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Abstract 
  
We describe ReorientExpress (https://github.com/comprna/reorientexpress), a method 
to perform reference-free orientation of transcriptomic long sequencing reads. 
ReorientExpress uses deep-learning to correctly predict the orientation of the majority of 
reads, and in particular when trained on a closely related species or in combination with 
read clustering. ReorientExpress enables long-read transcriptomics in non-model 
organisms and samples without a genome reference and without using additional 
technologies.  
  
Background 
  
Long-read sequencing technologies allow the systematic interrogation of transcriptomes 
from any species. However, functional characterization requires knowledge of the 
correct 5’-to-3’ orientation of reads. Oxford Nanopore Technologies (ONT) allows the 
direct measurement of RNA molecules in the native orientation (Garalde et al., 2018), 
but the sequencing of complementary-DNA (cDNA) libraries yields generally a larger 
number of reads (Garalde et al., 2018; Workman et al., 2018). Although strand-specific 
adapters can be used, error rates hinder their correct detection. Current methods to 
analyze nanopore transcriptomic reads rely on the comparison to a genome or 
transcriptome reference (Workman et al., 2018; Wyman and Mortazavi, 2019) or on the 
use of additional technologies such as in ‘hybrid sequencing’, which employs long and 
short read data (Fu et al., 2018), which limits the applicability of rapid and cost-effective 
long-read sequencing for transcriptomics beyond model species. To facilitate the de 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/553321doi: bioRxiv preprint 

https://doi.org/10.1101/553321
http://creativecommons.org/licenses/by/4.0/


novo interrogation of transcriptomes in species or samples for which a genome or 
transcriptome reference is not available, we have developed ReorientExpress, a new 
tool to perform reference-free orientation of ONT reads from a cDNA library. 
ReorientExpress uses deep neural networks (DNNs) to predict the orientation of cDNA 
long-reads independently of adapters and without using a reference. ReorientExpress 
predicts correctly the orientation of the majority of cDNA reads, and in particular when 
trained on a related species or in combination with read clustering, thereby enabling the 
reference-free characterization of transcriptomes. 
  
 
 
 

Figure 1. ReorientExpress Deep Learning models. ReorientExpress implements two deep 
neural networks (DNNs) to predict the orientation of cDNA long reads. (a) A multilayer 
perceptron (MLP) is trained on k-mer frequencies extracted from sequences of known 
orientation. For each test read, the orientation is predicted using the k-mer frequencies of the 
read as input. (b) A convolutional neural network (CNN) is trained on 500nt sliding windows 
from sequences of known orientation, using one-hot encoding for each window (Methods). 
Prediction is performed by scoring all windows in a test read and calculating the mean score 
independently for each orientation. 
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Results 
 
Sequence-based prediction of read orientation 
 
ReorientExpress approach builds on the hypothesis that RNA molecules present 
sequence biases and motifs relevant to their metabolism, generally related to protein 
binding sites (Hentze et al., 2018; Rissland, 2017). Despite potential sequencing errors, 
these signals may still be largely present in a long read and therefore enable the 
identification of the right orientation of a cDNA read. ReorientExpress implements two 
types of Deep Neural Network (DNN) models to classify long reads as being in the 
forward (5’-to-3’) orientation or in the reverse-complement- orientation (Fig. 1a and b). 
The first DNN model is a multilayer perceptron (MLP) with 5 hidden layers, the last layer 
providing the probability that a read is not in the correct orientation, and with dropout 
layers to reduce overfitting (Additional file 1: Table 1). In this model, an input sequence 
is represented in terms of the frequency of short motifs (k-mers for k=1,...,5). This 
ensures a fixed-size input for molecules of different lengths and accounts for the fact 
that sequencing errors may not allow to correctly capture longer sequence patterns. 
Furthermore, neural networks work better with input values between 0 and 1. 
Accordingly, the input of the MLP model is a matrix of normalized k-mer counts from the 
input sequences, with k from 1 to any length specified as parameter (default=5) as 
shown in Fig. 1a. Although MLPs are simpler and faster to train and run, they do not 
capture the dependencies with sequence context like Convolutional Neural Networks 
(CNNs). For this reason, ReorientExpress also implements a CNN as an alternative 
model with a similar architecture to lenet (Lecun et al., 1998) with 3 convolutional layers, 
3 pooling layers and 2 dense layers, with different filter sizes (Additional file 1: Table 2). 
As input for the CNN model, sequences were divided into overlapping windows of fixed 
size, which were then transformed using one-hot encoding (Methods). The orientation of 
a read is based on the mean of the posterior probabilities for all windows in a read for 
forward and reverse orientation and thereafter by selecting the one with the highest 
value (Fig 1b). Regardless of the DNN model, ReorientExpress can be trained from any 
set of sequences with known orientations, like a transcriptome annotation or ONT direct 
RNA sequencing (DRS) reads (Methods). 
  
