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Abstract 29 
 30 
Hutchinson-Gilford Progeria Syndrome (HGPS) is an extremely rare genetic 31 
disorder. HGPS children present a high incidence of cardiovascular complica-32 
tions along with altered metabolic processes and accelerated aging process. No 33 
metabolic biomarker is known and the mechanisms underlying premature aging 34 
are not fully understood. The present study analysed plasma from six HGPS 35 
patients of both sexes (7.7±1.4 years old; mean±SD) and eight controls 36 
(8.6±2.3 years old) by LC-MS/MS in high-resolution non-targeted metabolomics 37 
(Q-Exactive Plus). Several endogenous metabolites with statistical difference 38 
were found. Multivariate statistics analysis showed a clear separation between 39 
groups. Potential novel metabolic biomarkers are identified using the multivari-40 
ate area under ROC curve (AUROC) based analysis, showing an AUC value 41 
higher than 0.80 using only two metabolites, and reaching 1.00 when increasing 42 
the number of metabolites in the AUROC model. Targeted metabolomics was 43 
used to validate some of the metabolites identified by the non-targeted method. 44 
Taken together, changed metabolic pathways in that panel involve sphingolipid, 45 
amino acid, and oxidation of fatty acids among others. In conclusion our data 46 
show significant alterations in cellular energy use and availability, in signal 47 
transduction, and in lipid metabolites, creating new insights on metabolic altera-48 
tions associated with premature aging. 49 
 50 
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Introduction 52 

Hutchinson-Gilford Progeria Syndrome (HGPS) is an extremely rare ge-53 

netic disorder. Children with HGPS present a high incidence of severe cardio-54 

vascular complications along with altered metabolic processes, associated with 55 

an accelerated aging process (1-4). Despite a great increase in the scientific 56 

knowledge about HGPS, no specific biomarker is known for HGPS and the un-57 

derlying molecular mechanisms are not fully understood. HGPS is induced by a 58 

single mutation in the LMNA gene, creating a mutant protein isoform with dele-59 

tion of 50 amino-acids near in the protein Lamin A. The mutated protein, known 60 

as progerin (isoform 6), is toxically accumulated in the cells. Progerin, despite 61 

being able to enter the cell nucleus, does not incorporate normally into the nu-62 

clear membrane lamina, leading to several abnormalities in nuclear trafficking(5, 63 

6). Interestingly, unaffected aged individuals show a similar splice event, lead-64 

ing to progerin expression that may play a role in cellular senescence(6).  65 

Aging is the biological process of gradually accumulating deleterious 66 

changes in cells, decreasing the physiological capacity(7, 8). Aging is not con-67 

sidered a disease, but it intensely rises the risk of developing chronic cardio-68 

vascular(9) and metabolic diseases(10). It is known that metabolic systemic 69 

profiles are age-dependent, reflecting metabolism alterations, such as incom-70 

plete fatty acid mitochondrial oxidation(11-13).  71 

Metabolomics is, among other “omics” strategies, one of the most com-72 

plete and reliable sources of information for circulatory mediator analysis, bi-73 

omarker discovery pipeline and mechanistic disease investigation(14). In the 74 

present study, we applied metabolomics to samples from HGPS patients and 75 

identified several metabolites from different biological pathways dysregulated. 76 

Multivariate and univariate statistical analysis demonstrated metabolic pathways 77 

and potential new biomarkers that might act as central mediators in this syn-78 

drome and in senescence.  79 

 80 
Results 81 

 82 
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We used non-targeted based metabolomics to investigate metabolites 83 

differentially expressed in plasma samples obtained from 6 HGPS patients and 84 

8 healthy donors, as summarized in Table S1, aiming to identify new bi-85 

omarkers and novel mechanisms of the disease.  86 

In order to avoid the inclusion of exogenous compounds in our analysis, 87 

contaminants, medications, and their metabolites, food and flavouring com-88 

pounds were excluded from the metabolite list, resulting in a final feature list of 89 

