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Abstract 
The acceleration of DNA sequencing in patients and population samples has resulted in unprecedented 
catalogues of human genetic variation, but the interpretation of rare genetic variants discovered using such 
technologies remains extremely challenging. A striking example of this challenge is the existence of disruptive 
variants in dosage-sensitive disease genes, even in apparently healthy individuals. Through manual curation of 
putative loss of function (pLoF) variants in haploinsufficient disease genes in the Genome Aggregation 
Database (gnomAD)(1), we show that one explanation for this paradox involves alternative mRNA splicing, 
which allows exons of a gene to be expressed at varying levels across cell types. Currently, no existing 
annotation tool systematically incorporates this exon expression information into variant interpretation. Here, 
we develop a transcript-level annotation metric, the proportion expressed across transcripts (pext), which 
summarizes isoform quantifications for variants. We calculate this metric using 11,706 tissue samples from the 
Genotype Tissue Expression project(2) (GTEx) and show that it clearly differentiates between weakly and 
highly evolutionarily conserved exons, a proxy for functional importance. We demonstrate that expression-
based annotation selectively filters 22.8% of falsely annotated pLoF variants found in haploinsufficient disease 
genes in gnomAD, while removing less than 4% of high-confidence pathogenic variants in the same genes. 
Finally, we apply our expression filter to the analysis of de novo variants in patients with autism spectrum 
disorder (ASD) and developmental disorders and intellectual disability (DD/ID) to show that pLoF variants in 
weakly expressed regions have effect sizes similar to those of synonymous variants, while pLoF variants in 
highly expressed exons are most strongly enriched among cases versus controls. Our annotation is fast, 
flexible, and generalizable, making it possible for any variant file to be annotated with any isoform expression 
dataset, and will be valuable for rare disease diagnosis, rare variant burden analyses in complex disorders, 
and curation and prioritization of variants in recall-by-genotype studies. 
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A primary challenge in the use of genome and exome sequencing to predict human phenotypes is t
capacity to identify genetic variation exceeds our ability to interpret their functional impact (3, 4
underappreciated source of variability for variant interpretation involves differences in alternative 
splicing, which enables exons to be expressed at different levels across tissues. These expression diffe
mean that variants in different regions of a gene can have different phenotypic outcomes depending
isoforms they affect. For example, variants occurring in an exon differentially included in two isofo
CACNA1C with diverse tissue expression patterns result in distinct types of Timothy syndrome (5). Path
variants in the isoform that exhibits multi-tissue expression result in a multi-system disorder (5-7), w
those on the isoform predominantly expressed in heart result in more severe and specific cardiac defe
In addition, Mendelian variants have been found on tissue-specific isoforms (9, 10) and isoform exp
levels in TTN have been used to show that pLoF variants found in healthy controls occur in exons t
absent from dominantly expressed isoforms, whereas those in dilated cardiomyopathy patients oc
constitutive exons (11), emphasizing the utility of exon expression information for variant interpretation. 
 
We find that isoform diversity is also a contributor to the paradoxical finding of disruptive variants in d
sensitive disease genes in ostensibly healthy individuals. In the gnomAD database, we identify 401 high
pLoF variants that pass both sequencing and annotation quality filters in 61 haploinsufficient disease
where heterozygous pLoF variants are established to cause severe developmental delay phenotypes w
penetrance (Methods). Given the severity of these phenotypes and their extremely low worldwide prev
ranging from 1 in 10,000 to less than 1 in a million, very few, if any true pLoF variants would be expecte
found in the gnomAD population. As such, most or all of these observed pLoF variants are likely
sequencing or annotation errors (12). Manual curation of these variants reveals common error mod
result in likely misannotation of pLoFs, with diversity of transcript structure, mediated by variants falling 
confidence transcripts, emerging as a major consideration (Figure 1, Supplementary Figure 1, Supplem
Tables 1-3). However, no existing tools systematically incorporate information on transcript expressi
variant interpretation. 
 

Figure 1: Curation of pLoF variants in haploinsufficient disease genes found in gnomAD reveals transcript errors as
confounding error mode in variant annotation. We identified and manually curated 401 pLoF variants in the gnomAD data
haploinsufficient severe developmental delay genes and flagged any reason the pLoF may not be a true LoF variant. Top pl
the frequency of each error mode present in the 306 variants classified as unlikely to be a true LoF. Transcript errors eme
major putative error mode in the annotation of these pLoF variants. Beeswarm plot on bottom shows the average pext scor
GTEx tissues presented in the manuscript for each variant in the error categories. This shows that pext values are discriminat
for variants that are annotated as possible transcript errors. 
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The advent of large-scale transcriptome sequencing datasets, such as GTEx (2), provides an opportunity to 
incorporate cross-tissue exon expression into variant interpretation. However, the current formats of these 
databases do not readily allow for unbiased estimation of exon expression. The GTEx web browser offers 
information on exon-level read pileup across tissues, but this approach is confounded by technical artifacts 
such as 3’ bias (13) (preferential coverage of bases close to the 3’ end of a transcript; Supplementary Figure 
2A). Such systematic biases mean that simple exon-level coverage in a transcriptome dataset cannot be used 
as a reliable proxy for exon expression, especially in longer genes (Figure 2A, Supplementary Figure 2B). 
 
