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ABSTRACT15

Comparative phylogenetics has been largely lacking a method for reconstructing the evolution of phe-
notypic entities that consist of ensembles of multiple discrete traits – entire organismal anatomies or
organismal body regions. In this study, we provide a new approach named PARAMO (Phylogenetic
Ancestral Reconstruction of Anatomy by Mapping Ontologies) that appropriately models anatomical
dependencies and uses ontology-informed amalgamation of stochastic maps to reconstruct phenotypic
evolution at different levels of anatomical hierarchy including entire phenotypes. This approach provides
new opportunities for tracking phenotypic radiations and evolution of organismal anatomies.
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INTRODUCTION23

Ancestral character state reconstruction has been long used to gain insight into the evolution of24

individual traits in organisms (Pagel, 1999). However, organismal anatomies (= entire phenotypes) are not25

merely ensembles of individual traits, rather they are complex systems where traits interact with each other26

due to anatomical dependencies and developmental constraints. Individual trait approaches substantially27

simplify the full picture of phenotypic evolution by reducing it to only a single feature at a time, which28

can potentially hinder the discovery of new evolutionary patterns or even reconstruct logically impossible29

evolutionary scenarios. Only a handful of studies have been focused on reconstructing evolution of entire30

phenotypes by treating them as sets of all available traits [e.g., Sauquet et al. (2017); O’leary et al. (2013);31

Peters et al. (2014)]. Nevertheless, even these studies still employ individual character approaches, which32

remains the predominant paradigm in comparative phylogenetics due to a lack of methods for modeling an33

entire phenotype (or its parts) as a single complex character. These limitations thereby prevent researchers34

from reconstructing entire organismal anatomies. To our knowledge, the only approach that attempts to35

overcome this problem is the parsimony-based method of Ramı́rez and Michalik (2014).36

In this paper, we propose a new pipeline called PARAMO (Phylogenetic Ancestral Reconstruction of37

Anatomy by Mapping Ontologies) that takes into account anatomical dependencies and uses stochastic38

mapping (Huelsenbeck et al., 2003) along with anatomy ontologies to reconstruct the evolution of entire39

organismal anatomies; this pipeline can be implemented in likelihood or Bayesian frameworks. Our40

approach treats the entire phenotype or its component body regions as single complex characters and41

allows exploring and comparing phenotypic evolution at different levels of anatomical hierarchy. These42

complex characters are constructed by ontology-informed amalgamation of elementary characters (i.e.,43

those coded in character matrix) using stochastic maps. In our approach, characters are linked with the44

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 18, 2019. ; https://doi.org/10.1101/553370doi: bioRxiv preprint 

https://doi.org/10.1101/553370
http://creativecommons.org/licenses/by-nc/4.0/


terms from an anatomy ontology, which allows viewing them not just as an ensemble of character state45

tokens but as entities that have their own biological meaning provided by the ontology.46

The goal of this paper is to give the description of PARAMO pipeline and R (R Core Team, 2018)47

scripts that can be used to run it. Additionally, we use a Hymenopteran dataset to demonstrate the48

workflow of the pipeline. At the end of the paper, we discuss biological questions that can be addressed49

using our method. We believe that reconstructing evolutionary dynamics of entire phenotypes and their50

major parts opens up new perspectives for comparative morphology and phylogenetics, which, in turn,51

allows tracking phenotypic radiations across time and phylogeny.52

METHODOLOGICAL BACKGROUND53

The core ingredient: character and character state invariance54

At the core of our method lies the property of character and character state invariance that exists in55

Markov models of discrete trait evolution (Tarasov, 2018, 2019). This property removes the distinction56

between character and character state, meaning that multiple individual characters can be represented57

as a single character and vice versa, which makes the two concepts equivalent. In this paper, this58

invariance property is used to construct larger characters from ensembles of elementary characters,59

which are constructed through the operation of character amalgamation (see the next section). Character60

amalgamation is crucial for reconstructing ancestral anatomies because it offers a convenient way to61

incorporate anatomical dependencies and reconstruct simultaneous evolution of traits at different levels of62

anatomical hierarchy (= levels of amalgamation).63

In present study, we consider three major levels of amalgamation: (1) the level of anatomical64

dependencies (AD), (2) body regions (BRs) and (3) entire phenotype (EP). The AD level implies that65

anatomically dependent traits have to be amalgamated into a single character to appropriately model66

anatomical dependencies (see the Step 2 in the PARAMO description). The amalgamation at the BR level67

implies that all individual characters associated with a particular body region become combined into a68

single character for comparative analysis. For example, amalgamation of all characters associated with69

the ”head” produces a character that describes evolution of this body region; the same can be done for70

legs and other BRs of interest. Construction of these characters facilitates comparison of BR evolution71

across phylogeny. For example, BR amalgamation can be used to address questions of whether different72