40 known molecules of endogenous origin presenting the statistical difference 90 

between the two groups. Each of the identified metabolites was found to have 91 

false discovery rates (FDRs) of less than 10%. Information regarding the me-92 

tabolites identified in the present study is available in Table 1. Figure S1 shows 93 

typical total extracted ion chromatograms of all analyzed samples, demonstrat-94 

ing the efficient separation of the plasma compounds and reproducibility. The 95 

deuterated internal standard spiked in during sample preparation was used to 96 

calculate the coefficient of variation (CV) of our method. Figure S2 demon-97 

strates that our CVs were <15% among samples. 98 

 A data matrix including the average area values of the uniquely identified 99 

analyzed compounds in each sample was generated. Multivariate statistics us-100 

ing both unsupervised and supervised strategies were then applied to the data. 101 

Unsupervised PCA of the metabolomics data demonstrated a clear separation 102 

between groups (Figure 1a). Percent Variance Captured by PCA Model for the 103 

Principal Component 1 (PC1) was 55.4%, and for Principal component 2 (PC2) 104 

was 6.9%. The green (patients) and red (controls) areas in Figure 1a represent 105 

the 95% confidence intervals for each group. The application of supervised 106 

PLS-DA also permits a detailed group separation between HGPS and control 107 

cohorts as shown in Figure 1b. The PLS-DA model captured 55.4% of the va-108 

riance in component 1 and 5.1% in component 2. The components of the PLS-109 

DA models were used to predict the accuracy (Accuracy) based on the cross-110 

validation, the sum of squares captured by the model (R2), and the cross-111 

validated R2 (Q2). The PLS-DA cross-validation data are summarized together 112 

with a set of permutation tests demonstrating statistical significance in the PLS 113 

model (Figure S3).  114 

In order to discover potential biomarkers for HGPS, ROC curves were 115 

constructed. The area under the ROC curve (AUC) is a well-described strategy 116 
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for biomarker potential performance analysis, where the higher the AUC the 117 

more accurate is the model. As demonstrated in figure 2a, 6 AUC models were 118 

created, including different numbers of metabolites, varying from 2 to 40. The 119 

results demonstrate that the classification model using only two variables for the 120 

AUC resulted in a 0.803 value and 95% confidence interval (CI) ranging from 121 

0.5~1. Increasing the number of variables to 5 in the classification model, the 122 

AUC value increases to 0.912 and the 95% confidence interval ranges from 123 

0.625~1. 124 

Metabolites were ranked according to their capacity to distinguish be-125 

tween HGPS and Control subjects and the result is summarized in figure 2b. 126 

Metabolites are shown as either downregulated (green) or upregulated (red) in 127 

patients with HGPS. Furthermore, we performed classical univariate ROC curve 128 

analysis for individual biomarkers. Figure 3 shows the ranked metabolites 129 

based on area under ROC curve (AUROC), suggesting that both arginine and 130 

5-hydroxytryptophol are robust upregulated candidates for HGPS biomarkers. 131 

Choline and phosphatidylcholine (16:0/16:0) on the other hand are robust 132 

downregulated candidates for HGPS biomarkers, showing potent diagnostic 133 

power. IAiming to validate the non-targeted metabolomic analysis, we per-134 

formed targeted metabolomics based on LC-MS on a triple quadrupole using 135 

metabolite standards for prior calibration. Figure 4a shows ion chromatograms 136 

for arginine and ISTD. Each line represents one sample analyzed showing in-137 

tensity and retention time in minutes. Figure 4b shows the calibration curve for 138 

arginine quantification. Our targeted method demonstrates an increase in argi-139 

nine levels in samples from HGPS patients in the same manner as in the non-140 

targeted approach as summarized in figure 4c. Data from arginine and other 141 

metabolites analyzed by triple quadrupole are summarized in table S3. 142 

Aiming to evaluate the most relevant metabolic pathways altered in pa-143 

tients with HGPS, pathway analysis was applied. Figure 5 shows an overview of 144 

