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ABSRTRACT 

Circular (circ) RNAs have recently emerged as a novel class of non coding transcripts 

whose identification and function remain elusive. Among many tissues and species, the 

mammalian brain is the organ in which circRNAs are more abundant and first evidence 

of their functional significance started to emerge. Yet, even within this well studied 

organ, annotation of circRNAs remains fragmentary, their sequence is unknown and 

their expression in specific cell types was never investigated. Overcoming these 

limitations, here we provide the fist comprehensive identification of circRNAs and their 

expression patterns in proliferating neural stem cells, neurogenic progenitors and 

newborn neurons of the developing mouse cortex. Extending the current knowledge 

about the diversity of this class of transcripts by the identification of nearly 4,000 new 

circRNAs, our study is the first to provide the full sequence information and expression 

patterns of circRNAs in cell types representing the lineage of neurogenic commitment. 

We further exploited our data by evaluating the coding potential, evolutionary 

conservation and biogenesis of circRNAs that we found to arise from a specific sub-class 

of linear mRNAs. Our study provides the arising field of circRNA biology with a 

powerful new resource to address the complexity and potential biological significance of 

this new class of transcripts. 

 

INTRODUCTION 

In the last few decades, the field of RNA biology has witnessed impressive developments. 

Fuelled by new sequencing technologies, these included the comprehensive annotation of 

micro and long non-coding (lnc) RNAs in various organisms and tissues, the characterization 

of RNA modifications and the new field of epitranscriptomic and the discovery of an entirely 

new class of non coding RNAs: circular (circ) RNAs 1. 

CircRNAs are transcripts whose 3’ and 5’ ends are covalently linked in a non-linear 
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manner resulting in a so-called backsplice junction 2,3. The lack of a 3’ poly(A) tail and 5’ 

capping provides this class of RNAs resistance to exonuclease activity and, thus, an average 

longer half-live as compared to linear RNAs 4-6. Transcripts with these characteristics have 

long been known but until recently circRNAs were primarily found in viruses 7 and although 

some reports indicated their origin also from eukaryotic genomes 8-10 these were still 

considered a rarity or a byproduct of splicing with no specific function. This view was 

completely changed very recently after the identification of thousands of circRNAs including 

some with regulatory functions during brain development 6,11-14. 

Despite their abundance, predicting circRNAs remains burdensome and typically relies on 

bioinformatic tools identifying sequences across backsplice junctions from RNA sequencing 

data obtained upon depletion of ribosomal RNA 15. Although this has resulted in the 

prediction of thousands of potential circRNAs in cell lines or whole organs of many species 

6,11,13,16-19, this approach based on ribosomal RNA depletion has the critical limitation that 

reads that do not map on a backsplice junction cannot be assigned to a circular, as opposed to 

a linear, transcript resulting in the exclusion of the overwhelming majority of the sequencing 

data. In turn, this makes it impossible to reliably reconstruct neither the full sequence nor the 

expression level of large pools of circRNAs. Overcoming these limitations, the use of the 

exonuclease RNase R triggers the digestion of linear RNAs thereby allowing the isolation of 

circRNAs 4. To date, this strategy was applied to a few cell lines or whole organs 6,16,20-22 but 

the expression patterns of circRNAs in specific cell types in physiological conditions is not 

known and a comprehensive reconstruction of their sequence is yet to be reported. 

In addition to a poor classification, barely a handful of circRNAs have been suggested to 

be functionally relevant. For example, and beside their use as biomarkers in various diseases 

from cancer to diabetes 23-26, a study concluded that at least some circRNA, such as 

circZNF609, may retain coding potential 27. Additionally, Drosophila’s circMbl was found to 

interact with MBL protein resulting from the linear form of the same transcript 20. Finally, 
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and perhaps as the only circRNA-mediated molecular mechanism underlying a specific 

cellular effect, Cdr1as/ciRS-7 was shown to act as a sponge for miR-7 during development 

12,13 and its depletion altered synaptic transmission in adulthood 14. 