BRs change over the same or different branches on a phylogeny. Amalgamation of all characters in a73

dataset, produces one gigantic character at the EP level that describes the evolution of an entire anatomy.74

The character amalgamation has to be performed in a mathematically consistent way, as discussed in the75

next section.76

Character amalgamation using stochastic maps77

In probabilistic models of phylogenetics, a “character” represents a Markov process that sequentially78

moves from one state to another over time. Discrete characters can be represented as a discrete state79

Markov process that is defined by a transition rate matrix containing infinitesimal rates of change between80

states, and an initial vector of probabilities at the root of the phylogenetic tree. Any number of individual81

characters can be amalgamated into one character through amalgamating their rate matrices (Tarasov,82

2019) that defines the joint evolution of the initial characters. In the present paper, we assume that83

initial characters, if they are not dependent anatomically (see the Step 2 in the PARAMO description),84

are independent entities that have to be independently amalgamated. Suppose there are two characters85

C1{with states: 0, 1} and C2{with states: 0, 1} defined by:86

C1 =

0 1( )
−α1 α1 0
β1 −β1 1

, C2 =

0 1( )
−α2 α2 0
β2 −β2 1

. (1)
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Figure 1. Amalgamation of stochastic maps. Vertical bars are tree branches, their segments are mapped
character states. The amalgamation of the stochastic map S1{0,1} and S2{0,1} yields the map
S1,2{00,01,11,10}.

Their independent amalgamation, herein denoted by ⊕ (the Kronecker sum), results in the following
character C1,2 with four states:

C1,2 =C1⊕C2 =

00 01 10 11


−α2−α1 α2 α1 0 00
β2 −β2−α1 0 α1 01
β1 0 −β1−α2 α2 10
0 β1 β2 −β1−β2 11

. (2)

The full formula for character amalgamation can be written as C1⊕C2 =C1⊗ IC2 + IC1 ⊗C2 where IC287

and IC1 are the identity matrices for C1 and C2, and ⊗ denotes the Kronecker product. The amalgamated88

character C1,2{00,01,10,11} is constructed by forming its states using the combinations of states from the89

characters C1 and C2. Unfortunately, the rate matrix amalgamation has a shortcoming – the number of its90

states grows exponentially (as 2n for n binary characters) resulting in an enormous rate matrix that makes91

computations infeasible even if it is constructed from a few dozens of initial characters. Here, we propose92

an approach that bypasses this issue by using stochastic maps.93

A stochastic map (S) is a phylogenetic tree with an instance of mapped evolutionary history of a94

character (i.e., state transitions) conditional on data at tips and a Markov model used for ancestral state95

reconstruction (Huelsenbeck et al., 2003). This tree is divided into segments; each segment corresponds96

to time spent in a particular state. Thus, stochastic mapping is a function Sm that converts realization of a97

character rate matrix C and data to the corresponding stochastic map(s) [i.e., S = Sm(C)]. Both definitions98

of a character – using rate matrix or stochastic map(s) – are equivalent as they can be converted into each99

other.100

Interestingly, character amalgamation can be performed by only using stochastic maps of the initial
characters. Suppose, that S1 and S2 are the stochastic maps obtained from the realizations of the characters
C1 and C2 respectively. The amalgamation of the maps S1 and S2 implies construction of a joint stochastic
map S1,2 = S1⊕S2 by forming new segments from the combinations of the segments in S1 and S2 as shown
in (Fig. 1); the map S1,2 defines the character C1,2. In other words, the stochastic mapping performed
directly on character C1,2 is identical to the amalgamation of the stochastic maps obtained for C1 and C2
separately:

Sm(C1⊕C2) = Sm(C1)⊕Sm(C2). (3)

The amalgamation using stochastic maps is computationally cheap as it avoids gigantic rate matrices and101

can be virtually applied to any number of elementary characters in a dataset. Thus, the invariant property102

necessary for reconstructing ancestral anatomies can be feasibly maintained. This approach of stochastic103

map amalgamation is employed in this paper.104

Querying characters using ontologies105

Ontologies are graphs that describe relationships (edges) among entities (nodes) from a domain of106

knowledge under interest. In the present study, we are specifically interested in linking morphological107
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Table 1. Initial characters of Hymenoptera used in demonstration. The symbols > and < indicate the
direction of a hierarchical dependency; the symbol <> indicates synchronous dependency (see Step 2 of
the pipeline description).