Isoform quantification tools provide estimates of isoform expression levels that correct, albeit imperfectly(13, 
14), for confounding by 3’ bias as well as other technical artifacts such as isoform length, isoform GC content, 
and transcript sequence complexity (15-17). Here, we utilize isoform-level quantifications from 11,706 tissue 
samples from the GTEx v7 dataset to derive an annotation-specific expression metric. For each tissue, we 
annotate each variant with the expression of every possible consequence across all transcripts, which can be 
used to summarize expression in any combination of tissues of interest. We first compute the median 
expression of a transcript across tissue samples, and define the expression of a given variant as the sum of 
the expression of all transcripts for which the variant has the same annotation (Figure 2A, Supplementary 

Figure 3A). 
Figure 2: Summary of transcript-expression based annotation method A. Overview of transcript aware annotation. Most genes 
have many annotated isoforms, which can have varying expression patterns across tissues. Utilizing number of reads aligning to exonic 
regions in transcriptome datasets as a proxy for exon expression (top panel black) has confounding effects due to 3’ bias. In this 
example, while exon 3 and 8 may have different expression levels in Brain – Cortex, the number of reads aligning to the two exons are 
similar, masking exon usage differences. Transcript-aware annotation defines the expression of every variant as the sum of transcripts 
that have the same annotation. The resulting transcript-level expression plots do not exhibit 3’ bias, and reveal exon usage differences 
across tissues. B. Example of utility of transcript-expression based annotation. There are 20 high quality pLoF variants in the 
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haploinsufficient developmental delay gene TCF4 in gnomAD, annotated as dashed lines and arrows. All 20 variants have no evidence 
of expression in the GTEx dataset, suggesting functional TCF4 protein can be made in the presence of these variants. 
the expression of the annotation to the total gene expression, we define a metric (proportion expression across 
transcripts, or pext), which can be interpreted as a measure of the proportion of the total transcriptional output 
from a gene that would be affected by the variant annotation in question (Supplementary Figure 3B). 
 
The pext metric allows for quick visualization of the expression of exons across a gene. Figure 2B shows 
TCF4, a haploinsufficient gene in which heterozygous variants result in Pitt-Hopkins syndrome (18), a highly 
penetrant disorder associated with severe developmental delay. This gene harbors 20 unique high quality 
pLoF mutations across 56 individuals in the gnomAD database. All 20 variants lie on exons with no evidence of 
expression across the GTEx dataset (Figure 2B, Supplementary Figure 4) indicating that functional TCF4 
protein can be made in the presence of these variants. This visualization is now available for all genes in the 
gnomAD browser (gnomad.broadinstitute.org), and can aid in rapid identification of variants occurring on exons 
with little to no evidence of expression in GTEx. 
  
To explore whether expression-based annotation marks functionally important regions, we compared the 
distribution of the pext metric in evolutionarily conserved and unconserved regions using phyloCSF (19). Exons 
with patterns of multi-species conservation consistent with coding regions have higher phyloCSF scores, and 
should exhibit detectable expression patterns, whereas regions with lower scores will be enriched for incorrect 
exon annotations, which are expected to have little evidence of expression in a population transcriptome 
dataset. As expected, we observe significantly lower expression for unconserved regions, and near-constitutive 
expression in highly conserved regions (Figure 3A, Supplementary Figure 5A). This difference remains 
statistically significant after correcting for exon length (logistic regression p < 1.0 x 10-100), which can influence 
both phyloCSF scores and isoform quantifications, indicating that transcript expression-aware annotation 
marks functionally relevant exonic regions.  
 
While the metrics are associated, we find that pext provides orthogonal information to conservation for variant 
interpretation. For example, regions with low evidence of conservation but high expression (in Figure 3A) are 
enriched for genes in immune-related pathways (Methods), which are selected for diversity but represent true 
coding regions. In addition, the pext value is higher for pLoF variants annotated as high confidence (HC) by the 
Loss of Function Transcript Effect Estimator(1) (LOFTEE) with no additional flags than those flagged as having 
found on unlikely open reading frames or weakly conserved regions (Figure 3B, Supplementary Figure 5B). 
However, LOFTEE-HC variants with no flags can also have low pext values, suggesting transcript-expression 
aware annotation adds additional information to the currently available interpretation toolkit. 
 
We undertook manual evaluation of 128 regions marked as unexpressed (mean pext < 0.1 in all tissues and in 
GTEx brain) in 61 haploinsufficient genes following the GENCODE manual annotation workflow(20) to evaluate 
the annotation quality in these coding sequence (CDS) regions. A third of flagged regions were associated with 
low quality models that have been removed or switched to non-coding biotypes in subsequent GENCODE 
releases (Supplementary Figure 6) while 70% of the remaining regions correspond to models that satisfy only 
minimum criteria for inclusion in the gene set, corresponding to ‘putative’ annotations that lack markers for 
CDS functionality (Supplementary Table 4). Nonetheless, we find support for some highly conserved CDS 
regions, several of which show evidence of transcription in fetal tissues, underlining the importance of 
incorporating multiple isoform expression datasets for interpretation (Supplementary Figure 6D).  
 