From these and other studies, it emerged that the mammalian brain is the organ most 

enriched in circRNAs 28,29. Hence, given the scarce knowledge about circRNA function and 

lack of studies reporting their sequence and expression in specific cell types, we here decided 

to exploit a double reporter mouse line previously characterized by our group and allowing 

the isolation of proliferating neural stem cells, neurogenic progenitors and newborn neurons 

based on the combinatorial expression of RFP and GFP, respectively 30.  

Specifically, during cortical development, proliferative progenitors (PP) progressively 

switch from divisions that expand their population to divisions that generate more committed, 

differentiative progenitors (DP), which in turn are consumed to generate newborn neurons 

(N) 31,32. Hence, to identify the three coexisting subpopulations of PP, DP and N during 

mouse corticogenesis, our group has generated a double reporter mouse line expressing i) 

RFP under the control of the Btg2 promoter and identifying the switch of PP to DP and ii) 

GFP under the control of the Tubb3 promoter as a marker of newborn N 30. Validating this 

approach, the combinatorial expression of the two reporters allowed the isolation of PP 

(RFP–/GFP–) from DP (RFP+/GFP–) and N (GFP+, irrespective of RFP) and identification 

and validation of transcription factors and lncRNAs functionally involved in neurogenic 

commitment 30,33,34. Hence, we decided to further exploit this mouse line and provide the 

arising field of circRNA biology with the first resource identifying circRNAs sequence and 

expression patterns in specific cell types of the developing mammalian cortex. 

 

RESULTS 

Comprehensive identification of cell type-specific circRNAs of the mouse cortex To 

identify cell type-specific circRNAs we FAC-sorted PP, DP and N, each in three biological 
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replicates, from the mouse cortex at embryonic day (E) 14.5 as previously described 30. Total 

RNA was then treated with RNase R to degrade linear RNAs, which we found to be very 

efficient in reducing the levels of linear transcript down to undetectable levels even among 

those with the highest expression levels and most stable predicted secondary structure 

(Figure S1A). This was then followed by 150 bp single-end, strand-specific, high-throughput 

sequencing. Reads were then aligned to the reference mouse genome (mm9) and unmapped 

reads used to identify the circularizing, backsplice junctions predictive of putative circRNAs 

(Figure S1B).  

As a first step to assess the sequence of circRNAs and their expression in cortical cell 

types, we collected their genomic coordinates putting together all replicates of PP, DP and N 

and obtaining an initial set of 6,033 putative circRNAs (Figure 1A). Then, according to their 

genomic locations, we selected genic transcripts whose start and end sites coincided with the 

annotated start and end site of an exon and separated them from the remaining transcripts that 

included genic transcripts with ends not coinciding with exons, antisense or intergenic ones 

(Figure S1D). Within the former, we separated sequences belonging to introns from exons 

while the latter were considered as a single exon. Finally, we calculated the relative RPKM 

value of each intron and exon (Figure 1A and Materials and Methods).  

Given the need to establish an unbiased minimum threshold of RPKM to define 

“expression”, we next selected 10 predicted genic circRNAs from our dataset including 6 that 

were not described by previous studies. We then cloned and sequenced these circRNAs from 

RNase R-treated lysates from the E14.5 mouse lateral cortex and found that in all cases the 

predicted exon(s) (2-15 for each circRNA; 45 in total) were included in their sequence while 

not a single intron (35 in total) could be detected (Figure 1B). Hence, we chose the highest 

RPKM value previously calculated among these predicted, but not detected, introns as a 

minimum threshold to define expression (RPKM>5.5). As a result, this allowed us to redefine 

among the original list of 6,033 putative circRNAs the 5,281 fulfilling our criteria for 
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expression (File S1). Furthermore, we selected form this list 6 genic circRNAs for which 

introns were predicted as part of their sequence and designed divergent primers to validate 

their existence. Again, while confirming the presence of exons in these circRNAs, we were 

unable to confirm intronic sequences (Figure S1C) leading us to conclude that our list of 

genic circRNAs are primarily exonic and that reads mapping on intronic locations may derive 

from lariats. 