ID Character statement state 0 state 1 Dependency

C1 Notch on medial margin of eye absent present –

C2 Position of labrum anterior posterior C2{0,1}<C3{1}
C3 Labrum absent present C3{1}>C2{0,1}
C4 Forewing costal and radial vein fusion not fused fused along their lengths –

C5 Hind wing subcostal vein, absent no yes C5 <>C6

C6 Hind wing subcostal vein, present yes no C5 <>C6

C7 Inner posterior mesotibial spur simple modified into a calcar –

C8 Foretibial apical sensillum present absent –

C9 Metatibial apical sensillum present absent –

characters with anatomy ontologies to be able to query and retrieve all characters associated with a108

particular ontology term. Herein, we call this query ”Retrieve all characters” (RAC) and use it to109

construct character amalgamations for the different levels of the anatomical hierarchy.110

In an anatomy ontology, the nodes are the anatomical entities, while edges are their relationships.111

Linking a character with an ontology, in the context employed here, means assigning a link between112

ontology term(s) and the character’s ID from a character matrix. Technically, this implies that a character113

becomes a node in the ontology graph connected with the ontology term(s) its linked to. Two fundamental114

types of edges – is a and part of – occur in almost all anatomy ontologies. The relationship A is a B115

indicates that A is a subtype of B, and the relationship A part of B indicates that every instance of A is,116

on the instance level, a part of some instance of B (Haendel et al., 2008). Computationally, RAC works117

by taking an input term and traversing the ontology graph using is a and part of edges to retrieve all118

characters that are descendant nodes of the input term. In our case, the input is an ontology term that119

corresponds to a BR or EP. For example, if RAC takes the term ”head”, it returns all characters associated120

with this BR (e.g., ”shape of eyes”, ”length of antennae”, etc.). Thus, ontologies offer a convenient way121

to automatically query character matrices. The implementation of RAC is discussed in the Step 4 section122

of the pipeline description below.123

DESCRIPTION OF THE PIPELINE124

Our pipeline requires three initial pieces of data: a character matrix, a dated phylogeny, and an125

anatomy ontology. To demonstrate the workflow, we use a modified subset of 9 characters (Table 1) and126

87 species from a large-scale phylogeny of Hymenoptera (Sharkey et al., 2012). The character matrix is127

sketched in Fig. 2A, a detailed description is given in the Supplemental Material. Note, the two pairs128

of characters in the matrix {C2,C3} and {C5,C6} are subject to anatomical dependencies (Table 1). For129

reconstructing character histories, we use the dated phylogeny of Klopfstein et al. (2013), and for linking130

characters to the ontology, we use the Hymenoptera Anatomy Ontology [HAO, Yoder et al. (2010)]. In131

this demonstration, we are interested in constructing the amalgamated characters for the AD, BR and EP132

levels of anatomical hierarchy. At the BR level, three main body regions are considered – ”head”, ”legs”133

and ”wings” (Fig. 2B).134

The PARAMO pipeline includes five steps as shown in Fig. 2 and described below. In the Supplemental135

Material, we provide a set of R functions that can be used to implement this pipeline in practice and the136

tutorial (Supp. files PARAMO pipeline.pdf or PARAMO pipeline.Rmd). The pipeline is also available on137

GitHub https://github.com/sergeitarasov/PARAMO.138

Step 1. Initial character matrix (Fig. 2A)139

Workflow140

The first step requires getting or constructing an initial character matrix that codes a set of characters141

for a set of species. In our case this matrix is shown in Fig. 2A, and the character report is given in Table142
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Figure 2. PARAMO pipeline. The panels A-E represent the five steps of the pipeline (see the text). E,
the size of the stochastic maps S4-S9 is reduced for the illustrative purpose. F, three levels of anatomical
hierarchy. Abbreviations: C-character, S - stochastic map, ind. - independent character, dep. and syn. -
hierarchically and synchronously dependent characters respectively.
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1.143