Nonsynonymous variants found on constitutively expressed regions would be expected to be more deleterious 
than those on regions with no evidence of expression. To test this, we defined expression bins based on the 
average pext value across GTEx tissues where an average pext value less than 0.1 was defined as low (or 
unexpressed), above 0.9 as high (or near-constitutive) and intermediate values as medium expression. We 
compared the mutability-adjusted proportion singleton (MAPS), a measure of negative selection on variant 
classes(21), partitioned on the LoF Observed Upper-bound Fraction (LOEUF) decile, a measure of constraint 
against pLoF variants in the gnomAD dataset(1) in each of these expression bins. MAPS scores differed 
substantially between pLoF variants found on low-expressed and high-expressed regions in genes intolerant to 
pLoF variation (Figure 3C, Supplementary Figure 5C). This information is complementary to existing variant 
prioritization tools such as PolyPhen-2(22) (Supplementary Figure 5D). This skew of nonsynonymous variation 
in high-expressed regions suggests that variation arising in such exons tends be more deleterious, whereas 
nonsynonymous variants on regions with low expression are similar to missense variants in their inferred 
deleteriousness. 
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Figure 3: Functional validation of transcript-expression based annotation A. We define highly conserved and unconserved 
regions and compared the expression status of these regions across GTEx. Highly conserved regions are enriched for having near-
constitutive expression whereas unconserved regions are enriched for having little to no usage across GTEx. This difference is 
significant after correcting for gene length (logistic regression p value < 1 x 10-100). We note that unconserved regions with high levels of 
expression (pext > 0.9) are enriched for immune-related genes, which are selected for diversity and thus have low conservation, but 
represent true coding regions. B. Transcript-expression based annotation recapitulates, and adds information to, existing interpretation 
tools. LOFTEE-HC pLoF variants in gnomAD with no flags are enriched for higher pext values, whereas HC pLoF variants falling on low 
phyloCSF or unlikely ORF regions are enriched for low expression. However, HC-pLoF variants can also be filtered based on a low 
pext score. Red dots represent median pext value across GTEx tissues. C. Nonsynonymous variants found on near-constitutive regions 
tend to be more deleterious. We compared the mutability adjusted proportion singleton (MAPS) score for variants with low (<0.1), 
medium (0.1 ≤ pext ≤ 0.9) and high (pext > 0.9) expression. Variants with near-constitutive expression have a higher MAPS score, 
indicating higher deleteriousness than those with little to no evidence of expression. Dashed grey and orange line represent MAPS 
values for all gnomAD missense and all synonymous variants, respectively. 
 
To evaluate the utility of transcript expression-based annotation in Mendelian variant interpretation, we 
assessed the number of variants that would be filtered based on a pext cutoff of <0.1 (low expression) across 
GTEx tissues for three gene sets. Firstly, we evaluated high-quality pLoF variants in the 61 manually curated 
haploinsufficient genes in gnomAD and ClinVar(23). The low pext expression bin resulted in filtering of 22.8% 
of pLoF variants in haploinsufficient developmental delay genes in gnomAD, but only 3.8% of high-quality 
pathogenic variants in ClinVar (Figure 4A; p = 4.7 x 10-35 Methods). We next compared pLoF variants in 
autosomal recessive disease genes found in a homozygous state in at least one individual in gnomAD and any 
pLoF variant in these genes in ClinVar and observed similar results: expression-based annotation filters 30.0% 
of variants in gnomAD while only filtering 3.2% of variants in ClinVar (Figure 4B; p = 3.5 x 10-61).  
 
Finally, we evaluated gnomAD pLoF variants in genes that are constrained against pLoF variation(1) (LOEUF 
score < 0.35). Given that these genes are depleted for loss-of-function variation in the general population, we 
expect the observed pLoF variants in these genes to be enriched for annotation errors. We compared the 
proportion filtered to synonymous variants in the same genes, which we expect to be randomly distributed. Our 
metric removes 16.8% of pLoF variants in constrained genes, but only 5.2% of synonymous variants (Figure 
4C; p < 1.0 x 10-100). In all cases, the vast majority of filtered variants were otherwise high-confidence with no 
LOFTEE annotation flags, suggesting again that pext provided additional information to existing variant 
prioritization tools in removing annotation errors (Supplementary Figure 7). 
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Figure 4: Transcript-expression based annotation aids Mendelian variant interpretation. A. Comparison of proportion of high 
quality pLoF variants filtered in a curated list of 61 haploinsufficient developmental delays genes in gnomAD vs ClinVar with a cutoff of 
average pext across GTEx ≤ 0.1 (low expression). Expression-based filtering results in removal of 22.8% of gnomAD pLoFs and 3.8% 
of confidently curated set of pLoFs in ClinVar. B. Expression-based annotation filters 30% of pLoF variants found in gnomAD in a 
homozygous state in at least one individual, and 3.2% of any pLoF variants found in the same genes in ClinVar. C. We extended this 
filtering approach to pLoF and synonymous variants in gnomAD pLoF-intolerant genes (defined by LOEF < 0.35). This filters 16.8% LoF 
and 5.2% of synonymous variants. Numbers below bar plots indicate the total number of high-quality variants considered in each group. 
For pLoFs only LOFTEE-HC variants were considered, p-values calculated from fisher’s exact test for counts.  
 
To explore the benefits of this approach for rare variant analyses, we applied pext binning to burden testing of 
de novo variants in patients with developmental delay/intellectual disability (DD/ID) or autism spectrum 
disorder (ASD) using a set of 23,970 de novo variants collated from several studies including the Deciphering 
Developmental Disorders (DDD) project and the Autism Sequencing Consortium (ASC)(24-29). We find that de 
novo pLoF variants in patients with DD/ID in low-expressed regions have effect sizes similar to those of 
synonymous variants (rate ratio, denoted as RR, of low-expressed pLoFs = 1.08, p = 0.90) whereas pLoF 
variants in highly expressed regions have much larger effect sizes (RR = 4.64, p = 3.74 x 10-38; Figure 5A). 
This observation is consistent for de novo variants in autism (RR for low-expressed pLoFs = 0.80, p = 0.47; RR 
for high-expressed pLoFs = 2.11, p = 8.2 x 10-8, Figure 5B) and congenital heart disease with co-morbid 
neurodevelopmental delay (Supplementary Figure 8A) as well as rare variants (AC ≤ 10) identified in highly 
constrained genes in the large iPSYCH case/control study of Danish patients with autism spectrum disorder 
and attention-deficit/hyperactivity disorder (Supplementary Figure 8B). Overall, we consistently observe low-
expressed pLoFs to have effect sizes similar to those of synonymous variants, with pLoF variants in 
constitutive regions having larger effect sizes, suggesting that incorporating transcript expression-aware 
annotation in rare variant studies can boost power for gene discovery. 