Next, as a validation of our approach, we selected 30 circRNAs among this list of 5,281 

including 9 belonging to the bottom 30% and 4 to the bottom 10% in expression levels. 

Subsequent RT-PCRs were performed from the E14.5 mouse cortex, with or without RNase 

R treatment, using either divergent primers spanning over the backsplice junctions (Figure 

S1E) or convergent primers for 2 linear transcripts used as internal negative control of the 

RNase R treatment (GAPDH and Ezh2LIN). This confirmed the presence of the vast majority 

(80%) of the selected circRNAs (Figure 1C). Importantly, failure to detect some circRNAs 

was independent from their predicted expression levels pointing out more a suboptimal 

choice of primers than false positives in our analysis. From here, we then reconstructed the 

comprehensive list, sequence and expression levels of the 5,281 circRNAs detected in PP, DP 

and N and representing the neurogenic lineage during corticogenesis that we named CiCo for 

CircRNAs of the mouse Cortex (Figure 1A and File S1).  

We next compared CiCo with the most complete resource of circRNAs available: circBase 

35. In particular, due to the stage- and tissue-specific expression of circRNAs, we selected 

from circBase murine circRNAs predicted from whole embryos and brains. Considering total 

or partial overlaps, down to the single nucleotide, as known circRNAs we found that our 

dataset extended the list of known circRNAs by nearly 3-fold adding to the ~1,900 transcripts 

of circBase ~3,700 new circRNAs of CiCo (Figure 1D) for a total of ~5,600 unique 

circRNAs (Figure 1E). As previously shown in the case of lncRNAs 30,33, this high rate of 

novel circRNAs found in our study relative to previous reports highlights the power of cell 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 18, 2019. ; https://doi.org/10.1101/553495doi: bioRxiv preprint 

https://doi.org/10.1101/553495


	 7	

type-specific analyses allowing the identification of transcripts enriched in specific cell 

populations and being diluted out when considering bulk tissues or whole organs. In turn, this 

suggests a new layer of complexity in circRNA biology as these appeared to be not only 

stage- and tissue-specific, but also within the same developmental stage and tissue, to retain 

highly specific expression in individual cell types, which we sought to dissect next. 

 

General features and differential expression of CiCo Previous studies reported that ~80% 

of the predicted circRNAs overlap in the sense strand with genes 6,11,13. In our dataset 96% of 

the expressed sequences overlapped genes with the remaining 4% including either antisense 

or intergenic circRNAs (Figure 2A). This seemed in contrast with the similar proportion of 

sense and antisense transcripts among lncRNAs 36, which can be explained by the overall 

lower expression of this class of transcripts biasing against the detection of circRNAs derived 

from them. Regarding length distribution and exon density, we found that most circRNAs 

(90%) were less than 1 kb long, primarily 250-500 bp, and including on average 2-3 exons 

(Figure 2B). As expected, a linear correlation was found between the length of circRNAs 

and the number of exons that they included with no specific bias in their distribution across 

or within chromosomes (data not shown). 

Next, we analysed CiCo’s expression profiles of PP, DP and N. In particular, we focused 

on the differentially expressed circRNAs considering a 50% threshold (i.e. a fold change 

(FC) by ≥1.5 or ≤0.67 for up- or down-regulation, respectively) (Figure 2C). While a 

substantial proportion (42%) of circRNAs showed no significant change in expression among 

cell types, subdividing differentially expressed circRNAs into the possible patterns of up- or 

down-regulation during the neurogenic lineage revealed a distribution that was remarkably 

similar to that found in linear transcripts 30 (Figure 2C). In addition, when analysing the 

biological functions and processes of the parental genes enriched in each group, we found 

that circRNAs up-regulated during neurogenesis were primarily associated to synaptogenesis 
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and neuronal development. Conversely, down-regulated circRNAs were associated to cell 

cycle and regulation of transcription (data not shown).  

Among transcripts showing specific expression patterns, an intriguing group of circRNAs 

emerged that was transiently up- or down-regulated specifically in DP compared to both PP 

and N (69 and 182, respectively) (Figure 2C). As previously shown by our group 30, these 

patterns of expression account for a small, underrepresented proportion of differentially 

expressed transcripts (1-2%). Yet, at least among mRNAs and lncRNAs, many from this 

small subset of genes revealed to play key roles in corticogenesis 30,34 raising the possibility 

that this also applies to circRNAs here identified for the first time. 

 

Properties of circRNAs: miRNA-sponging potential, translation and evolutionary 

conservation Our novel assessment of the sequence of circRNAs gave us the possibility to 

gain new insights into their putative function(s). Since sponging of miRNAs by Cdr1as was 

the first suggested role for a circRNA 12,13, we searched within CiCo for miRNA seed 

sequences. When assessing the highest possible number of seed sequences present in any 

given circRNA that would potentially target any given miRNA, we found a very broad range 

of sponging properties reaching up 99 seeds in Cdr1as (CiCo ID 006933) for miR-7b and 

including one seed for miR-671, as previously described 13. Despite this extreme example, 

only a handful of circRNAs displayed a number of seeds for a single miRNA that exceeded 5 

(Figure 3A). Moreover, since this analysis did not account for the potential of circRNAs to 

sponge more miRNAs independently from the number of seeds targeting each individual 

miRNA, we identified in CiCo ID 006344 the circRNA with the most predicted seeds for a 

total of nearly 1,400 miRNAs of which 4 (miR-1187, 466i, 466k and 669c) with a 

remarkably high number of seeds (46, 43, 37 and 30 respectively; Figure 3A and File S1). 

However, such a high promiscuity in miRNA binding sites and limitations in the 

bioinformatic tools to predict sponging properties makes it difficult to infer the biological 
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significance of this circRNA. 

In addition to miRNA sponging, a recent study has suggested that at least one circRNA, 

circ-ZNF609, is translated into a peptide 27. Hence, we searched for ORFs among all 

circRNAs and found that a remarkably high proportion (nearly 4,000; i.e. >70%) contained at 

least one putative ORFs with ≥150 nt in length (Figure 3B, left). To increase our confidence 

in this result, we assessed the Codon Adaptation Index (CAI) measuring the relative codon 

usage as a function of gene expression 37. To this end, we used CAIcal 38 to compute the 

index of each predicted ORF within circRNAs and referred this to the expected value 

calculated from a pool of 500 shuffled sequences reflecting the whole ORF population 

(eCAI=0.748) that was used as a significance threshold. We found that 68% of all predicted 

ORFs and belonging to ~50% of all circRNAs had an index higher than expected (Figure 3B, 

right) raising the possibility that these are potentially translated. However, 96% of CiCo’s 

sequences derive from coding genes implying that this abundance of ORFs might simply 

reflect their sharing of some, if perhaps not all, the features of coding genes. To assess this, 

we repeated our analyses (ORF prediction and CAI calculation) but this time considering 

random sequences generated not only from the entire genome but also from the coding 

transcriptome as two independent negative controls. Although we could find a comparable 

number of putative ORFs from CiCo and our two negative control datasets (6,375, 3,520 and 

4,742, respectively), only 48% of all random genomic ORFs and 61% of the transcriptomic 

ones were found to have a CAI value above the eCAI thresholds. Remarkably, when 

comparing the fraction of significant and non-significant ORFs within CiCo with the two 

control datasets, we found highly significant differences with both (Chi-squared test, two-

tailed pval<0.001) (Figure 3B, right) suggesting that the coding potential of CiCo is not only 

an inherited feature resulting from their origin from coding genes but might potentially 

account for their function. 