To test ReorientExpress, we first trained the MLP model on 50,000 random transcripts 
from the human annotation using k-mers from k=1 to k=5. To enable the accuracy 
evaluation with ONT cDNA reads with unknown orientation, we first mapped human 
ONT cDNA reads to their respective transcriptomes using minimap2 (Li, 2018). 
Thereafter, we selected only uniquely mapped reads with maximum quality (MAPQ=60), 
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and assigned to each read the strand from the matched annotated transcript (Methods). 
Using these orientations as ground truth, the MLP model trained on human 
transcriptome yielded an average precision of 0.84 and a recall of 0.83 in human cDNA 
reads (Fig. 2a) (Additional file 1: Table 3). The CNN model trained on the human 
transcriptome showed slightly better results on the human cDNA reads (Fig. 2a) 
(Additional file 1: Table 3). We proceeded in a similar way with S. cerevisiae cDNA 
reads (Garalde et al., 2018), as described above for human cDNA reads. 
ReorientExpress trained on the S. cerevisiae annotation (Methods) yielded an average 
precision and recall of 0.93 in ONT cDNA reads from S. cerevisiae (Fig 2b) (Additional 
file 1: Table 3). Similar to the above observation in human cDNA, the accuracy of the 
CNN model on the S. cerevisiae reads was slightly better than the MLP model (Fig 2b) 
(Additional file 1: Table 3). Application of the MLP or CNN models trained on human 
transcriptome to direct RNA sequencing (DRS) reads yielded better accuracy  for 
human DRS reads compared to human cDNA reads. However, the accuracy decreased 
for both MLP and CNN model trained on S. cerevisiae transcriptome and tested on S. 
cerevisiae DRS reads compared to S. cerevisiae cDNA reads (Additional file 1: Table 
3). 
 
To demonstrate the suitability of ReorientExpress to predict the orientation of cDNA 
reads from samples without a genome or transcriptome reference available, we 
mimicked this situation by building DNN models in one species and testing them on a 
related species. We thus trained an MLP model (k=1,…,5) with the mouse 
transcriptome. This model tested on human ONT cDNA reads showed a precision of 
0.79 and recall of 0.71, which is comparable to the MLP model trained on human data 
(Fig. 2a) (Additional file 1: Table 4). Interestingly, this model showed a higher accuracy 
(precision and recall = 0.87) when tested on human DRS reads as compared to human 
cDNA reads (Additional file 1: Table 4). We also trained an MLP model (k=1,…,5) with 
the transcriptome annotation for Candida glabrata and tested it on S. cerevisiae ONT 
cDNA reads. This model yielded accuracy values as high as for the previous S. 
cerevisiae model (precision and recall = 0.94) (Fig. 2b) (Additional file 1: Table 4). As 
observed before for S. cerevisiae DRS reads, the model accuracy dropped when tested 
on DRS reads (precision and recall = 0.87) (Additional file 1: Table 4). We obtained 
similar results for the cross-species comparisons with the CNN model, with an 
improvement in accuracy for the mouse model applied to human DRS reads, and a drop 
for the C. glabrata model applied to S. cerevisiae DRS reads (Additional file 1: Table 4).  
 