Figure 5: Application of transcript-expression based annotation to de novo variant analyses in A. developmental delay and/or 
intellectual disability (DD/ID) and B. autism spectrum disorder (ASD). We find that de novo pLoF variants found on near consitutively 
expressed regions in GTEx brain tissues have larger effect sizes than de novo LoF variants in weakly expressed regions in both 
disorders. Strikingly, de novo pLoF variants found on regions with little evidence for expression are equally distributed in cases vs 
controls as de novo synonymous variants, suggesting such variants can be removed from gene burden testing analyses to boost 
discovery power. The high pext expression bin contains 46.1% and 42.3%, and the low expression bin contains 4.0% and 6.0% of pLoF 
variants found in DD/ID and ASD patients, respectively. Rate ratio represents estimate from the poisson exact test. 
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We have described the development and validation of a transcript expression-based annotation framework to 
integrate results from transcriptome sequencing experiments into clinical variant interpretation. While our initial 
analysis utilizes GTEx, our method can be used with any isoform expression dataset to annotate any variant 
file rapidly in the scalable software framework Hail (https://hail.is). For example, annotation of >120,000 
gnomAD individuals with GTEx takes under an hour using 60 cores, at a cost of about $5 on public cloud 
compute, which can be further scaled to larger datasets. In addition, the annotations we provide are flexible: 
while we have described the use of average transcript-level expression across many tissues, alternative 
approaches such as using maximum expression across any tissue, may prove useful depending on variant 
interpretation goals (Supplementary Figures 9 & 10).  
 
We note that while this metric successfully discriminates between near-constitutive and low expression levels, 
which are useful for prioritizing and filtering variants, respectively, regions with intermediate expression levels 
are more challenging to interpret. However, we hypothesize directed analyses of intermediate expression 
levels may help elucidate the role of alternative splicing in phenotypic diversity (30, 31). In addition, while we 
have binned average pext scores across GTEx tissues into low, medium and high expression, different genes 
will likely have varying optimal tissues and thresholds for variant interpretation. Regions tagged as low 
expression are often corroborated by expert opinion of CDS curation, but domain knowledge of a gene will 
outperform this summary metric. 

An important caveat in our approach is the imprecision of isoform quantification methods using short-read 
transcriptome data. However, we note that repeating key analyses in the manuscript with a different isoform 
quantification tool showed consistent results (Methods, Supplementary Figure 11), suggesting robustness to 
the precise pipeline used. The utility of this framework will increase as our ability to quantify isoform expression 
across tissues improves, including refinement of methods and gene models, as well as availability of long-read 
RNA-seq data from human tissues. In addition, improvement of single-cell RNA-seq technologies and 
generation of data across human tissues will provide insight into cell type-specific exon usage for incorporation 
into variant interpretation27. 

The code used to generate pext is available as open source software (https://github.com/macarthur-
lab/tx_annotation). In addition, we provide a precomputed file of the transcript expression value for every 
possible single nucleotide variant in the human genome. This metric has already proven useful in variant 
curation for drug target identification (32) and for filtering variants for identification of human knockouts(1). 
Overall, our metric can be incorporated into variant interpretation in Mendelian disease pipelines, rare variant 
burden analyses, and the prioritization of variants for recall-by-genotype studies. 
 
Methods  
  
Data and code availability 
We utilized the gnomAD v.2.1.1 sites Hail 0.2 (https://hail.is) table which is accessible publicly at gs://gnomad-
public/release/2.1.1 and at https://gnomad.broadinstitute.org. The GTEx v7 gene and isoform expression data 
were downloaded from the GTEx portal (gtexportal.org). The GTEx pipeline for isoform quantification is 
available publicly (https://github.com/broadinstitute/gtex-pipeline/) and briefly involves 2-pass alignment with 
STAR v2.4.2a(33), gene expression quantification with RNA-SeQC v1.1.8(34), and isoform quantification with 
RSEM v1.2.22. The LOEUF constraint file was downloaded from gs://gnomad-resources/lof_paper/. Variants 
used in all gnomAD analyses in the manuscript passed random forest filtering, and all pLoF variants were 
annotated as high confidence (HC) by LOFTEE v.1.0, which is described in an accompanying manuscript(1). 
All files used in the analyses in the manuscript are available in gs://gnomad-public/papers/2019-tx-annotation/. 
Scripts to QC the gnomAD dataset are available at https://github.com/macarthur-lab/gnomad_qc and the 
scripts to generate files for the analyses are available at https://github.com/macarthur-lab/tx_annotation. 
 
Curation of pLoF variants in haploinsufficient developmental disease genes  
For identification of haploinsufficient developmental delay genes, we selected genes curated by the ClinGen 
Dosage Sensitivity Working Group(35); 58 of the 61 genes had a score of 3 with sufficient evidence for 
pathogenicity, while two genes (CHAMP1, CTCF) had a score of 2 (some evidence) and one gene (RERE) 
was not yet scored. The penetrance of pathogenic variants in each gene was reviewed in the literature, and 
only genes with >75% reported penetrance were included. These conditions are those too severe to expect to 
see an individual in gnomAD (likely unable to consent for a study without guardianship). The 61 genes include 
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50 autosomal genes of high severity and high penetrance and 11 genes on chromosome X where the 
phenotype is expected to be severe or lethal in males and moderate to severe in females. The resulting gene 
list is available at gs://gnomad-public/papers/2019-tx-annotation/data/gene_lists/HI_genes_100417.tsv. 
 
We extracted pLoF variants, defined as essential splice acceptor, essential splice donor, stop gained, and 
frameshift variants, identified in the 61 haploinsufficient disease genes from the gnomAD v2.1.1 exome and 
genome sites tables, and considered only those pLoF variants that passed random forest filtering in the 
gnomAD dataset, and were annotated as high confidence (HC) by LOFTEE v1.0. Of 61 genes, 55 had at least 
one high quality pLoF available in gnomAD. We performed manual curation of 401 pLoF variants using a web-
based curation portal to identify any reason a pLoF may have been a variant calling or annotation error, and 
categorized the likelihood of each variant being a true LoF. 
  
Evidence for classifying an LoF variant as artifactual was categorized into the following groups: mapping error, 
strand bias, reference error, genotyping error, homopolymer sequence, in-frame multi-nucleotide variant or 
frame-restoring indel, essential splice site rescue, minority of transcripts, weak exon conservation, last exon, 
and other annotation error. All possible reasons talso o reject a LoF consequence were flagged, even when a 
single criterion would categorize the variant as not LoF. Variants were then categorized as LoF, likely LoF, 
likely not LoF, and not LoF based on criteria outlined in Supplementary Table 2. Supplementary Figure 1A 
shows the distribution of the LoF verdicts for the 401 pLoF variants. 
  
Technical errors comprised genotyping errors, strand biases, reference errors, and repetitive regions that could 
be detected by visual inspection of reads in the Integrative Genomics Viewer(36) (IGV) and from the UCSC 
genome browser(37). Genotyping errors comprised skewed allele balances (conservative cutoff of ≤35%), low 
complexity sequences, GC rich regions, homopolymer tracts (≥ 6 base pairs or ≥ 6 trinucleotide repeats) and 
low quality metrics (genotype quality, or GQ, < 20). Strand bias was flagged when a variant was skewed 
preferentially on the forward or reverse strand, or when the majority (>90%) of a given strand covered a region; 
this was often observed around intron/exon boundaries. Strand biases despite balanced coverage of the 
forward and reverse strands were weighted towards likely not LoF, whereas a strand bias due to skewed 
strand coverage were weighted alongside other genotyping errors. Reference errors were uncommon, but 
identified by a small deletion in a given exon, posing as a <5 base pair intron. Most genotyping errors and 
strand biases in isolation were not deemed critical in deciding whether a variant was likely not LoF or not LoF, 
with the exception of allele balance ≤25%. Mapping errors were often identified by an enrichment of complex 
variation surrounding a variant of interest. Furthermore, the UCSC browser was used to highlight mapping 
discrepancies, such as self-chain alignments, segmental duplications, simple tandem repeats, and 
microsatellite regions.  
  
In-frame multi-nucleotide variants (MNVs), essential splice site rescue, and frame-restoring insertion-deletions 
are rescue events that are predicted to restore gene function. MNVs were visualized in IGV and cross checked 
with codons from the UCSC browser; in frame MNVs that rescued stop codons were scored as not LoF. 
Essential splice site rescue occurs when an in frame alternative donor or acceptor site is present, which likely 
has a minimal effect on the transcript. Thirty-six base pairs upstream and downstream of the splice variant 
were assessed for splice site rescue. Cryptic splice sites within 6 base pairs of the splice variant were 
considered a complete rescue, rendering the variant not LoF. Rescue sites > 6 base pairs away but within +/- 
20 base pairs were weighted with less confidence, scoring as likely not LoF. All potential splice site rescues 
were validated using Alamut v.2.11 (https://www.interactive-biosoftware.com/alamut-visual/). Frame-restoring 
indels were identified by scanning approximately +/- 80 base pairs from the annotated indel and counting any 
insertions/deletions to assess if the frame would be restored.  
  
Transcript errors encompass issues surrounding alternative transcripts, variants within a terminal coding exon, 
poorly conserved exons, and re-initiation events. Coding variants that occupied the minority (<50%) of NCBI 
coding RefSeq transcripts for a given gene were considered not LoF. These variants often affected poorly 
conserved exons, as determined by PhyloP(38), PhyloCSF(19), and visualization in the UCSC browser(37). 
The only exception to the minority of transcript criteria were cases where the exon was well conserved, which 
relegated the categorization to likely not LoF. Variants within the last coding exon, or within 50 base pairs of 
the penultimate coding exon were also considered not LoF, unless 25% < x <50% of the coding sequence was 
affected, in which case the variant was deemed likely not LoF. If >50% of the coding sequence was disrupted 
by a variant in the last exon, this was deemed likely LoF. Other transcript errors included: re-initiation errors; 
upstream stop codons of a given LoF variant; variants that fell on exactly 50% of coding RefSeq transcripts; 
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and/or partial exon conservation. Re-initiation events were flagged when a methionine downstream of the 
variant in the first coding exon was predicted to restart transcription, and were predicted to be likely not LoF. 
Variants occurring after a stop codon in the last coding exon were considered not LoF, particularly across the 
region of the exon or transcript in question. Error categories were grouped for Figure 1 as follows: Minority of 
transcripts and weak exon conservation were grouped as transcript errors, genotyping errors and 
homopolymers as sequencing errors, essential splice rescue and MNV grouped as rescue and strand bias was 
included in other annotation errors. 
 
The criteria above were strictly adhered throughout and manual curation was performed by two independent 
reviewers to ensure maximum consistency and minimize human error. Any discordance in curation was re-
curated by both curators together and resolved.  Full results of manual curation are available in Supplementary 
Table 3. 
 
Calculation of transcript-expression aware annotation 
We first imported the GTEx v7 isoform quantifications into Hail and calculated the median expression of every 
transcript per tissue. This precomputed summary isoform expression matrix is available for GTEx v7 in 
gs://gnomad-public/papers/2019-tx-annotation/data/GRCH37_hg19/. We also import and annotate a variant file 
with the Variant Effect Predictor (VEP) version 85(39) against Gencode v19(20), implemented in Hail with the 
LOFTEE v1.0 plugin. 
  
We use the transcript consequences VEP field to calculate the sum of isoform expression for variant 
annotations, i.e. the annotation-level expression across transcripts (ext). For variants that have multiple 
consequences for one transcript (for example, a SNV that is both a missense and a splice region variant on 
one transcript) we use the worst consequence, ordered by VEP (in this example, missense takes precedence 
over splice region).  We filter the consequences to those only occurring on protein coding transcripts. Full 
ordering of the VEP consequences is available at: 
useast.ensembl.org/info/genome/variation/prediction/predicted_data.html 
  
We then sum the expression of every transcript per variant, for every combination of consequence, LOFTEE 
filter, and LOFTEE flag for every tissue (Supplementary Figure 3A). For example, if a SNV is synonymous on 
ENST1, a LOFTEE HC stop-gained on ENST3 and ENST4, and LOFTEE low-confidence (LC) stop gained 
variant on ENST 5 and ENST6, the ext values will be synonymous: ENST1, stop-gained HC: ENST 3 + 
ENST4, and stop-gained LC: ENST5 + ENST6 per tissue. This can be computed with the tx_annotate() 
function by setting the tx_annotation_type to “expression”. We foresee the non-normalized ext values to be 
useful when only considering one tissue of interest. 
  
To allow for taking average expression values across tissues of interest, we normalize the expression value for 
a given value to the total expression of the gene on which the variant is found. This is carried out by dividing 
the ext value with the sum of the expression of all transcripts per tissue in transcripts-per-million (TPM) 
v1.1.8(34) (Supplementary Figure 3B). The resulting pext (proportion expression across transcript) value can 
be interpreted as the proportion of the total transcriptional output from a gene that would be affected by the 
given variant annotation in question. If the gene expression value (and thus the denominator) in a given tissue 
is 0, the pext value will not be available for that tissue.  
 
We note that for a minority of genes, when RSEM assigns higher relative expression to non-coding transcripts, 
the sum of the value of coding transcripts can be much smaller than the gene expression value for the 
transcript, resulting in low pext scores for all coding variants in the gene, and thus resulting in possible filtering 
of all variants for a given gene. In many cases this appears to be the result of spurious non-coding transcripts 
with a high degree of exon overlap with true coding transcripts. To prevent this artifact from affecting our 
analyses, we first calculated the maximum pext score for all variants across all protein coding genes, and 
removed any gene where the maximum pext score was below 0.2. This resulted in the filtering of 668 genes, 
representing 3.3% of all genes analyzed. We note that there is no overlap with the 668 genes and the 
haploinsufficient gene list, 97 of the filtered genes are present in OMIM (representing 1.5% of the OMIM gene 
list) and 42 filtered genes are considered constrained (representing 1.4% of LOEUF < 0.35, or constrained, 
genes) thus having low impact on variant interpretation in the context of disease associations. 
 
When taking averages across tissues, such unavailable pext values are not considered (ie. when taking the 
mean across tissues, we remove NAs). This value can be computed with the tx_annotate() function by setting 
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the tx_annotation_type to “proportion”. For the analyses in this manuscript, we remove reproduction-associated 
GTEx tissues (endocervix, ectocervix, fallopian tube, prostate, uterus, ovary, testes, vagina), cell lines 
(transformed fibroblasts, transformed lymphocytes) and any tissue with less than one hundred samples 
(bladder, brain Cervicalc-1 spinal cord, brain substantia nigra, kidney cortex, minor salivary gland) resulting in 
the use of 38 GTEx tissues. 
 
The full transcript-expression aware annotation pipeline, implemented in Hail 0.2, is fully available at 
https://github.com/macarthur-lab/tx_annotation with commands laid out for analyses in the manuscript. Passing 
a Hail table through the tx_annotate() function returns the same table with a new field entitled “tx_annotation” 
which provides either the ext or pext value per variant-annotation pair, depending on parameter choice. We 
provide a helper function to extract the worst consequence and the associated expression values for these 
annotations. All analyses in the manuscript are based on the worst consequence of variant, ordered by 
VEP(39). 
  
Functional validation of transcript-expression aware annotation 
Conservation analysis was performed using phyloCSF scores using the same file utilized for the LOFTEE 
plugin, available publicly in gs://gnomad-public/papers/2019-tx-
annotation/data/other_data/phylocsf_data.tsv.bgz . We denoted exons with a phyloCSF max open reading 
frame (ORF) score > 1000 as highly conserved and those with phyloCSF max ORF score < -100 as lowly 
conserved (Supplementary Figure 5A) and evaluated their average usage in GTEx.  
 
Using the base-level pext values that are used in the gnomAD browser, we filtered to intervals with high or low 
conservation, and calculated the average pext value in the interval. To evaluate regions with low conservation 
but high expression, we identified genes harboring unconserved regions with the pext value > 0.9 for pathway 
enrichment analysis and used the web browser for FUMA GENE2FUNC feature(40), which incorporates 
Reactome(41), KEGG(42), Gene Ontology(43) (GO) as well as other ontologies. Default parameters were 
used for FUMA, with all protein coding genes as the background list. Results from FUMA pathway analysis are 
available in Supplementary Figure 12, and full results are available in Supplementary Table 5.  
  
Analysis of pext values for LOFTEE flags and the MAPS calculation were performed utilizing the gnomAD 
v2.1.1 exome dataset. Calculation of MAPS scores was previously described in Lek et al. 2016(21) and is 
implemented as a Hail module, as described in Karczewski et al. 2019(1). MAPS is a relative metric, and 
cannot be compared across datasets, but is a useful summary metric for the frequency spectrum, indicating 
deleteriousness as inferred from rarity of variation (high values of MAPS correspond to lower frequency, 
suggesting the action of negative selection at more deleterious sites). The MAPS scores were calculated on 
the gnomAD v.2.1.1 dataset partitioning upon the LOEUF score and expression bin. The script for generating 
MAPs scores is available in the tx-annotation Github repository under 
/analyses/maps/maps_submit_per_class.py 
 
Manual evaluation of unexpressed regions in haploinsufficient developmental delay genes using the 
GENCODE workflow 
As an orthogonal evaluation of regions flagged as unexpressed with the pext metric, we identified any region in 
61 haploinsufficient disease genes with a mean pext value < 0.1 in all GTEx tissues and in GTEx brain 
samples, due to the relevance of brain tissues for these disorders, regardless of mutational burden in gnomAD. 
The resulting list of 128 regions was evaluated by the HAVANA manual annotation group of the GENCODE 
project(20).  
 
The manual evaluation first established whether the transcript model corresponding to the region in question 
was correct in terms of structure, comparing exon / intron combinations, and the accuracy of splice sites 
against the RNA evidence supporting the model. Second, the functional biotype of each model was 
reassessed; in particular, whether the decision to annotate the model as protein-coding in GENCODE v19 was 
appropriate. Note that GENCODE models that incorporate alternative exons or exon combinations in 
comparison to the ‘canonical’ isoform are likely to be annotated as coding if they contain a prospective CDS 
that is considered biologically plausible, based on a mechanistic view of translation. These re-annotations are 
summarized in Supplementary Table 4.  
 
We binned cases into three main categories, according to confidence in both the accuracy and potential 
functional relevance of the overlapping models: (1) ‘error’, where the model was seen to have an incorrect 
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transcript structure and/or a CDS that conflicted with updated GENCODE annotation criteria (these annotations 
had been or will be changed in future GENCODE releases based on this evaluation); (2) ‘putative’, where the 
model structure and CDS satisfied our current annotation criteria, although we judged the potential of the 
transcript represented to encode a protein with a functional role in cellular physiology to be nonetheless 
speculative (these have been maintained as putative protein-coding transcripts in GENCODE); (3) ‘validated’, 
where we believe it is highly probable that the model represents a true protein-coding isoform. High confidence 
in the validity of the CDS was based on comparative annotation, i.e. the observation of CDS conservation and 
also the existence of equivalent transcript models in other species. GENCODE also annotates transcript 
models as ‘nonsense-mediated decay (NMD) and ‘non-stop decay’ (NSD), where a translation is found that is 
predicted to direct the RNA molecule into cellular degradation programs. While it has been established that 
such ‘non-productive’ transcription events can play a role in gene regulation and thus disease, the 
interpretation of variants within NMD and NSD CDS remains challenging(44). These models were therefore 
classed in a separate category.   
 
Gene list comparisons 
To evaluate the filtering power of the pext metric for Mendelian variants, we evaluated the number of variants 
that would be filtered with an average GTEx pext cutoff of 0.1 (low expression) in the ClinVar and gnomAD 
datasets. We downloaded the ClinVar VCF from the ClinVar FTP (version dated 10/28/2018), imported it into 
Hail, annotated it with VEP v85 against Gencode v19, and added pext annotations with the tx_annotate() 
function. All evaluated variants were annotated as HC by LOFTEE v1.0, and ClinVar variants were filtered to 
those marked as pathogenic, with no conflicts, and reviewed with at least one star status. 
 
For variants in 61 haploinsufficient genes, we identified any variant identified in at least one individual with any 
zygosity in both datasets. For variants identified in autosomal recessive disease genes, we used a list of 1,183 
OMIM disease genes deemed to follow a recessive inheritance pattern by Blekhman et al.(45) and Berg et al.(46) 
(available as https://github.com/macarthur-lab/gene_lists/blob/master/lists/all_ar.tsv). We compared the pext value 
for all pLoF variants identified in ClinVar versus any variant in a homozygous state in at least one individual in the 
gnomAD exome or genome datasets. Finally, we used a LOEUF cutoff of 0.35 to denote constrained genes, and 
compared any synonymous or pLoF variant in these genes in the gnomAD exome or genome datasets. 
  
De novo and rare variant analysis 
De novo variants were collated from previously published studies. We collected de novo variants identified in 
5,305 probands from trio studies of intellectual disability/developmental disorders (Hamdam et al(27): n = 41, 
de Ligt et al(28): N = 100, Rauch et al(29): N = 51, DDD(24): n = 4,293, Lelieveld et al(26): n = 820), 1,073 
probands with congenital heart disease with co-morbid developmental delay (Sifrim et al(42): n = 512, Chih Jin 
et al(47) : 561), 6,430 ASD probands, and 2,179 unaffected controls from the Autism Sequencing 
Consortium(25). We also utilized a previously published dataset of variants in 8,437 cases with ASD and/or 
attention-deficit/hyperactivity disorder and 5,214 controls from the Danish Neonatal Screening Biobank (48). In 
this analysis, we analyzed pLoF variants identified in highly constrained genes (first LOEUF decile) with a 
combined total allele count of ≤10 in cases and controls. 
 
We annotated both de novo and rare variants with VEP v85 against Gencode v19 and added pext annotations 
with the tx_annotate() function. We then calculated the average pext metric across 11 GTEx brain samples and 
binned them as low (pext < 0.1), medium (0.1 ≤ pext ≤ 0.9) or high (pext > 0.9) expression. We then calculated 
the number of pLoF, missense, and synonymous variants per pext expression bin. To obtain case-control rate 
ratios and the 95% confidence intervals for de novo variant analyses, we used a two-sided Poisson exact test 
on counts(49). To obtain the odds ratio for the rare variant analysis in ASD/ADHD, we used the Fisher’s exact 
test for count data.  
 
Isoform quantifications via salmon 
To evaluate whether use of a different isoform quantification tool would affect results, we compared results of 
TCF4 base-level expression (shown in Figure 2B), MAPS (Figure 3C) and comparison of the number of 
variants filtered in haploinsufficient developmental disease genes in ClinVar vs gnomAD (Figure 4A) using 
RSEM quantifications used in this study with quantifications using salmon v.0.12(50). Due to the intractability of 
re-quantifying the entire GTEx dataset, we downloaded and requantified 151 GTEx brain – cortex CRAM files 
from the V7 dataset. We first converted CRAMs to fastq files using Picard 2.18.20 and ran salmon with the 
“salmon quant –i index -fastq1 – fastq2 –minAssignedFrag1 –validateMappings” command. The index was 
created with the “salmon index –t transcript.fa –type quasi –k 31” command using the GENCODE v19 protein-
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coding and lncRNA transcripts FASTA files.  The existing GTEx RSEM isoform quantifications were filtered to 
the same GTEx brain – cortex samples. For the analyses to remain consistent with the remainder of the 
manuscript, we calculated the maximum Brain - Cortex pext score for all variants across all protein coding 
genes for both the RSEM and salmon quantifications, and removed any gene where the maximum pext score 
was below 0.2. This resulted in filtering 325 genes from the salmon quantification of the Brain – Cortex 
samples and 691 genes from the RSEM quantification, corresponding to 3.4 and 1.6% of quantified genes, 
respectively. We filtered these genes in both the MAPs and gene list comparison analysis seen in 
Supplementary Figure 11. The WDL script for the quantification pipeline is available at: gs://gnomad-
public/papers/2019-tx-annotation/results/salmon_rsem/salmon.wdl and the commands to obtain results for 
each individual analysis in the tx-annotation Github repository under /analyses/rsem_salmon/.   
 
Transcript expression aware annotation with fetal isoform expression dataset 
While our analyses were based on transcript expression aware annotation from the GTEx v7 dataset, we 
provide necessary files for pext annotation with the Human Brain Development Resource (HBDR) fetal brain 
dataset(51) in gs://gnomad-public/papers/2019-tx-annotation/data/HBDR_fetal_RNAseq. HBDR includes 558 
samples from varying brain subregions across developmental time points. We downloaded HDBR sample fastq 
files from European Nucleotide Archive (study accession PRJEB14594) and obtained RSEM isoform 
quantification on HBDR fastqs using the GTEx v7 quantification pipeline, publicly available at 
https://github.com/broadinstitute/gtex-pipeline/) which briefly involves 2-pass alignment with STAR v2.4.2a(33) 
and isoform quantification with RSEM v1.2.22. Here, we also removed genes where the average pext across 
HBDR was below 0.2, resulting in the removal of 712 genes (3.5% of all analyzed genes).The dataset was also 
used for the analysis of baselevel expression values in SCN2A shown in Supplementary Figure 7D.  
 
Supplementary Materials and Methods  
Fig S1: Details of manual curation of 401 pLoF variants in 61 HI developmental disease genes 
Fig S2: Technical artifacts in transcriptome sequencing experiments prevent the use of read pileup at exons 
as an unbiased proxy for expression 
Fig S3: Details of calculating transcript-expression annotation 
Fig S4: Baselevel TCF4 expression per GTEx tissue 
Fig S5: Functional validation of pext  
Fig S6: Results of GENCODE curation of 128 unexpressed regions in HI developmental disease genes  
Fig S7: Evaluation of pext after accounting for LOFTEE flags in ClinVar and de novo analyses 
Fig S8: Application of pext binning to de novo and rare variant analysis in additional datasets 
Fig S9: Evaluation of using differing cutoffs for average, minimum or maximum pext across tissues 
Fig S10: Using pext based on fetal RNA-seq isoform expression data for filtering variants in haploinsufficient 
genes 
Fig S11: Comparison of key results using Salmon vs RSEM. 
Fig S12: Results from FUMA GENE2FUNC analysis in unconserved regions with high expression values 
 
Table S1: Summary of manual curation flags for 401 pLoFs in 61 HI developmental disease genes identified in 
gnomAD  
Table S2: Summary of criteria for LoF verdicts of 401 pLoF in 61 HI developmental disease genes identified in 
gnomAD 
Table S3: Manual curation results of 401 pLoFs in 61 HI developmental disease genes identified in gnomAD 
Table S4: GENCODE curation results of 128 regions flagged as unexpressed by pext 
Table S5: FUMA GENE2FUNC analysis results and run information 
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