144

Software145

Any software for building character matrices can be used at this step, for example, the popular software146

Mesquite (Maddison and Maddison, 2018).147

Step 2. Incorporating anatomical dependencies: constructing amalgamations at the AD148

level (Fig. 2B)149

Workflow150

The structure of organismal anatomies imposes anatomical dependencies among traits (i.e., the pres-151

ence of digits is dependent on the presence of limbs). Coding anatomical dependencies has been a152

subjective procedure because different experts have different views of how to code dependent trait(s) into153

a character(s). Traditionally, three main coding approaches have been proposed to deal with dependencies:154

(i) one multistate character, (ii) the presence/absence approach, or (iii) the inapplicable approach. Obvi-155

ously, AD traits have to be coded appropriately to avoid undesirable bias and incompatible evolutionary156

states that can negatively affect downstream analyses. The appropriate treatment of anatomical dependen-157

cies is discussed in Tarasov (2019) and is followed in the present pipeline. Thus, at this step, we suggest158

recoding the miscoded AD characters (if there any) from the initial character matrix obtained at Step 1.159

There two main types of dependencies – hierarchical and synchronous – that appear frequently miscoded160

in character matrices. Their proper treatment requires use of different coding approaches (Tarasov, 2019).161

A hierarchical dependency occurs when a hierarchically upstream character controls a downstream162

one. For example, the state present(1) of the character C3(Labrum) controls the presence of both states163

in C3(Position o f labrum), which are inapplicable otherwise (Table 1). The proper way to model this164

dependency is to use structured Markov models with hidden states that can be constructed by amalgamating165

the two characters into one as, for instance, shown in Equation 2; this amalgamation results in the character166

C2,3{00,01,10,11} that can be represented using four states as C2,3{0,1,2,3}; in C2,3 the states {0,1}167

are hidden and correspond to the observable state labrum absent, while the states {2,3} have the same168

meaning as those in C2, respectively. In the character matrix, the hidden states can be scored using169

polymorphic coding as {0&1} (Fig. 2B). Note, Equation 2 uses the independent amalgamation, other170

more complex models can be used to model AD characters as well [see Tarasov (2019)].171

A synchronous dependency usually occurs when a trait is redundantly scored using a binary coding172

scheme. For example, the characters C5 and C6 (Table 1) code the same trait presence of hind wing173

subcostal vein and their character states depend on each other simultaneously: C5 {0} and {1} occur174

when C6 is {1} and {0}, respectively. This synchronous dependency has to be eliminated by combining175

the two characters into a single character C5,6 without changing the state pattern (Fig. 2B).176

The recoding of dependent characters constructs the amalgamated characters at the AD level. If a177

character does not display any dependencies then we treat it as correctly amalgamated at the AD level by178

default. In our demonstrative example, we place the new AD characters in a separate character matrix179

(Fig. 2B) that is used for the downstream steps in the pipeline.180

181

Software182

Currently, there is no software that is be capable to automatize the recoding of the AD characters.183

Obviously, the AD characters can be recode manually using any software for viewing and editing character184

matrices. If the number of the miscoded characters is large, manual recoding must be taken with caution,185

as it may result in errors.186

Step 3. Linking characters to an ontology (Fig. 2C)187

Workflow188

In the next step, characters from the previous step must be linked to their respective term(s) from an189

anatomy ontology. Depending on the scope of a study, the same character might be linked with one or190

more ontology terms. For the needs of the PARAMO approach, the linking requires assigning one or more191

ontology terms to a respective character as shown in Table 2. The ontology terms have to be selected192

to best fit a character statement and the scope of a study. In the demonstration here, we are specifically193

interested in linking the initial characters in a way that facilitates the construction of BD and EP characters.194

195

Software196
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Table 2. Hymenoptera characters linked with HAO terms.