Reference-free interpretation of long-read transcriptome data generally involves some 
form of clustering (Marchet et al., 2018; Sahlin and Medvedev, 2018). Thus, to further 
demonstrate the utility of ReorientExpress for reference-free interrogation of 
transcriptomes with long-reads, we performed clustering of the cDNA reads (Methods). 
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For the majority of clusters in human (>81%) and S. cerevisiae (>85%) ReorientExpress 
predicted correctly more than 50% of the reads in the cluster (Fig. 2c) (Additional file 1: 
Figure 1) (The proportion of clusters for each model can be found in Additional file 1: 
Table 5). That is, for most clusters, more than half the reads in those clusters can be 
correctly oriented. Accordingly, by taking the orientation of the cluster to be determined 
by that of the majority of reads, we could improve the overall orientation. To test this, we 
applied a majority vote per cluster to set the orientation of all reads in the cluster to be 
the majority label predicted by ReorientExpress. With this, ReorientExpress established 
the right orientation for the majority of cDNA reads for human and yeast, with up 96.2% 
of human reads and up to 98% of S. cerevisiae reads correctly oriented (Fig. 2d) 
(Additional file 1: Table 6).  
 

 
Figure 2. ReorientExpress accuracy analysis. (a) Receiving Operating Characteristic (ROC) 
curves, representing the false positive rate (x axis) versus the true positive rate (y axis) for the 
prediction of the orientation of human ONT cDNA reads with the multilayer perceptron (MLP) 
and convolutional neural network (CNN) models trained on either the human (Hs) or the mouse 
(Mm) transcripts. (b) ROC curves for the prediction of the orientation of yeast ONT cDNA reads 
with the MLP and CNN models trained on either the S. cerevisiae (Sc) or C. glabrata (Cg) 
transcripts. (c) Number of clusters (y axis) according to the proportion of human ONT cDNA 
reads in the cluster with orientation correctly predicted by ReorientExpress (x axis) with the MLP 
model trained on the human transcriptome (left panel) (Hs-MLP) or the S. cerevisiae 
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transcriptome (right panel) (Sc-MLP). We show clusters with more than 2 reads. Similar plots for 
all clusters (>1 read) and for the CNN model are given in Additional file 1: Figure 1. (d) 
Comparison of the proportion of human (Hs) or S. cerevisiae (Sc) cDNA reads correctly oriented 
in three cases: taking the default orientation from the FASTQ file (Default) in blue, using the 
CNN and MLP ReorientExpress models in green, and using a majority vote in clusters to predict 
the orientation of all reads in each cluster (ReorientExpress and clustering) in orange. 
Clustering and predictions in (c) and (d) were performed with all labelled cDNA reads 
(Methods).  Models used to on the total set of labelled cDNA reads in this figure were trained on 
50,000 randomly selected transcript sequences from the annotation, or all of them if there were 
less (S. cerevisiae and C. glabrata). 
 
 
Comparisons with other models and inputs 
 
Interestingly, inverting the procedure and training with ONT cDNA reads yields good 
accuracy when testing on annotated transcripts, but when training on ONT DRS reads 
the accuracy decreases (Additional file 1: Table 7). This could be a consequence of a 
higher proportion of base-calling errors in DRS reads due to the presence of RNA 
modifications, leading to a decrease in the identification of relevant sequence motifs 
learned by the model. To test this, we trained the MLP model with DRS reads from in 
vitro transcribed (IVT) RNA (Workman et al., 2018) and obtained slightly better accuracy 
than with DRS reads when testing on cDNA reads (Additional file 1: Table 7). 
Additionally, we observed no dependency with the basecaller used to obtain the 
sequence of reads. In particular, using Guppy-rapid or Guppy-high-accuracy to base-
call the IVT RNA reads did not show any differences in the accuracy of the MLP model 
(Additional file 1: Table 8). This indicates that DRS errors may prevent accurate training 
of sequence-based models.  
 
We also observed a dependency of the accuracy with the length of the reads. The 
prediction accuracy decreased for shorter reads (Additional file 1: Table 8), which 
suggests that either short molecules or partial reads may pose a limitation for the 
accurate prediction of orientation. To further test the effect of read length on the 
prediction accuracy, we trimmed a number of nucleotides from both ends of the cDNA 
reads in the test set. The accuracy was not significantly impacted performing trimming 
up to 200nt (Additional file 1: Table 9). Similarly, when we trimmed the training set by 
different amounts up to 200nt, leaving fixed the test set, the accuracy did not change 
significantly either (Additional file 1: Table 10). Thus, incomplete annotations can still be 
valid to train a model and complete annotations can yield accurate results on partial 
reads. This is relevant for the application to cDNA reads, which may be fragmented due 
to internal priming (Sessegolo et al., 2019). These results also indicate that DNN 
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models are able to capture predictive features beyond the presence of adapters or poly-
A tails to predict the 5’-to-3’ orientation of RNA molecules.  
 
For comparison, we run pychopper (Methods), which can identify the orientation of 
cDNA reads by virtue of detecting the sequencing adapters. We analyzed all cDNA 
reads whose orientation was labelled previously. For the human cDNA reads, 
pychopper made predictions for only 24% of the reads, from which 98% were correctly 
classified. So in total, from the 270296 reads tested, ~23.5% (~63520 reads) were 
classified accurately by pychopper. This justifies the use of more sophisticated models 
to predict orientation. Additionally, we trained and tested a support vector machine 
(SVM) and a Random Forest (RF), using as inputs the same k-mer frequencies. Both 
also showed worse accuracy compared to the MLP model for the same test data. 
However, for S. cerevisiae the accuracy of both models trained with the S. cerevisiae 
annotation was high (Precision and recall 0.86 for the RF, and 0.95 for the SVM) 
(Additional File 1: Table 10). Finally, we also tested ReorientExpress with PacBio cDNA 
reads from Sorghum (Abdel-Ghany et al., 2016). We trained two MLP models, one with 
the Ensembl cDNA annotations from Sorghum (Sorghum bicolor NCBIv3) and another 
with Maize (Zea Mays B73_RefGen_v4). Both models showed high accuracy when 
tested against Sorghum PacBio reads (precision and recall ~0.95) (Additional file 1: 
Table 12). 
 
Association of RNA types and sequence motifs with read orientation prediction 
 
Since we mapped long reads unambiguously to the transcriptome annotation for the 
purpose of benchmarking, we can use this information to investigate the accuracy of 
ReorientExpress according to the transcript type as provided by the Gencode 
annotation: protein-coding, processed transcript, lincRNA, etc. Applying the human 
CNN and MLP models (trained on 50000 random transcripts) to all labelled human 
cDNA reads, we observed that reads assigned to protein-coding transcripts, including 
transcripts from immunoglobulin related genes, showed the highest accuracy with more 
than 85% correctly predicted (Figs. 3a and 3b). Interestingly, even though transcript 
annotations of types “sense overlapping” and “sense intronic” were not used for training, 
reads assigned to them were correctly predicted in high proportion. In contrast, reads 
unambiguously associated with antisense or TEC (To be Experimentally Confirmed) 
transcripts, showed smaller accuracies compared with the rest of annotation types. TEC 
transcripts are based on EST clusters and may lack the sequence properties from other 
transcript types. Antisense transcripts remain difficult to predict correctly as they share 
sequence with transcripts annotated in the opposite strand. Nonetheless, inspection of 
the built clusters showed that in the majority of the clusters with antisense reads had all 
reads of type antisense. Indeed, 201 (78%) of clusters with at least one antisense read 
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had 100% reads of type antisense, which corresponded to 882 antisense reads from the 
total of 976 antisense reads, i.e. 90% (Additional file 1: Figure 2). The CNN (Fig. 3a) 
and MLP (Fig. 3b) models showed very similar results, except for long non-coding 
RNAs (lncRNAs). Reads associated with lncRNAs from bidirectional promoters 
presented the same accuracy of the intergenic lncRNAs for the CNN model, but this 
was higher for the MLP model.  
 
To investigate whether ReorientExpress captures recognisable RNA motifs, we took 
advantage of the possibility to use the convolutional filters of the CNN to identify 
sequence motifs captured by the model as done previously (Alipanahi et al., 2015; Pan 
et al., 2018) (Methods). From these filters we found 32 candidate motifs (Additional file 
2), which we compared with known protein-RNA binding motifs (Ray et al., 2013). This 
method detected motifs similar to those described for the RNA binding proteins PCBP1, 
ELAVL1 (HuR), and RBM42 (Fig 3b), among others (Additional file 3). Thus, sequence 
motifs that are relevant to predict molecule orientation recapitulate some of the binding 
specificities of proteins that control the metabolism of the RNA. 
 

 
Figure 3. Read types and sequence motifs. The proportion of cDNA reads that were 
unambiguously mapped to each transcript type (y axis) and classified as correct (True) or 
incorrect (False) (x axis) by the CNN model (a) and the MLP model (b). All transcript type 
annotations from the autosomes and sex chromosomes with more than 10 reads mapped are 
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represented in the plot. (c) The motifs derived from three CNN filters with significant matches to 
previously described RNA-binding motifs (Additional file 3): filter M24 (RBM42, q-value = 
0.0165997), filter M17 (HuR, q-value = 0.0312701), and filter M9 (PCBP1, q-value = 
0.0426708). As information content (y axis) is low, the axis scale is given between 0 and 1.  
  
Discussion 
  
Here, we have shown that deep neural network (DNN) models trained on transcript 
sequences are able to provide an accurate orientation of cDNA long reads. We 
hypothesized that sequence motifs that are specific to RNA regulation would be 
identifiable in long sequencing reads despite the presence of errors, and found  that 
some of the sequences relevant to predict molecule orientation are similar to known 
motifs involved in RNA-protein binding. The described DNN models maintain good 
accuracy despite using trimmed reads, and work well on nanopore and on PacBio 
reads. ReorientExpress provides a crucial aid in the interpretation of transcripts using 
cDNA long-reads in samples for which the genome reference is unavailable, as it is the 
case for many non-model organisms, but also in general for unstranded long-reads 
libraries for human and model organisms beyond the available references. This is 
particularly relevant considering the differences observed between individuals at large 
and small genomic scales (Dashnow et al., 2018; Sherman et al., 2019). Our analyses 
show that ReorientExpress can be very valuable in combination with long read 
clustering (Marchet et al., 2018; Sahlin and Medvedev, 2018) to facilitate more accurate 
downstream analyses of transcriptomes, like the prediction of open reading frames. The 
ability to predict the 5’-to-3’ orientation of cDNA long reads using models trained on 
related species, makes ReorientExpress a key processing tool for the study of 
transcriptomes from non-model organisms with long-reads. 
  
  
  

Methods 
  
Training and testing ReorientExpress 
  
ReorientExpress (https://github.com/comprna/reorientexpress) implements deep neural 
network (DNN) models in keras (https://github.com/keras-team/keras) and Tensorflow 
(Abadi et al., 2016). All input data is preprocessed to discard reads that contain N’s. For 
reads from direct RNA-seq experiments, uracil (U) is transformed into thyimine (T). 
Input reads can be optionally trimmed and this is done for the same length on both 
sides of each input sequence. For training purposes, a random selection of half the 
sequences are reverse-complemented to obtain a balanced training set. Optionally, all 
sequences can be reverse complemented to double up the training input. 
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ReorientExpress implements two different DNN models, a multi-layer perceptron (MLP) 
and a convolutional neural network (CNN). In the MLP model, sequences are processed 
to build a matrix of k-mer frequencies, from k=1 up to a specified k-mer length (default 
k=1,...,5). The normalization is performed per input sequence and per k-mer length. 
That is, for a fixed k, each k-mer count is divided by the total number of k-mers in the 
sequence of length L, so that frequency(k-mer) = count(k-mer)/(L-k+1). Using the k-mer 
frequencies ensures that the input size is the same for all transcripts regardless of the 
transcript length. MLPs are simpler than Convolutional (CNNs), so they are faster to 
train and to run. On the other hand, CNNs can model relative spatial relationships, 
hence they can take sequence context into account. For this reason, we also included a 
CNN model in ReorientExpress. For the CNN model, each input sequence was divided 
into overlapping sequences of 500nt, overlapping by 250nt. For transcripts of length 
between 250 and 500 we added Ns at the end of the sequence. We used one hot 
encoding as input for each one of the 500nt windows.  
 
Once a model is trained, or given an already available model, ReorientExpress can 
predict the orientation of a set of unlabeled reads in prediction mode. ReorientExpress 
feeds the normalized k-mer counts for each read for the MLP model, or the sliding 
windows for the CNN model to predict the orientation. In the MLP model, the last layer 
has only one node, which applies a sigmoid function to approximate a probability from 
the score it receives. The probability can be interpreted as the certainty that the input 
read is not in the correct orientation. So, a read with a score greater than 0.5 is 
predicted to be in the wrong orientation and is reverse-complemented. For the CNN 
model, for each window tested the output is a posterior of the orientation given that 
window. To provide a prediction for each input read, ReorientExpress takes the mean 
value for both orientations independently, and outputs the orientation with the greatest 
mean.  
 
The test mode is aimed at evaluating the accuracy of a model using as input sequences 
with known orientation. The program generates predictions for the input reads and 
compares them with the provided labels, returning a precision (proportion of the 
predictions that are correct), a recall (true positive rate, proportion of labeled cases that 
are correctly predicted), an F1-score (harmonic mean of precision and recall) and the 
total number of input reads. As input for any of the three modes, train, predict and test, 
one can use three types of datasets: experimental, annotation or mapped. Experimental 
data refers to any kind of long-read data for which the orientation is known, such as 
direct RNA-seq, and reads are considered to be given in the 5’-to-3’ orientation. 
Annotation data refers to the transcript sequences from a reference annotation, such as 
the human transcriptome reference. Annotation is considered to be in the right 5’-to-3’ 
orientation, and can include the transcript type, such as protein coding, processed 
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transcript, etc. Mapped data refers to sequencing data, usually cDNA, whose orientation 
has been annotated by an independent method, e.g. by mapping the reads to a 
reference. In this case, a PAF file for the mapping, together with the FASTA/FASTQ file, 
is required. The labelled data is used for training or testing. In predict mode the data 
does not require labelling and ReorientExpress provides a prediction.  More details are 
provided in https://github.com/comprna/reorientexpress. 
 
Deep Neural Network (DNN) models tested 
  
Models used for the analyses described in the manuscript are provided at 
https://github.com/comprna/reorientexpress. The human model was trained using the 
Gencode annotation release 28, and the mouse model was built using the mouse 
Gencode release M19. The Ensembl annotation (https://fungi.ensembl.org/) was used to 
train the Saccharomyces cerevisiae (R64-1-1) and the Candida glabrata (ASM254v2) 
models. Ensembl annotations (http://plants.ensembl.org) were used from Sorghum 
(Sorghum bicolor NCBIv3) and from Maize (Zea Mays B73_RefGen_v4) to build models 
to test on PacBio data. From the annotation files, we only used the most frequent 
transcript annotation types: protein coding, lincRNA, processed transcripts, antisense 
and retained intron. We trained the models using 50,000 randomly selected transcript 
sequences from the annotation, or all of them if there were less than 50,000 (S. 
cerevisiae and C. glabrata). The results did not change when running the analysis with 
different sets of 50,000 transcripts. 
 
