of Chaperonin Gene Duplication in Stigonematalean Cyanobacteria (Subsection V). Genome Biol. Evol. 9, 241-252 (2017).
58. Elhai, J., Vepritskiy, A., Muro-Pastor, A. M., Flores, E. \& Wolk, C. P. Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J. Bacteriol. 179, 1998-2005 (1997).
59. Sakr, S., Thyssen, M., Denis, M. \& Zhang, C. C. Relationship among several key cell cycle events in the developmental cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 188, 5958-5965 (2006).
60. Sakr, S., Jeanjean, R., Zhang, C.-C. \& Arcondeguy, T. Inhibition of cell division suppresses heterocyst development in Anabaena sp. strain PCC 7120. J. Bacteriol. 188, 1396-1404 (2006).
61. Solovyev, V. \& Salamov, A. Automatic Annotation of Microbial Genomes and Metagenomic Sequences. in Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies (ed. Robert W. Li, pp) 61-78 (Nova Science Publishers, Inc., 2011).
62. Buikema, W. J. \& Haselkorn, R. Expression of the Anabaena hetR gene from a copperregulated promoter leads to heterocyst differentiation under repressing conditions. Proc. Natl. Acad. Sci. 98, 2729-2734 (2001).
63. Callahan, S. M. \& Buikema, W. J. The role of HetN in maintenance of the heterocyst pattern in Anabaena sp. PCC 7120. Mol. Microbiol. 40, 941-950 (2001).
64. Cabeen, M. T. \& Jacobs-Wagner, C. Bacterial cell shape. Nat. Rev. Microbiol. 3, 601610 (2005).
65. Rojas, E. R. \& Huang, K. C. Regulation of microbial growth by turgor pressure. Curr. Opin. Microbiol. 42, 62-70 (2018).
66. Swulius, M. T. \& Jensen, G. J. The helical mreb cytoskeleton in Escherichia coli MC1000/pLE7 is an artifact of the N-terminal yellow fluorescent protein tag. J. Bacteriol. 194, 6382-6386 (2012).
67. Wang, Y. et al. Coiled-coil networking shapes cell molecular machinery. Mol. Biol. Cell 23, 3911-3922 (2012).
68. Mason, J. M. \& Arndt, K. M. Coiled coil domains: Stability, specificity, and biological implications. ChemBioChem 5, 170-176 (2004).
69. Lupas, A. N. \& Gruber, M. B. T.-A. in P. C. The Structure of α-Helical Coiled Coils. in Fibrous Proteins: Coiled-Coils, Collagen and Elastomers 70, 37-38 (Academic Press, 2005).
70. Newman, J. R. S., Wolf, E. \& Kim, P. S. A computationally directed screen identifying interacting coiled coils from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 97, 13203-13208 (2002).
71. Litowski, J. R. \& Hodges, R. S. Designing Heterodimeric Two-stranded α-Helical Coiledcoils. J. Biol. Chem. 277, 37272-37279 (2002).
72. Vinson, C. R., Hai, T. \& Boyd, S. M. Dimerization specificity of the leucine zippercontaining bZIP motif on DNA binding: Prediction and rational design. Genes Dev. 7, 1047-1058 (1993).
73. Shea, E. K. O., Rutkowski, R., lii, W. F. S. \& Kim, P. S. Preferential Heterodimer Formation by Isolated Leucine Zippers from Fos and Jun. Science (80-.). 245, 646-648 (1989).
74. Mier, P., Alanis-Lobato, G. \& Andrade-Navarro, M. A. Protein-protein interactions can be predicted using coiled coil co-evolution patterns. J. Theor. Biol. 412, 198-203 (2017).
75. Hai, T., Liu, F., Coukos, W. J. \& Green, M. R. Transcription factor ATF cDNA clones: An extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 3, 2083-2090 (1989).
76. Strauss, H. M. \& Keller, S. Pharmacological Interference with Protein - Protein Interactions Mediated by Coiled-Coil Motifs. Handb. Exp. Pharmacol. 13125-13125 (2008). doi:10.1007/978-3-540-72843-6_19
77. Cabeen, M. T. \& Jacobs-Wagner, C. The Bacterial Cytoskeleton. 44, 365-392 (2010).
78. Kerff, F., Terrak, M., Charlier, P., Sauvage, E. \& Ayala, J. A. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32, 234-258 (2008).
