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Abstract 

microRNAs (miRNAs) are short non-coding RNAs that can repress the expression of protein 

coding messenger RNAs (mRNAs) by binding to the 3’UTR of the target. Genetic mutations 

such as single nucleotide variants (SNVs) in the 3’UTR of the mRNAs can disrupt this 

regulatory effect. In this study, we presented dbMTS, the database for miRNA target site (MTS) 

SNVs, which includes all potential MTS SNVs in the 3’UTR of human genome along with 

hundreds of functional annotations. This database can help studies easily identify putative 

SNVs that affect miRNA targeting and facilitate the prioritization of their functional importance. 

dbMTS is freely available at: https://sites.google.com/site/jpopgen/dbNSFP. 
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Introduction 

MicroRNAs (miRNAs) are short non-coding RNAs (~ 22 nucleotide) that can repress the 

expression of target messenger RNAs (mRNAs) by binding to their 3’ untranslated regions 

(UTRs). It is estimated that more than 60% of human protein coding genes are under the 

regulation of miRNAs (Friedman, Farh, Burge, & Bartel, 2009; Lewis, Burge, & Bartel, 2005), 

and there is increasing evidence suggesting their wide variety of functions in developmental 

and physiological processes (Bartel, 2018). miRNAs always convey their repressive effect 

through an imperfect binding with their target mRNAs, however perfect base-pairings at the 5’ 

end of the miRNA (nucleotide position 2-7; also known as the seed region) is often required 

for a miRNA target site (MTS) to be functional (Agarwal, Bell, Nam, & Bartel, 2015). Thus, 

single nucleotide variants (SNVs) located within MTS especially those residing in the part of 

the MTS that pairs with miRNA seed regions, can undoubtedly disrupt the efficacy of miRNA 

targeting. This type of regulatory variants can then lead to downstream transcriptomic and 

proteomic changes which have been extensively reported to be associated with various 

diseases (Li et al., 2018; Nicoloso et al., 2010). However similar to many other regulatory 

SNVs, the functional importance of most MTS SNVs is still poorly understood.  

To help us understand and interpret these regulatory SNVs in MTS, some databases have 

been established to try to link these SNVs with miRNA targetome alterations and diseases 

(Bhattacharya, Ziebarth, & Cui, 2014; Bruno et al., 2012; Gong et al., 2015; C. Liu et al., 2012). 

While some databases lack recent updates, two widely used and actively updated databases 

are: PolymiRTS Database 3.0 (Bhattacharya et al., 2014) and miRNASNP v2.0 (Gong et al., 

2015). These two databases both used variants from dbSNP build 137 (Sherry et al., 2001) 

and tried to link these variants with MTS and/or possible downstream phenotype information. 

Although these aforementioned databases are valuable in interpreting interesting association 

results, they still suffer from some limitations. First, only known variants from dbSNP were 
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included in the databases. With the fast development of whole-genome sequencing (WGS), 

there is a growing need in predicting the functional effect of novel SNVs. Therefore, focusing 

only on known variants from dbSNP is clearly insufficient. Second, their information is not 

comprehensive and has omitted a vast majority of recently developed functional annotations 

that can help interpret these MTS SNVs, e.g. CADD (Kircher, 2014), Eigen (Ionita-Laza, 

McCallum, Xu, & Buxbaum, 2016) etc. Such annotations utilized a wide range of functional 

genomic annotations such as conservation, experimentally identified functional elements and 

their consequences etc., and they were proven to be predictive regarding the functional 

consequences of a potential SNV. Thus, by missing such information, currently available 

databases and their applications in prioritizing and filtering variants for association analyses 

especially those with a large number of candidate SNVs are limited. Lastly, none of these 

databases included tissue specific information. It has been well studied that miRNAs have 

differential expression levels across different tissues (Ludwig et al., 2016). Thus, the 

functionalities of miRNA and MTS SNVs are greatly associated with the environment being 

considered. 

To bridge these gaps, we have established a comprehensive database with all putative SNVs 

that might have an influence on miRNA targeting. We first compiled a collection of all possible 

SNVs in the 3’UTR of mRNAs that may disrupt a MTS or gain a new MTS based on predictions 

from three popular miRNA target prediction tools, namely TargetScan (Agarwal et al., 2015, 

http://www.targetscan.org/vert_70/, v7.0), miRanda (John et al., 2004, 

http://www.microrna.org/microrna/getDownloads.do, aug2010) and RNAhybrid (Rehmsmeier, 

Steffen, Höchsmann, Giegerich, & Ho, 2004, https://bibiserv.cebitec.uni-

bielefeld.de/download/tools/rnahybrid.html, 2.1.1). At the same time, we calculated some 

miRNA-specific scores for all identified SNVs using these three miRNA target prediction tools. 

We next collected their corresponding prediction scores from multiple popular SNV functional 

annotation tools, such as CADD, DANN (Quang, Chen, & Xie, 2015), FATHMM-MKL (Shihab 
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et al., 2015) and Eigen. Lastly, The Cancer Genome Atlas (TCGA) data were processed to 

obtain miRNA-mRNA correlation in multiple tissues for both normal and tumor samples. We 

named our database dbMTS (database of microRNA Target Site SNVs), which is the first 

known database that aims to include all putative SNVs in human 3’UTRs that may impact 

miRNA targeting along with their functional annotations. This database can help studies easily 

and quickly identify putative SNVs that may impact miRNA targeting and facilitate the 

prioritization of functional important SNVs in putative MTS at genome level. We have provided 

dbMTS as an attached database to dbNSFP which is available at: 

https://sites.google.com/site/jpopgen/dbNSFP. 

Data Sources and Processing 

TargetScan v7.0, RNAhybrid, and miRanda were used to predict putative miRNA targets and 

to evaluate the effect of different SNVs on miRNA targeting. Briefly, these algorithms identify 

favorable miRNA binding sites by providing a numeric estimation of the likelihood and the 

binding efficacy for a specific miRNA-target pairing site. miRanda focuses more on the 

complementarity between the miRNA and the binding site. RNAhybrid focuses more on the 

minimum free energy hybridization between the miRNA and its target 3’UTR sequence. 

TargetScan adopts more comprehensive information from various aspects of the binding site: 

conservation of the target, context information such as the position of the site, and seed region 

complementarity etc. We chose these three algorithms for two reasons. First, they adopted 

different target prediction and scoring schemes, which enabled us to capture different aspects 

of miRNA targeting. Second, their executables were freely available online, so that we could 

make batch predictions locally. 

The 3'-UTR coordinates and sequences were downloaded using the Table Browser utility from 

the UCSC genome browser. GENCODE (Harrow et al., 2012) gene annotation V23 basic set 
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under genome assembly hg38 was retrieved, which included 3'-UTRs for 73,196 transcripts. 

miRNA sequence file for all species was downloaded from miRBase V21 at 

http://www.mirbase.org/ftp.shtml. Only human mature miRNAs were kept, which resulted in 

2,588 mature miRNA sequences. 

As the initial step to build dbMTS, our goal was to identify MTS SNVs and estimate their effect 

on miRNA targeting. To minimize the computational burden and at the same time capture the 

most impactful SNVs and their effect, we focused our research on those SNVs that pair with 

the miRNA seed region where a single mutation would completely disrupt the miRNA 

regulation. Our first step was to run the three miRNA target prediction algorithms with 2,588 

human mature miRNAs and 3’UTR transcripts to get the reference miRNA targeting 

information in human (reference scores). Then, to estimate the SNVs’ effect on reference 

miRNA targetome, we would mutate each nucleotide of all the 3’UTR transcripts one-by-one 

and use these variant-induced 3’UTRs to run the three miRNA target prediction algorithms 

again (variant-induced scores; see Supp. Figure S1 for detail). Next, we categorized all SNVs 

into three groups based on its estimated effect (Figure 1): 1) a SNV was classified as 

substitution when there are regulating miRNAs and have their seed regions overlap with this 

locus using both reference 3’UTR sequence and variant-induced 3’UTR sequence; 2) a SNV 

was classified as target loss where there are regulating miRNAs overlap with this locus using 

the reference 3’UTR sequence but not the variant-induced 3’UTR sequence; 3) a SNV was 

classified as target gain where there are regulating miRNAs overlap with this locus using the 

variant-induced 3’UTR sequence but not the reference 3’UTR sequence. For each SNV, the 

maximum difference between the reference score and variant-induced score was calculated 

to estimate how the miRNA targeting efficacy was changed after introducing the variant 

(Figure 1). Currently, there is no clear indication showing which of these three types of MTS 

SNVs is functionally more important. Thus, for each miRNA target prediction algorithm, we 
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calculated rank scores within each type of the SNV to account for the possible impact of 

different scales of their raw scores between the three types of SNV groups. 

After identifying the three categories of SNVs that affect miRNA targeting for each of the three 

miRNA target prediction tools, these results were combined together to build the foundation 

of the database with all potential functional SNVs that could affect miRNA targeting. Then 

additional annotations were extract from Whole Genome Sequencing Annotator (WGSA) (X. 

Liu et al., 2015, https://sites.google.com/site/jpopgen/wgsa, v0.8) based on the positions of all 

the SNVs identified in our database. Some of the annotation categories include: functional 

consequences of genomic variants by VEP (McLaren et al., 2016); dbSNP variant IDs; GWAS 

Catalog entries; allele frequencies from various populations; clinical consequences from 

ClinVar; expression quantitative trait loci (eQTLs) from GTEx; mappability scores etc. In 

addition, major quantitative annotations which combined machine learning techniques with 

experimental information or other annotation scores were included. