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Abstract

Gene-set analyses measure the association between a disease of interest and a set of genes related to
a biological pathway. These analyses often incorporate gene network properties to account for the differ-
ential contributions of each gene. Extending this concept further, mathematical models of biology can be
leveraged to define gene interactions based on biophysical principles by predicting the effects of genetic
perturbations on a particular downstream function. We present a method that combines gene weights
from model predictions and gene ranks from genome-wide association studies into a weighted gene-set
test. Using publicly-available summary data from the Psychiatric Genetics Consortium (n=41,653; ∼9
million SNPs), we examine an a priori hypothesis that intracellular calcium ion concentrations contribute
to bipolar disorder. In this case study, we are able to strengthen inferences from a P-value of 0.081 to
1.7×10−4 by moving from a general calcium signaling pathway to a specific model-predicted function.

1 Introduction

Genetic contributions to disease can be complex and might involve the coordination of a collection of genetic
variants in the disruption of one or many biologic pathways. Previous studies of psychiatric conditions
provide evidence that a single genetic variant often confers little disease risk despite high heritability [8, 59,
60]. Rather, psychiatric disorders can be polygenic [16] — hundreds to thousands of genes of very small effect
contribute to the disorder. Genetic risk for an individual is commonly measured by aggregating information
from multiple genes into a polygenic risk score [2, 23, 29, 44, 52]. Each of these variants might play a small
role in the disruption of a pathway, but collectively lead to the development of disease. For this reason, it
can be challenging to uncover genetic influences on psychiatric disorders [62]. Computational approaches are
emerging to better prioritize candidate genes [3, 6, 11, 12, 17, 21, 26, 27, 32, 39, 46, 65].

Gene-set analyses are a common tool for measuring the association between a disorder and a set of
genes rather than a single gene [5, 18, 30, 33, 49, 58]. Many statistical tests and software are available to
perform gene-set analysis (cf. [33, 45]) to determine whether genes in a particular gene set are significantly
associated with a phenotype (self-contained) or whether a phenotype is more strongly associated with genes
in a set than genes not in the set (competitive) [18, 33, 64]. Often gene sets are defined based on genes that
contribute to a particular biological pathway, which enables identification of pathways that are important
for a disorder. This approach likely leads to stronger, more reproducible findings if abnormal pathways are
what ultimately contributes to genetic risk [14, 33].

However, biological functions may ultimately drive risk as opposed to an abnormal pathway or single
gene variant. Biological functions do not map one-to-one to biological pathways; a function can recruit
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some genes from multiple pathways [57]. In bipolar disorder, for example, spontaneous neuronal firing rate
differs in stem cells derived from bipolar individuals compared to controls [10, 50]. This cellular function —
neuronal firing rate — recruits genes from calcium-mediated signaling (GO:0019722), regulation of action
potential (GO:0098900), and chemical synaptic transmission (GO:0007268), among others. Hence, if per-
turbed biological functions drive disease risk, jointly testing genes in one pathway which includes genes of
little impact and ignores genes in other pathways would result in a less powerful gene-set analysis.

Moreover, some genes or gene products play a larger role in the realization of the biologic function.
To account for this, some gene-set analyses incorporate information about the network structure of gene
interactions [9, 11, 12, 20, 21, 24, 27]. However, the nature of the connections between genes might also
vary; interactions might operate in a dynamic and nonlinear way. Greater specificity can be achieved quickly
through detailed mathematical models from math biology, which are driven from bottom-up biophysical prin-
ciples. Efforts within the field have culminated in ModelDB (https://senselab.med.yale.edu/modeldb/)
which hosts over 1000 publicly-available models [41]. Examples include models of the hypothalamic-pituitary-
adrenal axis, monoamine systems, and circadian rhythms, among others. Model parameters related to genes
can be varied to measure the relative contribution of genes to a specific biological function of interest (e.g.,
firing rate). Incorporating model predictions into gene-set tests might strengthen the link between genes and
disorders.

We present a simple method (GEMB: Gene-set Enrichment with Math Biology) for measuring the asso-
ciation between a disorder and a biological function, based on model predictions. Our method relies on (i)
ranking genes in decreasing order of association strength to a disorder and (ii) assigning weights to a set
of genes to reflect their relative contribution to a specific biological function. We illustrate one approach to
assigning weights by using pre-existing models from math biology. Ranks and weights are combined into a
test for significance of the association between a biological function (as predicted by a neurobiological model)
and a disorder.

To demonstrate the utility of our method, we test the hypothesis that intracellular calcium concentrations
contribute to bipolar disorder using a detailed model of intracellular calcium concentrations [4]. Bipolar
disorder is a severe and chronic psychiatric disorder [7] with estimated heritability at 85% [42]. Genome-
wide association studies report several susceptibility loci [56], including a voltage-gated calcium gene [25],
which remains among the strongest findings to date. Calcium signaling is an incredibly complex process to
model [22] but has been implicated in many human diseases [31], including bipolar disorder.

2 Materials and Methods

2.1 A weighted gene-set statistic

We assume a general set-up of a competitive gene-set test: individuals are phenotyped and analyzed for
expression in n genes; each gene is measured for association to the phenotype; and a subset of m genes are
determined to be of interest (see Fig 1 for an overview). From this set-up, we require only the rank of each
gene in decreasing order of association strength to the phenotype; genes that are most strongly associated
with the phenotype have the highest rank (i.e, closest to 1) and those that are most weakly associated with
the phenotype have the lowest rank (i.e., closest to n).

We diverge from many gene-set tests by requiring that non-negative weights are assigned to individual
genes in the subset of interest. Formally, we require:

• genes labeled 1 to n;

• rank ri ∈ {1, . . . , n} for each gene i = 1, . . . , n;

• gene set S ⊆ {1, . . . , n}; and

• weights wi ≥ 0 for each gene i ∈ S with
∑
S wi > 0.

Without any loss of generality, we assume weights wi sum to one — we can always re-scale weights so that
they sum to one. Then, we define the following test statistic using a weighted sum of the ranks ri (i ∈ S):

v :=
∑
i∈S

wiri.
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Figure 1: Overview of gene set analysis with math biology. A) Genes are ranked based on their association
with a phenotype and weighted based on their model-predicted contribution to a specific function. Ranks
and genes are combined to perform a weighted gene set test. B) Genetic analysis can be performed at the
level of either a single gene, a gene set, a gene network, or a gene set connected by math biology. Gene
set analysis with math biology uses models to describe connections between genes based on biophysical
principles.
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The choice of weights encodes an a priori hypothesis about the relative contribution of a gene to the
phenotype. As a specific case, we can recover an unweighted gene-set test by setting wi := 1/m. This choice
of weights captures the a priori hypothesis that each gene in S contributes equally to the phenotype (or
a lack of support for one gene over another). In this case, the statistic v is the average rank of the genes
in S. Recalling that a rank of one is assigned to the gene with the strongest association, a value v < n+1

2
reflects that genes in S are ranked higher on average relative to genes not in S. Conversely, a value v > n+1

2
reflects that genes in S are ranked lower on average relative to genes not in S. If v = n+1

2 , genes in S are
neither ranked higher nor lower on average relative to genes not in S. In other words, small v suggests an
association between the gene set and phenotype. We point out that genes in S do not need to be evenly
distributed in rank to achieve v ≈ n+1

2 ; they could be disproportionately ranked close to the average rank
n+1
2 or ranked close to the extreme ranks 1 and n.

As another specific case, we could recover a single gene test by setting wj = 1 for some j ∈ S and all
other weights to zero. This choice captures the a priori hypothesis that gene i specifically contributes to the
phenotype. The statistic v would be the rank of gene i. More broadly, setting any weight to zero reflects
the hypothesis that the corresponding gene does not contribute to the phenotype. The statistic v would
be identical in value if we had simply removed the gene from S. Further, smaller weights means a smaller
contribution to v.

With more general weights, the statistic v is interpreted similarly to the unweighted version, replacing an
average of the ranks with a weighted average. Our interpretation is inherited from the fact that v− (n+1)/2
changes sign when genes are ranked in opposite order and increases when a gene in S is exchanged for a gene
not in S with higher rank. Thus, small v can be thought of as genes in S have a higher (weighted) relative
rank to genes not in S.

2.2 A weighted gene-set test

To use v in a statistical test, we must specify a null distribution. For many gene-set analyses, a common
null hypothesis is that the genes in S were chosen uniformly at random from the entire set of genes. Under
this null hypothesis, we can construct a null distribution for v by drawing ranks for genes in our set, Ri for
i ∈ S, uniformly at random from

{1, 2, . . . , n}

without replacement and calculating

V :=
∑
i∈S

wiRi.

The distribution of the random variable V serves as the null distribution for v.
The alternative hypothesis is that genes in S were not chosen uniformly at random. In broad terms,

they were chosen because of their relationship to the phenotype. Hence, we are interested in how often V
with gene ranks chosen randomly suggests a stronger association between set S and a phenotype than the
statistic v determined by the actual association to the phenotype. In other words, we use the probability, or
p-value, associated with a one-sided test given by

P (V ≤ v)

to determine whether v is significant. Note, a two-sided test could also be defined by using

P
(∣∣∣∣V − n+ 1

2

∣∣∣∣ ≥ ∣∣∣∣v − n+ 1

2

∣∣∣∣)
A simple way to estimate P (V ≤ v) is to use Monte Carlo simulation, where V is repeatedly sampled

from its distribution and we count how often a sample of V is less than or equal to v. This computation
benefits from the fact that V is simple to calculate and can be sampled in parallel. The law of large numbers
ensures a Monte Carlo estimate of P (V ≤ v) = E(1V≤v) is unbiased and has variance Pr(V ≤ v)/k where k
is the number of Monte Carlo samples. Alternatively, we could estimate P(V ≤ v) with

Φ

(
v − µ
σw

)
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Table 1: Difference between Monte Carlo estimates of a one-sided P-value P(V ≤ v) for the weighted gene-set
test and estimates using a normal approximation. Weights were defined as wi ∝ il (i = 1, . . . ,m) for various
l, assuming S = {1, . . . ,m}. A total of 107 Monte Carlo samples were used in each case.

v

l m n µ− 4σw µ− 3σw µ− 2σw µ− σw
0.5 10 1000 -3.0E-05 -5.7E-04 -1.2E-03 2.2E-03
0.5 10 10000 -2.9E-05 -5.3E-04 -8.0E-04 3.0E-03
0.5 100 1000 -2.1E-05 -5.5E-04 -4.7E-03 -1.1E-02
0.5 100 10000 -8.0E-06 -1.2E-04 -6.1E-04 -7.2E-04

1 10 1000 -3.1E-05 -7.4E-04 -1.5E-03 3.8E-03
1 10 10000 -3.1E-05 -7.0E-04 -1.1E-03 4.4E-03
1 100 1000 -1.8E-05 -5.0E-04 -4.0E-03 -8.7E-03
1 100 10000 -9.2E-06 -9.9E-05 -5.1E-04 -5.6E-04
2 10 1000 -3.2E-05 -1.1E-03 -2.4E-03 6.7E-03
2 10 10000 -3.2E-05 -1.1E-03 -2.1E-03 7.0E-03
2 100 1000 -1.7E-05 -4.4E-04 -3.1E-03 -6.2E-03
2 100 10000 -8.2E-06 -1.6E-04 -4.0E-04 -7.3E-05

where Φ is a standard normal distribution and µ = n+1
2 and σ2

w = n2−1
12

∑
i∈S w

2
i . This approximation

follows by making the simplifying assumption that ranks Ri are drawn uniformly at random from {1, . . . , n}
with replacement (as opposed to without replacement) and then noting that the resulting V is a sum of

independent random variables with respective means wi
n+1
2 and variances w2

i
n2−1
12 (i ∈ S). Table 1 compares

Monte Carlo estimates of one-sided P-values to estimates using a normal approximation.

Type I error and Power Type I error is controlled by the distribution of gene ranks under the null
hypothesis of no association between the gene set and the phenotype. Our weighted gene-set test uses
the null distribution that arises when any permutation of gene ranks is equally likely. However, the true
distribution of gene ranks when there is no association is not clearly defined due to the complex correlations
that might exist among genes. Moreover, the null distribution of gene ranks is determined by the method
used to generate gene ranks (see [19] for a comparison). It is thus important to choose a method for ranking
genes that properly controls Type I error.

Power can be improved with a weighted gene-set test over gene-set or single gene analyses when multiple
genes have differential contribution to disease risk. To illustrate, consider n genes and a set of two independent
genes with very small association to the disease. Under our null hypothesis, gene ranks divided by n are
approximately uniformly distributed between 0 and 1. A single gene test could assess whether or not each
gene’s normalized rank is below some critical value (gray region; Fig 2A). By contrast, a gene-set test
could assess whether or not the sum of the two genes’ normalized ranks is below some threshold (blue region;
Fig 2A) and a weighted gene-set test could assess whether or not a weighted sum of the two genes’ normalized
ranks is below some threshold (green region; Fig 2A). In each case, Type I error is controlled at 0.05 when
the rejection region has an area of 0.05.

To estimate statistical power, we consider a situation when two independent genes of interest are ranked
based on an F-test examining if ν coefficients are zero when regressing phenotype on gene variables, as is
done in MAGMA with ν being the number of gene-level principal components used in the regression model
[18]. For simplicity, we set ν = 10 and assume that P-value of this F-test would be their ranks normalized by
the number of genes n. For a sample size of k, the test statistic for gene 1 and 2 would follow a F-distribution
with ν − 1 and k-ν degrees of freedom under the null hypothesis (no gene–phenotype association). For an
alternative distribution, we assume that the test statistic follows a non-central F-distribution with ν−1 and
k− ν degrees of freedom and non-centrality parameters kd1 or kd2 for gene 1 and 2, respectively. Under this
alternative, increasing sample size or non-centrality leads to larger joint densities for normalized ranks near
the axes (Fig 2B). Thus with just 2 genes, these changes can improve statistical power, i.e. the probability of
arriving at normalized ranks that lie in each reject region (Fig 2C). We expect that this improvement would
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continue to hold or grow with increases in gene set size and increasingly differential effect sizes. Hence, this
example provides support that weighting normalized gene ranks can further increase statistical power by
accounting for differential contributions of genes to a disease.
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Gene 1

d1

Gene 2

d2

Single
a

Gene set 

(w1=w2=0.5)

Weighted gene set 

(3w1=w2=0.75)

1000 0.0002 0.0002 0.0572 0.0576 0.0576

1000 0.0001 0.0003 0.0573 0.0576 0.0586

10000 0.0002 0.0002 0.143 0.153 0.151

10000 0.0001 0.0003 0.150 0.147 0.164

Joint density of ranks / nA B

C

a Corrected for multiple testing

Figure 2: Statistical power. A) Possible regions to reject null hypothesis for a single gene test (corrected for
multiple testing), a gene set test, and a weighted gene set test. B) Joint density functions of ranks divided
by n for different sample sizes (n) when genes have very small effect sizes (d1 and d2). C) Statistical power
estimated for each case in (B).

2.3 Determining gene weights

Weights can capture any a priori hypothesis whether justified by functional data, literature surveys, or
experiments. Our goal, however, is more specific: we want weights to reflect the relative contribution of
genes to a specific biological function. If we have reason to think certain genes play a large role in the
biological function of interest, we upweight them. If genes do not affect the biological function of interest,
we downweight them. In this way, our weighted gene-set test incorporates the hypothesis that a specific
biological function (captured by the weights) is important to a phenotype.

To inform the choice of weights, we propose a general approach using models from math biology. We start
with a neurobiological model that can return a scalar measure of the function of interest. As noted earlier,
many models are publicly available through sources such as modelDB. Next, we consult gene databases to
identify genes related to one or more model parameters and create a mapping of genes to model parameters.
Then, we perform a global sensitivity analysis to measure the relative contribution of each parameter to a
specific function of interest. We opt for a global sensitivity analysis based on the partial rank correlation
coefficient (PRCC) [40] due to its simplicity. Last, we assign weights to each gene based on the contributions
of the model parameter to which it is mapped.

We remark that the association between genes and parameters need not be one-to-one. On one hand,
models might not be sufficiently detailed to capture the individual contribution of each gene, so multiple
genes may be associated with a single parameter. For example, four genes are known to modulate formation
of L-type calcium ion channels, but most mathematical models with L-type ion channels do not include
individual parameters to capture the differential contributions of each gene. On the other hand, multiple
parameters might be associated with a single gene. For example, models of neuronal action potential often
distinguish between sodium currents and persistent sodium currents [51] even though both currents may be
regulated by the same gene [37]. We describe how we handled these issues in the context of our case study.
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3 Results

To illustrate our method, we explore the hypothesis that intracellular calcium ion (Ca2+) concentrations
in excitable neurons contribute to bipolar disorder. Calcium signaling has been both implicated in bipolar
disorder and extensively modeled. Furthermore, this hypothesis was initially tested using our method with
a relatively small dataset (n=544) from the Prechter Bipolar Cohort [43] (details in Appendix). Thus, the
results reported here represent a replication of our initial finding and validation of an a priori hypothesis
with a much larger dataset.

3.1 Gene ranks

Summary genetic data was obtained on subjects with bipolar disorder (n=20,129) and controls (n=21,524)
from the Psychiatric Genomics Consortium (PGC) [53, 54]. Association was measured between 8,958,989
SNPs and bipolar disorder, resulting in P-values for each SNP. Data collection and analysis are detailed in
Ruderfer et al [54]. Using SNP-level summary data, gene-level association with bipolar disorder was measured
using MAGMA software (https://ctg.cncr.nl/software/magma) [18]. Gene locations were defined using
NCBI Build 37 (hg19). A total of 3,554,879 (39.68%) SNPs mapped to at least one gene, whereas 18,309
genes (out of 19,427 genes) mapped to at least one SNP. Linkage disequilibrium between SNPs was estimated
by MAGMA using reference data files created from Phase 3 of 1,000 Genomes [15]. The set of 18,309 genes
were ranked based on their measured association (P-value) with bipolar disorder; the smallest P-values were
ranked closest to 1.

3.2 Genes weights

We used a detailed model of an intracellular Ca2+ concentration in a hippocampus CA1 pyramidal cell
developed by Ashhad and Narayanan in [4]. The model is publicly-available in modelDB (Model 150551)
and written with free Neuron software. Furthermore, it captures key contributors to intracellular Ca2+

concentrations, including ion transport (K+, Na+, and Ca2+) across the cell membrane; transport of Ca2+

into and out of the sarcoplasmic endoplasmic reticulum; synaptic plasticity; and mediating receptors such as
inositol triphosphate (InsP3), ionotropic glutamate receptors, and metabotropic glutamate recptors (mGR).
Finally, the model uses a morphologically realistic three-dimensional representation of a hippocampus CA1
pyramidal cell accompanied by spatial dynamics giving rise to Ca2+ waves.

To identify genes of interest, we started with 182 genes making up the Calcium signaling pathway (Path-
way ko04020) in the Kyoto Encyclopedia of Genes and Genomes (KEGG) [34–36]. Each gene was evaluated
for whether it could modulate intracellular Ca2+ concentrations in the model using the Gene database from
the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/gene). A total of 38
genes could modulate intracellular Ca2+ concentrations in the model, by way of ion channels, ion pumps,
or receptors. We found three ion channels (Na+, A-type K+, and delayed rectifying K+) and two receptors
(NMDA and AMPA) that could affect intracellular Ca2+ concentration in the model but had not been as-
sociated with genes in the KEGG Calcium signaling pathway. An additional 31 genes were found related to
these channels or receptors. Of the 69 genes identified, 4 genes (ATP2B3,CACNA1F,GRIA3,KCND1) were
excluded, because they were not associated with gene ranks (described below). A total of 65 genes were
analyzed.

For each gene, we identified a parameter that could modulate (up and down) the modeling component
related to the gene. For example, channel conductance was associated with ion channel genes. Default
parameter values were taken from the simulation in Figure 6 of [4]. Other genes, associated parameters, and
default values are summarized in Table 2.

With parameters and genes identified, we used the Ashhad and Narayanan model to simulate intracellular
Ca2+ concentrations during an established protocol for inducing synaptic plasticity at a synapse, namely
900 pulse stimulation at 10 Hz; see Figure 6 in [4]. We simulated 320 samples of parameter sets using
Latin-hypercube sampling from a normal distribution with mean given by the respective baseline parameter
in [4], standard deviation given by 5% of the respective baseline parameter, and zero correlation. For each
parameter set, we simulated intracellular Ca2+ and measured average intracellular Ca2+ concentrations
during initial transients induced in the first three seconds of the simulation.
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Table 2: Calcium genes and associated model parameters. Calcium genes impact either ion channels, ion
pumps, or receptors in the Ashhad and Narayanan model [4]. Baseline parameter values were taken from
[4].

Genes Value Parameter

ATP2B[1-2,4] 0.008 µM ms−1 Average rate γ0 of Ca2+ flux density
ATP2A[1–3] 0.1 µM ms−1 Amplitude Vmax of SERCA pump uptake
CACNA1[C–D,S] 0.316 mS cm−1 L-Type Ca2+ channel conductance gCaL

CACNA1[G–I] 0.1 mS cm−1 T-Type Ca2+ channel conductance gCaT

GRM[1,5] 0.3e-3 Metabotropic glutamate receptor density [mGR]0
GNA[Q,11,14–15] 100 ms−1 Gα-bound activated PLC formation rate k7

PLC[B1–B4,D1,D3–D4,E1,G1–G2,Z1] 0.83 ms−1 PLCα-bound PIP2 formation rate k9

ITPR[1–3] 1.85 IP3 receptor density ḡInsP3R

GRIN[1,2A–2D,3A–3B] 1.938107025 nM s−1 Maximum NMDA receptor permeability P̄NMDA

GRIA[1–2,4] 1.29207135 nM s−1 Maximum AMPA receptor permeability P̄AMPA

KCN[A4,C3–C4,D2–D3] 22 mS cm−2 A-type K+ channel conductance gKA

KCN[A1–A3,A6–A7,B1–B2,C1–C2] 3 mS cm−2 Delayed rectifying K+ channel conductance ḡKDR

SCN[1–5,8–11]A 90 mS cm−2 Na+ channel conductance ḡNa

We estimated the PRCC between each parameter and the measured concentrations controlling for the
remaining parameters (Fig 3). We found, for example, a strong positive partial correlation between average
intracellular Ca2+ concentrations and maximum permeability P̄NMDA of NMDA receptors and a strong
negative partial correlation between average intracellular Ca2+ concentrations and the amplitude Vmax of
SERCA pump uptake.

Based on estimated PRCCs, we defined weights for the 65 genes as follows. For each of the Nk genes
assigned to parameter k with PRCC ρk, we assigned weights |ρk| /Nk. We then re-normalized weights to
sum to one. Note that we could use any function of ρk to assign weights to associated genes. We use only the
magnitude of PRCC, since measured associations between genes and phenotypes are not sufficiently specific
to reflect the direction of association in addition to the magnitude. We divide by the number of genes
assigned to parameter k, so that a single component in the model is not weighted heavily simply because
there are a large number of genes assigned to the component.

Figure 3: Partial rank correlation coefficient (PRCC) estimated for 13 parameters that modulate intracellular
Ca2+ concentrations in the Ashhad and Narayanan model [4]. PRCC measures partial correlation between a
parameter and the functional measure of interest (average intracellular Ca2+ concentration) controlling for
the contribution of other parameters.
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3.3 Weighted gene-set test

Combining gene ranks obtained from the genetic analysis with gene weights obtained from the model of
calcium signaling, we performed the weighted gene-set test. For comparison, we performed an unweighted
gene-set test using all 182 genes from the KEGG Calcium signaling pathway [34–36] by assigning equal
weights to all 182 genes. In addition, we performed a typical over-representation analysis with the set of 182
genes. Genes were labeled as significant or not based on a significance level of 0.1 adjusted for false discovery
rate [63] (a significance level 0.0044 for our problem); a one-sided Fisher’s exact test was performed to test
for over-representation of significant genes in the KEGG calcium signaling pathway compared to genes not
in the KEGG calcium signaling pathway. Lastly, since motivation for studying calcium signaling was driven
in part by prior PGC results that implicate CACNA1C, we performed the weighted gene-set test without
the CACNA1C gene in order to investigate the degree to which our test was driven by the CACNA1C gene.

Our gene-set test (GEMB) showed strong support for our hypothesis that intracellular Ca2+ concentra-
tion contributes to bipolar disorder (P=1.7×10−4; Fig 4). The CANA1C gene alone was significant, ranking
10th out of 18,195 genes (P=10/18195=5.5×10−4). However, our gene-set test continued to provide strong
support for this hypothesis even with the CACNA1C gene removed (P=1.9×10−4). Thus, our result is only
partly driven by the CACNA1C gene. Further, focusing on the entire KEGG Calcium signaling pathway
without consideration of differential contributions to biological function provided little support for the hy-
pothesis that calcium signaling is important to bipolar disorder (P=0.26 using our method GEMB with equal
weights and P=0.081 using a one-sided Fisher’s exact test). These discrepancies in P-values illustrate how
incorporating weights to provide functional specificity could help illuminate biological factors that contribute
to a psychiatric disorder.

Figure 4: One-sided P-values estimated for gene-set tests. Four tests were performed: (1) over-representation
test (Fisher’s exact test) applied to the KEGG Calcium signaling pathway; (2) our gene-set test (GEMB) with
equal weights applied to the entire KEGG Calcium signaling pathway, (3) our gene-set test (GEMB) with
genes related to the Ashhad and Narayanan model [4] and weighted according to their relative contribution
to our functional measure of interest (average intracellular Ca2+ concentration in an excitable cell); and
(4) our gene-set test (GEMB) with weights and genes as determined for (3) but with the CACNA1C gene
removed.

4 Discussion

We presented a method for examining associations between biological functions and psychiatric disorders
which we call GEMB (Gene-set Enrichment with Math Biology). Central to our method are gene weights
that measure the relative contribution of a gene to a particular biological function, which we determine using
a neurobiological model. We applied our approach to assess the hypothesis that intracellular calcium ion
concentrations are important to bipolar disorder. Gene weights were based on their relative contribution to
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intracellular calcium ion concentrations, determined by a detailed model of calcium signaling from Ashhad
and Narayanan [4]. Gene ranks were obtained using summary genetic data from the Psychiatric Genetics
Consortium on bipolar disorder [54], consisting of 20,129 individuals with bipolar disorder and 21,524 con-
trols. Combining gene ranks and weights with our weighted gene-set test, we found strong support for the
hypothesis that intracellular calcium concentrations contribute to bipolar disorder (P=1.7 × 10−4) com-
pared to little support for KEGG Calcium signaling (P= 0.081). This result suggests that gene sets defined
based on biological pathways may be too broad to capture the genetic effect on a biological function that is
important to a disorder.

A practical benefit of our weighted gene-set test is that only gene ranks are needed from genetic data.
Gene ranks can be shared across researchers more easily and require fewer regulatory and computational
resources to analyze compared to full genetic data. Sharing genetic resources and data has become the norm
in genetic research, as the community moves towards large consortiums to achieve the sample sizes, level
of evidence, and study consistency that are expected. The Psychiatric Genomics Consortium, for example,
has ∼300 investigators and >75,000 subjects [61], and the National Institute of Mental Health (US) has
made genetic data available to researchers. For similar reasons, many popular gene-set tests also need only
measures of association (e.g., gene rank) rather than full genetic data [48, 58, 64]. Further, gene ranks can
be recovered using MAGMA software from summary data (https://ctg.cncr.nl/software/magma) [18].

Once gene ranks are determined, our method then needs only gene weights from neurobiological models,
which too has its benefits. Neurobiological models are numerous, experimentally validated, and publicly
available in ModelDB (https://senselab.med.yale.edu/modeldb/). For example, we were able to quickly
explore calcium signaling in bipolar disorder, due to the accessibility of a detailed model developed by Ashhad
and Narayanan [4] (Model 150551). Similar quick explorations could be used to examine other potentially
important biological functions. In searching key words in ModelDB, we found 171 models that contain the
concept of Synaptic Plasticity, 168 models that contain the concept of Calcium dynamics, 47 models that
contain the dopamine neurotransmitter, and 9 models that contain the concept of Circadian Rhythms, to
name a few. Together, these models could annotate genes based on model-predicted functional measures to
add to current resources that annotate genes based on biological pathways, such as KEGG [34–36].

With GEMB, neurobiological models may inform genetic studies, but the reverse may also be true:
genetic studies may inform neurobiological models. In psychiatry, for instance, there is growing emphasis
on team science, affording many opportunities for researchers from the mathematical sciences to help tackle
problems [1]. However, just as it is difficult to pin down genes to study in psychiatric disorders, it is also
difficult to pin down specific biological processes to study, since abnormal function is found for many neural
systems in a psychiatric disorder [28]. Thus, GEMB could help identify, or ground, candidate neurobiological
models for studying in psychiatry. The model of Ashhad and Narayanan [4] provides one such example.

Interest is high for ways to incorporate more functional information into gene-set analysis. Network-based
approaches, for example, try to incorporate measures of gene relevance based on where they lie in a network
in which genes are nodes and gene interactions are edges [3, 9, 11, 12, 20, 21, 24, 26, 27, 32]. Broadly, genes
that are more relevant might be more connected or closer to other genes. Other examples include Bayesian
approaches to account for overlap between gene sets [6, 39] or approaches based on gene expression levels
[17, 46]. A benefit of our method is that it is sufficiently general, such that weights could also be determined
from network analysis, experiments or meta-analysis. Weights need only be non-negative and sum to one.

The presented method GEMB was designed to be simple, which has certain limitations. First, our
approach does not account for co-expression of genes unlike other genetic analyses [13, 18, 66]. Genes are
known to interact in complex ways. Two gene variants, for instance, may lead to increased risk in a disorder
that surpasses the additive risk of each variant alone. Second, we do not account for gene interactions in
the neurobiological model. Sobol’s method of global sensitivity analysis [55], for example, could measure
relative contribution of parameters and their higher-order interactions. Our weighted gene-set test could be
extended to incorporate these interactions. Third, neurobiological models are sure to be imperfect, meaning
that gene weights are only predicted measures of biological function. This issue is, of course, common to all
modeling. The question then is not whether using a model leads to the correct answer, but rather whether
using models to favor certain genes would strengthen inferences compared to treating the genes equally. This
is an empirical question that only continued analyses and applications can answer.

In summary, we have proposed an approach to gene-set analysis that can incorporate a biological hy-
pothesis by weighting genes according to their relative expected contributions. The gain in precision can
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improve statistical power and strengthen inferences. Most importantly, this method of gene-set analysis can
facilitate meaningful biological interpretations which are ultimately necessary in our understanding of the
genetic basis of disease.
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A Appendix

A.1 Coming up with an a priori hypothesis

Prior to applying our method to the PCG dataset discussed in the main text, we applied our method to
genetic data obtained from the Prechter Bipolar Cohort, a longitudinal cohort of 1,111 individuals [43].
The University of Michigan’s Biomedical Institutional Review Board approved all recruitment, assessment
and research procedures (HUM606). Patients provided written informed consent after receiving a complete
description of the study. We focused on individuals with bipolar I disorder. Diagnoses of psychiatric illness
(e.g. bipolar disorder type I) or lack of psychiatric illness (i.e. control) were determined using the Diagnostic
Instrument for Genetic Studies, commonly used in psychiatric research [47]. Diagnoses obtained from the
DIGS adhered to DSM-IV diagnostic criteria and were confirmed and re-confirmed annually through a
consensus of three clinicians resulting in “best estimate” diagnoses. Participants provided whole blood
samples at study intake for genetic testing of specific single nucleotide polymorphisms (SNPs). Methods
pertaining to genetic testing are described in detail elsewhere [38]. About 0.5 million SNPs were analyzed
initially, which were then used to impute alleles for other SNPs resulting in over 9.8 million SNPs in total.

For the application of our method, we used the same set of genes and the same gene weights obtained from
simulation of the Ashhad and Narayanan model [4]. Gene ranks were obtained starting with 428 individuals
with BPI and 193 controls without a psychiatric diagnoses. Genetic variation was first analyzed using PLINK
software (http://zzz.bwh.harvard.edu/plink/) to account for population stratification and outliers. We per-
formed principal component analysis on SNP data and visualized the participant loadings associated with the
first two principal components. We removed any individuals who could be separated from the main cluster in
this two-dimensional space either visually or with k-means clustering. This analysis was repeated until there
were no participants that could be separated, leaving a total of 377 participants with BPI and 167 controls.
Gene-level association to BPI was measured using MAGMA software (https://ctg.cncr.nl/software/magma)
[18]. The 10 leading principal components obtained from the final principal component analysis were in-
cluded as covariates. Genes locations were defined using NCBI Build 38. A total of 18,300 genes were ranked
based on the measured association (P-value) with BPI, with smallest P-values ranked closest to 1.

With gene ranks and weights, we performed our weighted gene-set test (GEMB). We again compare
our results to an unweighted gene-set test (applying our gene-set test with equal weights) using all 182
genes from the KEGG Calcium signaling pathway [34–36]. We also performed a typical over-representation
analysis: genes were labeled as significant or not and then a one-sided Fisher’s exact test was applied to
test for over-representation of significant genes in the KEGG Calcium signaling pathway compared to genes
not in the KEGG Calcium signaling pathway. However, since the significance level of 0.1 adjusted for false
discovery rate yielded no significant genes, we labeled the top 1% of genes as significant [63].

Our gene-set test (GEMB) showed moderate support for our hypothesis that intracellular Ca2+ con-
centration contributes to bipolar I disorder (P=0.04). By contrast, focusing on the entire KEGG Calcium
signaling pathway provided little support for the hypothesis that Calcium signaling is important to bipolar
I (P=0.63 using our method GEMB with equal weights and P=0.24 using a one-sided Fisher’s exact test).
These results provided the impetus to study intracellular calcium concentrations in the larger PCG dataset.
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