Pathway Analysis, using only annotated metabolites identified to be significantly 145 

altered by HGPS. Figure 5a highlights pathways related to upregulated metabo-146 

lites, suggesting alterations in fatty acids metabolism, glucose metabolism, and 147 

mitochondrial function. Figure 5b shows the metabolic pathways related to the 148 

downregulated metabolites in HGPS patients, demonstrating alterations related 149 
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to phospholipids, phenylacetate and phosphatidylcholine metabolism, among 150 

other alterations. 151 

 152 

Discussion 153 

Aging is a complex biological process poorly understood at the molecular 154 

level. HGPS is a rare fatal disease where an extremely accelerated aging pro-155 

cess is observed leading to premature death mainly related to heart complica-156 

tions. Despite great effort to increase knowledge about HGPS, biological bi-157 

omarkers for this disease are not yet available, detailed disease mechanisms 158 

are still being investigated and there is currently no cure(19).  159 

. In the present work, we created ROC curve models to identify metabolic 160 

HPGS biomarkers. As shown in results, biomarkers found to be statistically dif-161 

ferent between the HGPS and control groups are highly likely to be associated 162 

with premature aging based on performance in terms of both specificity and 163 

sensitivity. Furthermore, targeted analysis using high purity standards of the 164 

metabolites of interest previously identified in the non-targeted experiments are 165 

in accordance with the non-targeted strategies, showing similar results in terms 166 

of statistical significance. 167 

A number of investigations used this methodology to study the mecha-168 

nisms underlying the aging progression, and whether strategies such as exer-169 

cise training and hormonal treatment can revert the metabolic changes induced 170 

by aging. In a recent study by Houtkooper et al, metabolomic hallmarks of aging 171 

were demonstrated, including affected pathways in both liver and muscle tis-172 

sues, indicating a significant modification in fatty acid metabolism(20). In the 173 

present study, we found several compounds up or downregulated in the plasma 174 

of HGPS patients, highlighting a profound metabolic alteration compared to our 175 

control cohort. Aging metabolomic studies showed an increase in lactate and 176 

glucose suggesting changes in glucose/pyruvate and glycogen metabolism(20), 177 

in accordance with our data using HGPS plasma, where we observed an in-178 

crease in glucose and lactide, a dimer of lactic acid (Table 1). Metabolomic 179 

studies in diabetic patients also demonstrate glucose and lactate increase(21). 180 

In addition to the glucose/pyruvate pathway alteration, we observed an increase 181 

in a long chain carnitine family molecule, Acetyl-L-Carnitine, associated with 182 
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fatty oxidation. Interestingly, children in early-stage type 1 diabetes present ele-183 

vated Acyl-Carnitine. Adult patients with type 2 diabetes may also present 184 

dysregulation of fatty acid oxidation, characterized by glucolipotoxicity(22). In 185 

this context, it is interesting to note that a recent study demonstrated that met-186 

formin, a popular anti-diabetic biguanide, alleviates the nuclear defects and 187 

premature aging phenotypes in HGPS fibroblasts, perhaps constituting a prom-188 

ising therapeutic approach for life extension in HGPS(23). Furthermore, insulin 189 

resistance has been described in children with HGPS(24). 190 

Mitochondria play a key role in several metabolic inborn errors as well as 191 

in the aging process, highlighting a decline in mitochondrial respiration(20, 25, 192 

26). In this regard, carnitine metabolites are important during fatty acid oxidation 193 

in the mitochondria. We found an 11  fold increase in Acetyl-L-Carnitine and 194 

also in L-carnitine in HGPS patients reflecting a broad dysfunction in β-195 

oxidation, indicating a diminished lipid transport capacity in the mitochondria(27, 196 