We next assessed the evolutionary conservation of CiCo. To this end, we considered not 
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only the sequence of the mature circRNAs but also their flanking regions (200 bp up- and 

down-stream) as these are important for their biogenesis 6,20. Again to obtain an appropriate 

reference as negative control, we generated for each circRNA and flanking regions a random 

sequence of the same size and reflecting the features of such circRNA. Specifically, we used 

any random genomic region for intergenic circRNAs or transcriptome-specific and intronic 

sequences for genic circRNAs and their flanking regions, respectively. We next computed the 

average conservation score of all these regions making use of the phyloP score (a per-base 

value obtained by the alignment of murine genome against 30 other vertebrates, UCSC 39) 

and compared it with the one calculated for the respective random sequences. We found that 

genic circRNAs were more conserved than their reference random sequences and that despite 

an average lower conservation score their flanking regions were also significantly more 

conserved (Figure 3C; top). As this again can be influenced by circRNA origin from coding 

genes, we next assessed the conservation of the subgroup of intergenic circRNAs that, by 

definition, are not overlapping any annotated gene. Strikingly, both the circRNAs themselves 

as well as their 200 bp up- and down-stream regions were also significantly more conserved 

than their random counterparts (Figure 3C; bottom). Hence, similarly to their coding 

potential, the conservation of circRNAs seems not only an inherited feature resulting from 

their sharing of sequences with coding mRNAs but may actually reflect their function. 

 

CircRNA biogenesis is independent from alternative splicing Finally, since nearly all 

(96%) CiCo transcripts are overlapping genes, we asked if the abundance of circRNAs 

correlated with that of their respective linear mRNA, which could reveal the mechanisms 

underlying their biogenesis. In this context, we sought alternative mechanisms by which 

biogenesis of circRNAs may be controlled. We speculated that this may occur at the level of 

transcription by the synthesis of different pre-RNAs that ultimately mature into circular, 

rather than linear, transcripts. Alternatively, a circular or linear RNA may result by splicing 
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of a single pre-RNA precursor. Although not mutually exclusive, the two mechanisms may 

occur either un-specifically without any regulation at the level of individual transcripts or cell 

types or, alternatively, only apply to a specific sub-class of genes. Ultimately, distinguishing 

between these possibilities may help understanding the biological significance of circRNAs. 

To this end, we took advantage of the previous poly(A) transcriptome assessment of PP, 

DP and N reported by our group 30,33 and compared the expression levels of each circRNA 

and its corresponding linear counterpart in each cell type. We found a strong positive 

correlation between the expression of mRNAs and circRNAs (Pearson’s score ~0.8 in all cell 

populations) (Figure 4A) implying that an increase in a circRNA did not result in a decrease 

in its linear form. This in turn led us to reject the hypothesis of regulation at the level of 

transcription of different pre-RNAs. Next, if synthesis of a circular versus linear RNA should 

be regulated by splicing from a common transcript, then an increase in such circRNA should 

inversely correlate with the usage of the exon(s) in common with the linear transcript. To 

assess this, we performed differential exon usage analyses of PP, DP and N (to be described 

elsewhere) and assessed whether exon(s) used in common by both a circular and linear 

transcript would display an inverse FC from one cell population to the following (e.g. from 

PP to DP and from DP to N). Surprisingly, barely 0.5% of all circRNA-exon pairs showed an 

opposite FC pattern with regard to their linear counterparts while the vast majority shared the 

same pattern of either up- or down-regulation (Figure 4B). In turn, this questioned a 

mechanistic link between mRNA splicing per se and circRNA biogenesis. To address this, we 

next selected all genes resulting in the expression of at least 2 linear isoforms resulting from 

alternative splicing as one specific mechanism of splicing and investigated what proportion 

of circular RNA was produced among these genes. We found that only 49% of circRNAs 

were generated from alternatively spliced genes and that among these only ~0.2% shared the 

very same exon(s) in all three cell populations (Figure 4C). 

Taken together, our data indicate that the overall expression of circRNAs correlates with 
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that of their linear RNAs but is not a by-product limited to transcripts and exons undergoing 

alternative splicing and, hence, can be regulated independently by mechanisms that are still 

unknown. 

 

DISCUSSION 

Here, we provided the arising field of circRNA biology with the first resource describing 

their sequence and cell-specific expression during mammalian cortical development. This has 

allowed us to increase by 3-fold the number of circRNAs currently known pointing out their 

full diversity and specificity in cell populations representing the lineage to neurogenic 

commitment. More importantly, our work has allowed us to reveal novel features of these 

elusive transcripts that are important to infer their significance and that could not be deduced 

based on the previous knowledge of backsplice junctions alone. 

We found that genic circRNAs are primarily composed by exons of genes encoding for 

mRNAs or lncRNAs and that a strong correlation existed in the levels of expression of 

circular and linear pairs of transcripts. Our data were inconsistent with both the synthesis of 

circular-specific, pre-RNAs during transcription as well as the involvement of alternative 

splicing as a mechanism underlying their biogenesis. While more studies are needed to 

address these aspects, certain features emerging from our study seemed to support the notion 

that circRNAs may be a generic by-product of splicing while others highlighted their 

specificity both in terms of biogenesis and putative biological significance. To start with, 

CiCo transcripts were found to derive only from a specific group of linear transcripts and 

consistently included certain exons but not others. In addition, both the coding potential and 

evolutionary conservation of CiCo revealed to be much higher than expected by chance even 

after accounting for their origin from coding exonic regions.  

While it is clear that a significant proportion of circRNAs might nonetheless lack function 

despite these features, our study provides the field with a new resource for the identification 
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of biologically relevant circRNAs fuelling future studies on the molecular mechanisms 

underlying their regulation and function. 

 

MATERIALS AND METHODS 

Animal care, cell sorting and RNA extraction Animal experiments were approved by the 

Landesdirektion Sachsen (24-9168.11-1/41 and TVV 39/2015) and carried out in accordance 

with the relevant guidelines and regulation. Pregnant Btg2RFP/Tubb3GFP double heterozygous 

mice were anaesthetised with isoflurane and sacrificed through cervical dislocation. Brains 

from E14.5 embryos were collected and the lateral cortex isolated after removal of the 

meninges and ganglionic eminences. The Neural Tissue Dissociation Kit with papain 

(Miltenyi Biotech) was used according to the manufacturer’s protocol to obtain a cell 

suspension for FAC-sorting or RNA extraction. Cells were resuspended in ice cold PBS and 

supplied with 10 µl of 7-AAD to assess cell viability (BD Pharmigen) and sorted with a BD 

Aria III FACS as previously described 30. Sorted cells were collected in PBS, centrifuged 

(2000 rpm, 5 min) and RNA extracted using the Quick RNA Mini Prep (Zymo Research) 

according to manufacturer’s protocol.  

 

CircRNA sequencing, annotation and validation Total RNA was denatured for 3 min at 

70˚C, RNase R (Epicentre) treated for 1 h at 40˚C and supplied with DNase I (Invitrogen) 15 

min at room temperature. The reaction was then cleaned with RNA Clean & Concentrator 

(Zymo Research) and cDNA libraries prepared using the NEB Next Ultra Directional RNA 

Library Prep Kit without mRNA enrichment. Effectiveness of RNase R treatment was 

assessed by qRT-PCR of 6 transcripts with the highest free energy per nucleotide in their 

most stable predicted secondary structure according to RNAfold (-p --noLP --temp=40; 

primers in Table S1C). Samples were sequenced on an Illumina HiSeq 2500 with a read 

length of 150 bp that were aligned using gsnap 40 and mm9 as reference genome. Quality was 
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evaluated by the percentages of mapped and unmapped reads yielding similar values to the 

only comparable study reported to date 6 (Figure S1B). To predict putative circRNA, 

unmapped reads were retrieved and then analysed using the “find_circ” pipeline (version 1) 

with default parameters 13. No filter was applied on the number of reads identifying the 

circularising junction. For the genomic location, predicted circRNAs were overlapped with 

mouse ENSEMBL Genes (v67 41) and considered them genic when their start/end base 

coincided with the start/end of annotated exon(s). circRNA overlapping genes but with other 

start/end points were grouped together with intergenic and antisense ones (Figure 2A, termed 

as “other”). Overlap with circBase was done using bedtools 42 and intersecting predicted 

circRNAs with the .bed file for mouse 35. Different levels of minimal reciprocal overlap were 

set within bedtools options to take into account also single-nucleotide overlap between data. 