Test datasets 
 
To test ReorientExpress on cDNA reads, we first calculated a set of cDNA reads for 
which orientation could be determined unambiguously in an independent way. We used 
human cDNA from the Nanopore consortium (cDNA 1D pass reads from JHU run 1) 
(Workman et al., 2018) (available from https://github.com/nanopore-wgs-
consortium/NA12878/blob/master/nanopore-human-transcriptome/fastq_fast5_bulk.md) 
and S. cerevisiae cDNA reads (Garalde et al., 2018) from SRA (SRR6059708). We 
mapped the cDNA reads to the corresponding transcriptome annotation using minimap2 
(Li, 2018) without secondary alignments (minimap2 -cx map-ont -t7 --secondary=no). 
We kept only reads with maximum mapping quality (MAPQ = 60) and that were uniquely 
mapping. For human, 899431 out of 962598 reads were mapped in this way, 282444 of 
which had MAPQ = 60. After removing the ~4% multimapping cases, we finally obtained 
270296 reads with orientation unambiguously assigned. For S. cerevisiae, 4000698 out 
of a total of 5045243 reads were mapped, 3089543 of which had MAPQ = 60. After 
removing the ~3% multimapping cases, we finally obtained 2984873 reads with 
orientation unambiguously assigned. Additionally, we used direct RNA sequencing 
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(DRS) for human (JHU Run 1 available from https://github.com/nanopore-wgs-
consortium/NA12878/blob/master/nanopore-human-transcriptome/fastq_fast5_bulk.md) 
and for S. cerevisiae from SRA (SRR6059706) (Garalde et al., 2018). We also tested 
ReorientExpress with PacBio cDNA reads from Sorghum (Abdel-Ghany et al., 2016) 
(Data available at https://zenodo.org/record/49944#.XCkXQC-ZN24). We trained two 
MLP models with the Ensembl cDNA annotations (http://plants.ensembl.org) from 
Sorghum (Sorghum bicolor NCBIv3) and Maize (Zea Mays B73_RefGen_v4).  
 
Other models for comparison 
  
We tested a Random Forest model and an SVM model using sklearn libraries. The 
models were trained using 50,000 random annotated transcripts, using as training input 
the normalized k-mer frequencies for each sequence as features and the orientation as 
classification label. Further details are provided in Additional file 1. We also run 
pychopper (https://github.com/nanoporetech/pychopper) (cdna_classifier.py command 
with the list of barcodes provided by pychopper) on the 270296 human cDNA reads that 
we had labelled previously. 
 
Testing the dependency with base-callers 
 
We used Guppy rapid and Guppy high accuracy (v2.2.3) with the signal files from the in-
vitro transcript RNA sequenced with MinION by the Nanopore Consortium (available 
from https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-
human-transcriptome/fastq_fast5_bulk.md ). As this is direct RNA sequencing, the 
orientation of the reads can be readily used to test the accuracy of our models.  
 
Clustering and majority vote 
  
We performed clustering of the human and S. cerevisiae cDNA reads using IsONclust 
(Sahlin and Medvedev, 2018). Only cDNA reads that had been assigned an orientation 
by mapping as described above were used for clustering. We predicted the read 5’-to-3’ 
orientation for the same reads with ReorientExpress and calculated for each cluster the 
proportion of reads that were correctly orientated. As IsONclust does not given clusters 
with oriented reads, the orientation of all cDNA reads was taken from the mapping 
described above. In each cluster we then predicted the read orientation with 
ReorientExpress and selected the majority label to assign all reads in the cluster: if the 
majority (>50%) of reads were predicted to be already in 5’-to-3’ orientation (forward), 
we set all reads to forward. Otherwise, all reads were reverse-complemented. The 
accuracy of all reads was then calculated by comparing our predictions with the 
predetermined orientations. 
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Motif analysis 
 
We studied the 32 filters from the first layer of the CNN to obtain the sequences that are 
most informative for predicting the orientation, using an approach similar to (Alipanahi et 
al., 2015; Pan et al., 2018). To explore exhaustively all potential motifs, we used 
activations above 0 and converted the associated sequences to position weight 
matrices (PWMs). The derived 32 motif matrices (Additional file 2) were then compared 
against the CISBP-RNA database (http://cisbp-rna.ccbr.utoronto.ca/) (Ray et al., 2013) 
using the TOMTOM algorithm (http://meme-suite.org/doc/tomtom.html) (Gupta et al., 
2007) for the comparison of PWM-based motifs and selecting matches with p−value < 
0.05 (Additional file 3).  
 
List of Abbreviations 
  
ONT: Oxford Nanopore Technologies, DRS: Direct RNA sequencing, cDNA: 
complementary DNA, k-mer: length k oligomer, DNN: Deep Neural Network, MLP: Multi-
layer perceptron, CNN: Convolutional Neural Network, IVT: In vitro transcribed, PWM: 
Position Weight Matrix 
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