28). On the other hand, we found some carnitine metabolites decreased in the 197 

plasma of HGPS, such as Decanoylcarnitine. Interestingly, fetal congenital dis-198 

orders are associated with decreases in some carnitines, such as 199 

Decanoylcarnitine among others(29, 30). Collectively, these findings highlight 200 

the multiplicity of perturbations in lipid metabolism related to mitochondrial dys-201 

functions in HGPS. These metabolic alterations may be related to the growth 202 

abnormalities observed in HGPS children(31). 203 

During aging as well as in systemic metabolic dysfunction, amino-acid 204 

metabolism is significantly modified(32, 33). Previous publications demonstrate 205 

that branched-chain amino acids (BCAA) as well as methionine content in the 206 

diet changes mice lifespan. In the present work, we identified altered amino ac-207 

id availability in HGPS patients’ plasma that was further investigated by targeted 208 

metabolomics. Our experiments showed a decrease in the levels of methionine 209 

and histidine, but in contrast levels of arginine and cystine were increased. In-210 

terestingly, Cheng and coworkers demonstrated that amino acids concentra-211 

tions, such as Histidine, might be related to human longevity (34). Regarding 212 

BCAA no changes were observed, as well as in other important amino-acids 213 

such as proline and alanine. In agreement with our findings, Houtkooper et al 214 

showed that methionine is decreased in the plasma of aged mice and no 215 

changes were observed in BCAA(20). Interestingly, choline supplementation 216 
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seems to improve cognitive function and is an important strategy to ameliorates 217 

Alzheimer’s disease pathology, a pathological process typically associated with 218 

advanced age(35, 36). Furthermore, choline converts homocysteine, a neuro-219 

toxic amino acid in methionine(37, 38), also found to be decreased in the HGPS 220 

patients in the present work.  221 

 222 

Altered metabolic processes can lead to the formation of toxic metabo-223 

lites as well as alterations in acid-base equilibrium. Interestingly, the 4,6-224 

dioxoheptanoic acid, also known as Succinylacetone, a medium-chain keto ac-225 

id, and derivative metabolite, was found in higher levels in HGPS plasma. 226 

Succinylacetone can rise due to abnormal activity of the enzyme 227 

fumarylacetoacetase, being suggested as an acidogenic, oncometabolite and a 228 

metabotoxin. Of note, aging and progeria course with a hypertrophic cardiac 229 

process, that dramatically increases the risk of severe cardiac complications. In 230 

this context, patients with hypertrophic cardiomyopathy are reported to have an 231 

increased level of this metabolite(39, 40).  232 

Our study has limitations imposed by the cohort size used. As indicated 233 

in methods/results, we analyzed only 6 HGPS patients’ samples, a small num-234 

ber for a biomarker investigation and disease mechanism comprehension. 235 

However, HGPS is an extremely rare disease, as emphasized by the fact that in 236 

a 200 million people country like Brazil, only one donor was recruited. The 5 237 

other samples from our cohort were donated by The Progeria Research Foun-238 

dation which collects patients’ samples worldwide. These samples come from 239 

children with different genetic backgrounds, most probably contain different 240 

contaminants, were subject to distinct sample handling procedures and time of 241 

storage. Human genome databases show that the interindividual differences 242 

are very extensive between distinct populations. From the 40.000.000 variant 243 

polymorphic DNA sites predicted, some are rare and present only in a person or 244 

his family, ethnicity or country, which may reflect in their plasma 245 

metabolome(41). Remarkably, in view of the expected variability and the great 246 

possibility that the diverse genetic backgrounds might influence the metabolic 247 

plasma levels, our approach based in the multivariate analysis of multiple me-248 

tabolites was capable to clearly separate patients from controls, generating an 249 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/554220doi: bioRxiv preprint 

https://doi.org/10.1101/554220


 

9 

important biomarker profile related to the disease, even using a very small 250 

sample size. 251 

In summary, the present work applied a powerful metabolomics pipeline 252 

based in liquid chromatography coupled to high-resolution mass spectrometry 253 

along with multivariate statistics and pathway analysis.  We were able to identify 254 

putative circulating biomarkers for the disease that may be interesting targets 255 

for pharmacological treatment, nutritional supplementation and for diagnosing 256 

and follow up of HGPS patients.     257 

 258 

Conclusions 259 

The present study reports for the first time a metabolic profiling with LC-MS 260 

based metabolomics of premature aging in patients with HGPS. We identified a 261 

total of 40 known metabolites differentially expressed between HGPS and age 262 

and sex-matched controls. Creating a panel with the most distinct metabolites, 263 

we identified circulating putative biomarkers candidates with high accuracy for 264 

group classification based on ROC curve models. Changed metabolic pathways 265 

involved fatty acids, amino-acids, and sphingolipids, among other metabolic 266 

pathways. Taken together these alterations impact the cellular energy use, en-267 

zyme activities, and cell signalling, creating new insights into the molecular 268 

mechanisms underlying premature aging associated with HGPS. 269 

Methods 270 
 271 
Sample preparation 272 
 273 
Plasma samples were obtained from 5 HGPS patients kindly donated by The 274 

Progeria Research Foundation (www.progeriaresearch.org), including 3 females 275 

(2.3, 4.7, 12.2 years old) and 2 males (8.5, 10.2 years old). An additional sam-276 

ple was obtained from a Brazilian HGPS patient (female 8.4 years old) at the 277 

Federal University of Paraná as summarised in Table S1.  The average age for 278 

HGPS patients was 7.7±1.4 years (mean±SD). As controls, we used 8 healthy 279 

donors of both genders (4 males and 4 females) with a mean age of 8.6±2.3 280 

years (p= 0.4154). 281 

 282 
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Ethics statement 283 

Parents or the legal guardians of all controls and of the Brazilian patient 284 

have given full written informed consent for participation in the study. The study 285 

has been approved by the Ethics Committee of the Instituto Nacional de 286 

Cardiologia, number - 27044614.3.0000.5272 and the Department of Pediatrics 287 

from the University Hospital of the Federal University of Paraná. All procedures 288 

were in accordance with the ethical standards of the responsible local Ethics 289 

Committees and with the Helsinki Declaration of 1975, as revised in 2000. 290 

 291 

Metabolomics  292 

Blood samples in Brazil were collected using EDTA tubes and plasma 293 

was obtained by centrifugation for 10 min at 10.000g (Megafuge 8R, Thermo 294 

Scientific, USA). The Progeria Research Foundation disposed frozen plasma 295 

samples. For metabolomic experiments, plasma proteins were precipitated with 296 

methanol (3:1 (v/v)) at -20ºC for 1h. After protein precipitation, samples were 297 

centrifuged for 10 min at 14.000g, at 4ºC, supernatants were collected and 298 

dried in a SpeedVac Concentrator (SPD111v, Thermo Scientific, USA). The 299 

metabolites were then reconstituted with a dilution factor of 3 in methanol/water 300 

(1:9 (v/v)). 5nM of deuterated testosterone (D3-Testerone, purchased from LGC 301 

Standards; London, England) was spiked and used as an internal standard 302 

(ISTD) for coefficient of variance (CV) calculation. For quality control (QC), a 303 

pool of all the analyzed samples was prepared. 304 

 305 

Non-targeted metabolomics 306 

For liquid chromatography-tandem mass spectrometry (LC-MS) analysis, 307 

5µl volumes of each sample were analyzed in triplicate. As a blank control, 308 

methanol/water followed the same steps and was used as background for data 309 

analysis as previously described(15). Between samples, a washing protocol 310 

was performed. Samples were analyzed in a random sequence and the QC 311 

sample was analyzed 5 different times along the experiment. 312 

Samples were analyzed by Dionex Ultimate 3000 UHPLC coupled to a 313 

Q-Exactive Plus high-resolution mass spectrometer (Thermo Scientific, USA). 314 

LC separations were obtained using a 2.1 x 50mm ZORBAX 1.8µm C18 column 315 

(Agilent, USA). Mobile phases used were: phase A) water with 0.1% formic acid 316 
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and 5mM ammonium formate, and phase B) methanol with 0.1% formic acid. 317 