For validation, 1µg of total RNA from un-sorted lateral cortex was treated as described 

previously for sequencing, with one sample digested either with RNase R or water and then 

converted into cDNA using 200 U of reverse transcriptase and 50 ng of random hexamers 

according to the SuperScript III (Invitrogen) kit. This cDNA was diluted 1:10 and 1 µl used 

as PCR template with divergent primers designed with Primer3 43 and spanning over the 

circularising junction. All primer pairs were tested with the In-Silico PCR tool from UCSC to 

minimize by-products 44 (primers in Table S1A). 

 

Sequence prediction, differential expression and conservation First, exonic and intronic 

sequences of previously annotated genic circRNAs were separated. Next, we retrieved the 

coordinates of these exon(s) from ENSEMBL Genes (v67 41), while intron coordinates were 

obtained through command line starting from the exonic ones. circRNAs annotated as 

intergenic, antisense or genic with unusual start/end points were considered as a single exon. 

Exonic and intronic coordinates were kept separate and featureCounts 45 run using as 

reference files the exon and the intron coordinates to obtain a per-feature read count on which 
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RPKM values were calculated as follows: !"#$ = !"#$ !"#$%
!
!

, where:  ! = !"#$%$& !"#$ ∗

10!! and ! = !"#! !"#$%ℎ ∗ 10!!. Since validation and cloning was performed on RNA 

from the total lateral cortex, RPKM values per circRNA were summed and not averaged. 

Threshold for expression was set as the highest RPKM of predicted, but not detected, introns 

within 10 validated circRNAs with additional 6 circRNA used to validate the absence of 

introns from which we redefined the set of expressed features (primers in Table S1B and D). 

For the differential expression analysis, we run again featureCounts 45 using the set of 

expressed features as reference and specifying a meta-feature count to automatically sum the 

reads from different features of the same circRNA. The resulting table was analysed with 

DESeq2 46 considering fold changes by ≥1.5 or ≤ 0.67 (no FDR applied). Clustering analysis 

was used to evaluate enriched terms using DAVID 47. Finally, circRNA conservation was 

assessed by computing the phyloP score for the expressed sequence as well as for 200 bp up- 

and down-stream of each circRNA. To compare our sequences, we generated a shuffled 

version with the same sizes using bedtools (shuffleBed) and accounting for their genomic 

location. In particular, for genic circRNAs the shuffled sequences were obtained from a 

reference file that included exons and/or introns as appropriate and derived from ENSEMBL 

(v67). In the case of intergenic circRNAs (both sequence and flanking regions), the shuffled 

sequences were chosen from the entire genome. BEDOPS 48 was used to sort regions per 

genomic location and to split into a per-base coordinates file. BEDOPS was again used to 

retrieve the per-base phyloP score from the UCSC table containing the conservation score for 

mouse vs 30 vertebrate genomes (phyloP30wayAll). For shuffled sequences relative to genic 

circRNAs, we built a custom phyloP score table in which the values relative to either exons 

were included. We finally reconstructed the score per sequence by averaging the phyloP 

values for each circRNA. These steps were performed for all files (original and shuffled 

sequences).  
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Prediction of miRNA seeds, ORFs and exon usage correlation Seed prediction was 

performed using miRanda 49 with default parameters and with input the FASTA file for the 

circRNA sequences obtained with bedtools (getfasta, with the expressed feature coordinates 

file as input) and miRBase-downloaded mouse mature miRNA sequences (v22) 50. The 

output generated was then parsed to a more manageable form and the seed category was 

added according to Bartel 51. To count the number of seed for each miRNA present on a 

circRNA, we first subset the parsed miRanda output by seed category (removed everything 

that did not have a recognized seed type), alignment score (≥ 150) and by free energy (∆G≤–

19) 51 then we counted and reported the number of unique miRNA-circRNA combination and 

sorted by number of occurrences (top to bottom). We predicted the presence of ORF using 

the standalone version of NCBI’s ORFfinder 52 using the FASTA sequences of the expressed 

circRNA features as input. We restricted the search by requiring a minimum ORF length of 

150nt and setting the start codon as ATG only; we also ignored nested ORFs and searched 

only on the strand of the sequence itself. We then supplied the resulting sequences to the 

CAIcal web-server 38 together with the Codon Usage for mouse 53. Expected CAI value 

(eCAI) was calculated several times using the Markov method with 95% of confidence and 

the final value obtained by averaging all the calculated ones. As controls, we generated two 

shuffled dataset using as reference either the entire genome or the transcriptome only. For 

this two control datasets, the same ORF prediction and CAI calculation were performed. 