ID Character statement HAO ID HAO ID name

C1 Notch on medial margin of eye HAO:0000234 cranium

C3,2 Labrum + Position of labrum HAO:0000639 mouthparts

C4 Forewing costal and radial vein fusion HAO:0000351 fore wing

C5,6 Hind wing subcostal vein, present HAO:0000400 hind wing

C7 Inner posterior mesotibial spur HAO:0001351 mesotibia

C8 Foretibial apical sensillum HAO:0000350 fore tibia

C9 Metatibial apical sensillum HAO:0000631 metatibia

For PARAMO, character-ontology linking is straightforward methodologically and can be done197

manually by, for example, constructing a table with the two columns – character ID and an ontology term’s198

ID (see Table 2). The linking can be facilitated using R package ontoFAST (https://github.com/199

sergeitarasov/ontoFAST) that provides a graphical interface for selecting terms by navigating200

through ontology.201

Character-ontology linking, sensu this paper, falls into a general area of bioinformatics that focuses202

on annotating phenotypes with ontologies. The recent developments in this area offer comprehensive203

methods for constructing detailed annotations of phenotypes and characters (Dahdul et al., 2018; Dececchi204

et al., 2015; Cui et al., 2016; Balhoff et al., 2013). Such detailed annotations can be constructed in Phenex205

(Balhoff et al., 2010) and used in PARAMO as well.206

Step 4. Inference: linking characters with models and tree (Fig. 2D)207

Workflow208

The goal of this step is obtain stochastic maps for the characters amalgamated at the AD level (Step 2).209

To perform the inference, the characters have to be associated with a dated phylogeny and the respective210

Markov models of trait evolution. Note, that the anatomically dependent characters require structured211

Markov models with hidden states (see Step 2); thus these models have to be appropriately assigned to212

the characters with such dependencies. In our dataset, the only character that requires such model is C2,3.213

The stochastic maps can be obtained in likelihood and Bayesian frameworks. The use of the latter is214

preferable as it provides a convenient way for sampling the stochastic maps from the posterior distribution215

of character histories, which also incorporates uncertainty.216

217

218

Software219

Technically, this step requires creating a data object file(s) for each character that includes the character220

data, model and tree in an appropriate format that can be read by the software used in inference. In the221

present tutorial, we use RevBayes (version 1.0.7) (Höhna et al., 2016) to perform character inference222

and generate stochastic maps. The creation of the data files for RevBayes is automatized using R scripts223

(Supplemental Material).224

Step 5. Ontology-informed amalgamation of the stochastic maps for AD, BR and EP225

levels (Fig. 2E)226

Workflow227

Our ultimate goal is to construct the amalgamated characters for the AD, BR and EP levels of the228

anatomical hierarchy (Fig. 2E). The stochastic maps generated at the previous step are the individual229

characters of the AD level. The construction of the BR level characters implies the ontology-informed230

amalgamation of the AD level maps that can be done using a RAC query and the characters linked with231

the ontology in Step 3. In our example, for each of the focal BR terms (”head”, ”legs”, wings”), the RAC232

query returns a set of the associated initial characters and their stochastic maps. Next the stochastic maps233

are used to produce the amalgamated BR characters. The construction of the EP level character is similar234

to that of BR, but requires amalgamation of all available initial characters.235

As soon as the amalgamations are done, this step culminates the pipeline. In the next section, we236

discuss the use of the amalgamations for addressing various biological questions.237
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238

Software239

The RAC query is implemented in R using OntologyIndex package (Greene et al., 2017) and a set of240

PARAMO functions. The paramo() function in the provided PARAMO scripts performs the ontology-241

informed amalgamation of the stochastic maps.242

DISCUSSION243

The PARAMO pipeline allows users to appropriately incorporate anatomical dependencies and con-244

struct characters for phenotypic entities that consist of ensembles of discrete traits. This is achieved245

through ontology-informed amalgamation of stochastic maps, which allows tracking of evolution at differ-246

ent levels of the anatomical hierarchy – individual characters, body regions (BR) and entire phenotype (EP)247

(Fig. 2F). Our approach can be applied to a dataset of virtually any size, for example one with hundreds or248

thousands of characters. Ontology-informed amalgamation at the BR and EP levels represents each entity,249

usually described by numerous individual characters, as a single multistate character (=single-character250

representation).251

In this paper, we assume that initial characters evolve independently (except those which are anatom-252

ically dependent) and hence use independent amalgamation of their stochastic maps. It is known that253

evolution of morphological characters might be subjected to correlations or more complex scenarios of254

state changes due to hidden intrinsic or extrinsic factors, which cannot be modeled by the independent255

amalgamation. In this case, more complex models of trait evolution that incorporate non-anatomical corre-256

lations (Pagel, 1994) or hidden states (Beaulieu et al., 2013; Tarasov, 2019) can be also used in PARAMO.257