Total run time was 30 min. The first 4 min of the run consisted of a linear gradi-318 

ent from 10% to 60% of B phase, followed by a 20 min linear gradient from 60% 319 

to 98% of B. After reaching 98%, a stable run with 98% of B was sustained for 3 320 

minutes followed by 3 minutes of 10% of B solution to regenerate the column 321 

pumped at 450 μL/min with a column temperature of 55°C and the sample 322 

chamber held at 7°C acquired in positive mode. The data were obtained with 323 

the MS detector in full-scan mode (Full-MS) with the data-dependent acquisition 324 

(dd-MS2) for the top-10 most abundant ions per scan(15), with settings: In-325 

source CID 0.0 eV, micro scans = 1, resolution = 70,000, AGC targeted 1e6, 326 

maximum IT = 50 ms, scan range 67 to 1000 m/z, spectrum data = Profile. De-327 

tector setting for dd-MS2 were: micro scans = 1, resolution = 17,500, AGC tar-328 

geted 1e5, maximum IT = 100 ms, loop count = 10, isolation window 2.0 m/z, 329 

NCE 15, 35, 50, spectrum data = profile, underfill ratio = 1.5%, charge exclusion 330 

= unassigned, dynamic exclusion = 6s. 331 

 332 

Data analysis and statistics 333 

Data were analyzed by Compound Discoverer 2.1 (Thermo Fischer, 334 

USA). For compound detection a mass tolerance of 5 ppm was accepted to ex-335 

tract ions with a minimum of 1.000.000 peak intensity; for compound consolida-336 

tion, a 0.2 min of retention time tolerance was employed. The ChemSpider 337 

search including BioCyc and Human metabolome database (HMDB)(16) was 338 

used with 5ppm mass tolerance as well as the mzCloud search. In the non-339 

targeted method, the identification of nom-novel metabolites was based on ac-340 

curate mass and tandem mass spectra, without chemical standards references, 341 

providing a level 2 identification (putatively annotated). The samples were ana-342 

lyzed in triplicate. A principal component analysis (PCA) was performed to eval-343 

uate the experimental reproducibility and the QC samples were used to identify 344 

the reproducibility throughout experiments. Data of the triplicate injection exper-345 

iments were unified and the average was used as a unique value. Data were 346 

scaled by auto-scaling. For statistical analysis, group area data from control vs 347 

patient data fold change was calculated and the p-value per group was calcu-348 

lated by t-test. Compounds that presented p<0.05 after adjustment using p-349 

value (FDR) cutoff of 0.1 were considered statistically different. Chromatogram 350 
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visualization and base peak chromatogram figure generation were performed 351 

using MZmine 2.26 software(17) and metabolomics statistics data was per-352 

formed using MetaboAnalyst (18). The curated data matrix was used to gener-353 

ate a model for sample class discrimination via PCA and Partial Least Squares - 354 

Discriminant Analysis (PLS-DA) using online MetaboAnalyst (18).  The model 355 

quality was analyzed by the goodness-of-fit parameter (R2) and the goodness-356 

of-prediction parameter (Q2). For biomarker analysis, multivariate ROC curve 357 

based exploratory analysis was performed using a classification method (SVM) 358 

and feature ranking method (SVM built-in) applied to the statistically different 359 

metabolites between the two groups. 360 

 361 

Targeted metabolomics 362 

Amino-acid mixture standard was purchased from Sigma-Aldrich (São Paulo, 363 

Brazil) and D3-testosterone (ISTD) from LGC Standards (London, England). 364 

Amino acid quantification was carried out using a TSQ Quantiva from Thermo 365 

Scientific (San Jose, USA) with a Dionex Ultimate 3000 HPLC system 366 

(Germering, Germany). Chromatographic separation was achieved using a re-367 

versed phase column (C18 Zorbax, 50 × 3 mm, 1,7 μm, Agilent, Santa Clara, 368 

USA). The analyte was eluted from the column using a gradient with the eluent 369 