Differences of our dataset with the two control ones were assessed through Chi-squared test 

with one degree of freedom. Exon usage data were obtained by poly(A) enrichment and PE 

sequencing of our 3 cell population (to be reported elsewhere). For the full mRNA we 

selected the RPKM values for the linear corresponding to the circRNAs. For linear versus 

circRNA expression, we computed the average RPKM for each cell population and compared 

the log2(RPKM), plotting their relative abundance and computing an overall Pearson’s 
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correlation score. In case of linear exon versus circRNA, the corresponding read counts were 

analysed with DESeq2 to compute the FC of the exon shared by circRNAs and linear 

transcript. 

 

Data availability. All custom scripts can be obtained upon request. Sequencing data 

generated during the current study are available at GEO repository (GSE117009). 
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FIGURE LEGENDS 

Figure 1. circRNA prediction, sequence determination and validation (A) Strategy for 

the identification of circRNAs and determination of their sequence and expression in cortical 

cell types. (B) DNA gel electrophoresis upon PCR amplification of 10 circRNAs identified as 

in A. Full gels are available in Supplementary Figure S2. Note the detection of bands with a 

molecular weight consistent with the expected exonic, but not intronic, regions. (C) Graph 

representing the cycle threshold (Ct) values upon RT-PCR of total RNA from the E14.5 

mouse cortex, with or without a prior treatment with RNase R (as indicated) and using 

divergent primers for 30 predicted circRNAs and linear and circular controls (red dashed 

line). Dashed black line indicates the Ct threshold of detection. N=2, n=3; bars=SDs (* 

p<0.05; ** p<0.01; *** p<0.001; Student’s t-test). (D) Distribution of CiCo’s entries 

overlapping circRNAs deposited in circBase and (E) Venn Diagram representing the 

proportion of circBase- and CiCo-specific circRNAs as well as common ones. 

 

Figure 2. General features of CiCo (A) Number and proportion of CiCo and their genomic 

features almost completely (96%) from genic regions. (B) Length (left) and exon number (for 

genic transcripts, right) distribution of circRNAs. (C) Differential expression (50% i.e.: FC 

≥1.5 or ≤0.67; no FDR being applied) of CiCo expressed in PP (grey), DP (red) and N 

(green). Abundance and proportion of circRNAs detected in each cell type are indicated and 

represented proportionally to the area of circles and pattern of expression. 

 

Figure 3. Seed sequences, coding potential and evolutionary conservation of circRNAs 

(A) Distribution of the maximum number of seed sequences for a miRNA found across CiCo. 

Note that the overwhelming majority of circRNAs only displayed few (1-4) seeds. (B) Total 

ORFs (left) and proportion of those with a CAI value above expected (right) found in CiCo 

or random control datasets (*** p<0.001; chi-squared test). (B) Whiskers-box plots showing 
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the distribution of phyloP scores for CiCo sequences (orange) and relative shuffled controls 

(grey) (** p<0.01; *** p<0.001; Student’s t-test). 

 

Figure 4. CiCo relation to linear transcripts (A) Scatterplot log2(RPKM) of CiCo and 

mRNA counterparts in cell types (colours as in Figure 2C). R2 for each regression line are 

indicated. (B) Number and proportion of circRNAs having either an opposite or the same FC 

pattern as the exon of the linear counterpart (50% i.e.: FC ≥1.5 or ≤0.67; no FDR being 

applied; colours as in Figure 2C). (C) Number of expressed circRNAs that result from 

differentially spliced genes during the neurogenic lineage. 
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