79. van Teeseling, M. C. F., de Pedro, M. A. \& Cava, F. Determinants of bacterial morphology: From fundamentals to possibilities for antimicrobial targeting. Front. Microbiol. 8, 1-18 (2017).
80. Lutkenhaus, J. The ParA/MinD family puts things in their place. Trends Microbiol. 20, 411-418 (2012).
81. Leipe, D. D., Wolf, Y. I., Koonin, E. V \& Aravind, L. Classification and evolution of Ploop GTPases and related ATPases. J. Mol. Biol. 317, 41-72 (2002).
82. Ramos-León, F., Mariscal, V., Frías, J. E., Flores, E. \& Herrero, A. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena. Mol. Microbiol. 96, 566-580 (2015).
83. Heins, S. \& Aebi, U. Making heads and tails of intermediate filament assembly, dynamics and networks. Curr. Opin. Cell Biol. 6, 25-33 (1994).
84. Herrmann, H. et al. Structure and assembly properties of the intermediate filament protein vimentin: The role of its head, rod and tail domains. J. Mol. Biol. 264, 933-953 (1996).
85. England, P. et al. The Scc Spirochetal Coiled-Coil Protein Forms Helix-Like Filaments and Binds to Nucleic Acids Generating Nucleoprotein Structures. J. Bacteriol. 188, 469476 (2005).
86. Ingerson-Mahar, M., Briegel, A., Werner, J. N., Jensen, G. J. \& Gitai, Z. The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nature Cell Biology 12, 739-746 (2010).
87. Cabeen, M. T. et al. Bacterial cell curvature through mechanical control of cell growth. The EMBO Journal 28, 1208-1219 (2009).
88. Shieh, Y.-W. et al. Operon structure and cotranslational subunit association direct protein assembly in bacteria. Science (80-.). 350, 678 LP - 680 (2015).
89. Jones, L. J. F., Carballido-López, R. \& Errington, J. Control of cell shape in bacteria: Helical, actin-like filaments in Bacillus subtilis. Cell 104, 913-922 (2001).
90. Alberts, B. et al. Molecular Biology of the Cell. (Garland Science, 2014).
91. Herrmann, H. \& Aebi, U. Intermediate filaments and their associates: Multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr. Opin. Cell Biol. 12, 79-90 (2000).
92. Leung, C. L., Green, K. J. \& Liem, R. K. H. Plakins: A family of versatile cytolinker proteins. Trends Cell Biol. 12, 37-45 (2002).
93. Zhang, R., Zhang, C., Zhao, Q. \& Li, D. Spectrin: Structure, function and disease. Sci. China Life Sci. 56, 1076-1085 (2013).
94. Typas, A., Banzhaf, M., Gross, C. A. \& Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10, 123-136 (2012).
95. Persat, A. et al. The mechanical world of bacteria. Cell 161, 988-997 (2015).
96. Park, A., Jeong, H.-H., Lee, J., Kim, K. P. \& Lee, C.-S. Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel. BioChip J. 5, 236-241 (2011).
97. Young, K. D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660703 (2006).
98. Lupas, A., Van Dyke, M. \& Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162-1164 (1991).
99. Wilson, C. G. M., Magliery, T. J. \& Regan, L. Detecting protein-protein interactions with GFP-fragment reassembly. Nat. Methods 1, 255-262 (2004).
100. Yang, Y. et al. Phenotypic variation caused by variation in the relative copy number of pDU1-based plasmids expressing the GAF domain of Pkn41 or Pkn42 in Anabaena sp. PCC 7120. Res. Microbiol. 164, 127-135 (2013).
101. Nieves-Morión, M. et al. Specific Glucoside Transporters Influence Septal Structure and Function in the Filamentous, Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120. J. Bacteriol. 199, e00876-16 (2017).
102. Bornikoel, J. et al. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120. Front. Cell. Infect. Microbiol. 7, 386 (2017).
103. Karimova, G., Davi, M. \& Ladant, D. The β-lactam resistance protein Blr, a small membrane polypeptide, is a component of the Escherichia coli cell division machinery.
104. Roy, A., Yang, J. \& Zhang, Y. COFACTOR: An accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. 40, 471-477 (2012).
105. Zhang, Y. I-TASSER: Fully automated protein structure prediction in CASP8. Proteins Struct. Funct. Bioinforma. 77, 100-113 (2009).
106. Yang, J. \& Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res. 43, W174-W181 (2015).
107. Lutkenhaus, J. Another Cytoskeleton in the Closet. Cell 115, 648-650 (2003).
108. Jin, S. K. \& Sun, S. X. Morphology of Caulobacter crescentus and the mechanical role of crescentin. Biophysical Journal 96, (2009).
109. Cabeen, M. T., Herrmann, H. \& Jacobs-Wagner, C. The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function. Cytoskeleton 68, 205-219 (2011).
110. Dagan, T. et al. Genomes of stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol. Evol. 5, 31-44 (2013).
111. Tria, F. D. K., Landan, G. \& Dagan, T. Phylogenetic rooting using minimal ancestor deviation. Nat. Ecol. Evol. 1, 0193 (2017).
112. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. \& Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403-410 (1990).
113. Rice, P., Longden, I. \& Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276-7 (2000).
114. Letunic, I. \& Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242-W245 (2016).
115. Sambrook, J. \& Green, M. R. Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor Laboratory Press, 2012).
116. Ungerer, J. \& Pakrasi, H. B. Cpf1 Is A Versatile Tool for CRISPR Genome Editing Across Diverse Species of Cyanobacteria. Sci. Rep. 6, 1-9 (2016).
117. Wolk, C. P. et al. Isolation and complementation of mutants of Anabaena sp. strain PCC 7120 unable to grow aerobically on dinitrogen. J. Bacteriol. 170, 1239-1244 (1988).
118. Stucken, K., Ilhan, J., Roettger, M., Dagan, T. \& Martin, W. F. Transformation and conjugal transfer of foreign genes into the filamentous multicellular cyanobacteria (subsection V) Fischerella and Chlorogloeopsis. Curr. Microbiol. 65, 552-560 (2012).
119. Cai, Y. \& Wolk, C. P. Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinats and to entrap insertion sequnces. J. Bacteriol. 172, 3138-3145 (1990).
120. Fiedler, G., Arnold, M., Hannus, S. \& Maldener, I. The DevBCA exporter is essential for envelope formation in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120. Mol. Microbiol. 27, 1193-1202 (1998).
121. Kühner, D., Stahl, M., Demircioglu, D. D. \& Bertsche, U. From cells to muropeptide structures in 24 h : Peptidoglycan mapping by UPLC-MS . (2014).
122. Lehner, J. et al. The morphogene AmiC2 is pivotal for multicellular development in the cyanobacterium Nostoc punctiforme. Mol. Microbiol. 79, 1655-1669 (2011).
123. Rudolf, M. et al. The Peptidoglycan-Binding Protein SjcF1 Influences Septal Junction Function and Channel Formation in the Filamentous Cyanobacterium \<em\>Anabaena\</em\> MBio 6, e00376-15 (2015).
124. Dörrich, A. K., Mitschke, J., Siadat, O. \& Wilde, A. Deletion of the Synechocystis sp. PCC 6803 kaiAB1C1 gene cluster causes impaired cell growth under light???dark conditions. Microbiol. (United Kingdom) 160, 2538-2550 (2014).
125. Grant, S. G., Jessee, J., Bloom, F. R. \& Hanahan, D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc. Natl. Acad. Sci. 87, 4645-4649 (1990).
126. Studier, F. W. \& Moffatt, B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113-130 (1986).
127. Boyer, H. \& Roulland-Dessoix, D. A complementation analysis of the restrcition and modification of DNA in Escherichia coli. J. Mol. Biol. 41, 459-472 (1969).
128. Cohen, S. E. et al. Dynamic localization of the cyanobacterial circadian clock proteins. Curr. Biol. 24, 1836-1844 (2014).
129. Olmedo-Verd, E., Muro-Pastor, A. M., Flores, E. \& Herrero, A. Localized induction of the ntcA regulatory gene in developing heterocysts of Anabaena sp. strain PCC 7120. J. Bacteriol. 188, 6694-6699 (2006).