changing from 5% to 100% methanol in water within 3 min. The column was 370 

washed for 1.2 min in 100% methanol and equilibrated for 3 min at the initial 371 

eluent composition. All solvents contained 0.1% formic acid. The flow rate, col-372 

umn temperature, and injection volume were 300 μL/min, 40°C and 5 μL, re-373 

spectively.  374 

Amino-acids were monitored by selected reaction monitoring (SRM) in the posi-375 

tive ion mode. The transitions selected for amino-acid quantification and ISTD 376 

are listed in Table S2.  The curve was constructed using a mix of amino-acids in 377 

triplicate at 1; 2,5; 5; 10 and 20 nmol/mL. All samples were spiked with D3-378 

Testosterone (ISTD) at 5 ng/mL. The area ratios of the total extracted ion of the 379 

product ions and the product ion of the IS were plotted versus the concentra-380 

tion. 381 

 382 
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Statistical analysis 383 

 384 

Data are presented as mean ± SEM. Two-tailed Student's t-test was used. We 385 

did not use statistical methods to predetermine sample size; samples sizes 386 

were determined on the basis of sample availability. The non-targeted metabo-387 

lomics statistics is described in detail with the metabolomics data analysis 388 

methods above. Values of P < 0.05 were considered statistically significant us-389 

ing GraphPad Prism 6.0 (GraphPad Software, USA). 390 

 391 
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 415 

 416 

Figure legends 417 

Figure 1. Multivariate analysis of the metabolomics data 418 

a) Principal component analysis (PCA) 2D score plot and b) Partial Least 419 

Squares - Discriminant Analysis (PLS-DA) 2D score plot from the dataset with 420 

all of the features expected to be endogenous metabolites with statistical differ-421 

ence. The green (patients) and red (controls) areas represent the 95% confi-422 

dence interval regions for each group. 423 

Figure 2. Potential biomarkers in diagnosing HGPS with metabolomics  424 

a) Areas under the ROC curve (AUC) for different numbers of variables used to 425 

construct the ROC curves. The inset shows the number of variables used for 426 

the AUCs models. b) The most significant features of the ROC model 427 

downregulated (green) or upregulated (red) in patients with HGPS compared to 428 

controls. 429 

Figure 3. ROC curve analysis of individual biomarkers for HGPS based 430 

metabolomics 431 

Top ranked metabolites based on area under ROC curve (AUROC) identified by 432 

the non-targeted metabolomics analysis of HGPS plasma samples. The rectan-433 

gle to the right of the ROC curves show the individual values determined for 434 

each metabolite in the control and HGPS groups. The red line represents the 435 

mean value for the control group + two standard deviations.  436 

 437 

Figure 4. Targeted metabolomics performed by LC-MS/MS for biomarker 438 
validation 439 

a) Extracted ion chromatograms for arginine and internal standard (ISTD). Each 440 

colored line represents one sample analyzed showing intensity and retention 441 

time (RT) in minutes. b) Calibration curve for arginine quantification. c)  Graph 442 

shows arginine quantification in each group and bars represent SEM. * indi-443 

cates P < 0.05. 444 

 445 
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Figure 5. Metabolic pathways altered by HGPS 446 

Overview of Pathway Analysis highlighting potential functional relationships be-447 

tween the set of annotated metabolites identified to be significantly altered by 448 

HGPS. a) Pathways related to upregulated and b) downregulated metabolites in 449 

the HGPS patients. 450 

  451 
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Table 1. Significant dysregulated metabolites of HGPS  452 

Metabolite Class HMDB ID Fold 
Change 

p-value FDR 

LysoPC(17:0) 