Similar to modeling anatomical dependencies, these models require appropriately structured rate matrices258

constructed for a focal set of initial characters at Steps 2 and 4. The application of hidden state models is259

straightforward in PARAMO – a separate hidden model can be assigned to each individual character in the260

same way the traditional models were used in the provided demonstrative example. In contract, modeling261

non-anatomical correlation has limitations – it would work well if the focal sets of characters are relatively262

small that allows using computationally manageable amalgamated rate matrices. However, if the focal263

sets are large then the amalgamations produce gigantic and computationally intractable matrices thereby264

precluding the use of the character correlations models. Thus, we emphasize that our method does not265

resolve the problem of modeling character correlations in morphological dataset to full extent.266

Like traditional ancestral state reconstruction, the ancestral states can be also inferred for entire267

organismal anatomy or its parts through single-character representation. In this case, the states in a large268

composite BR or EP character correspond to a combination of states from the initial characters that269

form BR or EP. Note, such integrative reconstruction is similar to the traditional character-by-character270

reconstruction because PARAMO uses independent amalgamation of stochastic maps.271

The advantage of PARAMO approach is that the single-character representation of BR or EP opens up272

new avenues for comparing and assessing the dynamics of phenotypic radiations and diversifications. As273

a response to novel extrinsic or intrinsic factors, a phenotypic radiation may occur by rapidly diversifying274

an adaptive trait, inherited from a common ancestor, into a diversity of new forms in the ancestor’s275

descendants. A well-known example of this radiation are Darwin’s finches, which evolved a remarkable276

diversity of beak shape and functionality. Almost always, such a radiation represents an ensemble of277

characters that are located on the same or functionally similar body regions. Other body regions (in the278

same or different species) may also undergo radiations triggered by different factors and coded by their279

own ensembles of characters. Apparently, these varying ensembles preclude a consistent identification280

and assessment of phenotypic radiations. In contrast, single-character representation of BRs avoids this281

problem and may provide insight into the timing, location (clades) and number of phenotypic radiations282

occurring across a phylogeny. In this respect, each BR character is a stochastic map showing state changes283

in a tree where the number of changes over a branch (or time interval) reflects the evolutionary rate of284

the BR character in that branch – in other words, the more changes the faster the rate. The per-branch285

rate estimates can be used to determine rate shifts in the BR character and identify the timing of an286

evolutionary radiation. The same approach applied to a set of BRs can be used to map different phenotypic287

radiations onto the phylogeny. Obviously, any organism has many BRs that are hierarchically structured288

due to the nature of the anatomy. Ontology-informed amalgamation can generate characters for all289

potential BRs, thereby allowing to study phenotypic radiations hierarchically [see Slater and Friscia290

(2019)]. Additionally, the single-character representation of EP can be used to identify rate shifts in the291
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entire organismal anatomy and address questions on tempo and mode of its evolution. Thus, PARAMO292

can be used to disentangle evolution of phenotypes across tree and body regions. Unfortunately, by far,293

identification of rate shifts using amalgamated stochastic maps requires new statistical methods. Their294

development is beyond the focus of present study but we anticipate their emergence in near future.295

The decades of systematists’ effort have generated thousands of datasets (see Phenoscape (Mabee296

et al., 2012) and Morphobank (O’Leary and Kaufman, 2011)), that score morphological characters for297

numerous clades across the Tree of Life. Frequently, these morphological data become forgotten shortly298

after publishing a phylogenetic tree they were used to construct. The PARAMO approach and anticipated299

further development in this area provide a new dimension for analyzing these data, which, as we believe,300

will aid understanding of how phenotypes evolve.301
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K. M., Aspöck, U., Aspöck, H., et al. (2014). The evolutionary history of holometabolous insects in-357

ferred from transcriptome-based phylogeny and comprehensive morphological data. BMC evolutionary358

biology, 14(1):52.359

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for360

Statistical Computing, Vienna, Austria.361

Ramı́rez, M. J. and Michalik, P. (2014). Calculating structural complexity in phylogenies using ancestral362

ontologies. Cladistics, 30(6):635–649.363

Sauquet, H., von Balthazar, M., Magallón, S., Doyle, J. A., Endress, P. K., Bailes, E. J., de Morais, E. B.,364
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