 Glycerophospholipid 

HMDB00121
08 0.57 0.0179 0.12 

LysoPC(16:0) HMDB00103
82 0.50 0.0007 0.02 

PC(16:0/18:2) HMDB00112
11 0.45 0.0004 0.01 

Glucose 
Carbohydrates and 

carbohydrate 
conjugates 

HMDB00001
22 3.66 0.0001 0.01 

N(6)-Methyllysine 

Carboxylic acids and 
derivatives 

HMDB00020
38 7.74 0.0238 0.13 

Arginine HMDB0000
517 2.48 0.0056 0.06 

gamma-Aminobutyric acid HMDB0000
112 1.80 0.0413 0.19 

Aminolevulinic acid HMDB0001
149 0.77 0.0331 0.17 

Phenylalanine HMDB0000
159 0.54 0.0003 0.01 

N-Phenylacetylglutamine HMDB0634
4 0.45 0.0172 0.12 

Pyroglutamylglycine HMDB0061
890 0.32 0.0016 0.02 

Aceglutamide HMDB0006
029 0.29 0.0011 0.02 

Threoninyl-Aspartate HMDB0029
057 0.27 0.0005 0.01 

Oleoylcarnitine 

Fatty Acyl 

HMDB0005
065 0.44 0.0071 0.07 

L-Carnitine HMDB0000
062 1.72 0.0087 0.08 

Acetyl-L-carnitine HMDB0000
201 11.23 0.0312 0.16 

3-Dehydroxycarnitine HMDB0006
831 0.75 0.0275 0.15 

Palmitoylcarnitine HMDB0000
222 0.64 0.0263 0.15 

Decanoylcarnitine HMDB0000
651 0.47 0.0411 0.19 
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9-Decenoylcarnitine HMDB0013
205 0.44 0.0005 0.01 

Phosphatidylcholine(16:0/16:0) 

Glycerophospholipids 

HMDB0011
206 0.67 0.0015 0.02 

1-octadecylglycero-3-
phosphocholine 

HMDB0062
195 0.57 0.0066 0.07 

Glycerylphosphorylcholine HMDB0000
086 0.51 0.0049 0.06 

Dipalmitoylphosphatidylcholin
e 

HMDB0000
564 0.47 0.0029 0.04 

Lactide 
Hydroxy acids and 

derivatives 
not found 3.62 0.0001 0.01 

5-Hydroxytryptophol Indoles and derivatives HMDB0001
855 6.65 0.0121 0.10 

4,6-Dioxoheptanoic acid 
Keto acids and 

derivatives   
HMDB0063

5 2.04 0.0032 0.04 

LysoPC(P-16:0) Lysophospholipid HMDB0010
407 0.35 0.0003 0.01 

Choline 
Organonitrogen 

compounds 
HMDB0000

097 0.57 0.0002 0.01 

PC(o-18:1(11Z)/16:0) 

Phosphatidylcholine 

HMDB0013
424 0.77 0.0342 0.17 

PC(O-16:0/18:2(9Z,12Z)) HMDB0011
151 0.51 0.0074 0.07 

N-Methylethanolaminium 
phosphate 

Phosphoethanolamine HMDB0060
173 0.46 0.0367 0.18 

(3beta,19alpha)-3,19,23,24-
Tetrahydroxy-12-oleanen-28-

oic acid 
Prenol lipids HMDB0040

784 0.23 0.0168 0.12 

Pyridoxamine 
Pyridines and 

derivatives 
HMDB0001

431 0.56 0.0142 0.11 

Citicoline Pyrimidine nucleotides HMDB0001
413 0.55 0.0055 0.06 

13-cis retinol Retinoids HMDB0006
221 2.16 0.0156 0.12 

Palmitoyl sphingomyelin Sphingolipids HMDB0061
712 0.70 0.0136 0.11 

Pregnenolone  
Steroids and steroid 

derivatives 
HMDB0000

253 2.10 0.0188 0.12 

(3beta,24R,24'R)-fucosterol 
epoxide 

Sterol Lipids not found 0.43 0.0389 0.19 

Bilirubin 
Tetrapyrroles and 

derivatives 
HMDB0000

054 6.34 0.0128 0.10 

 453 
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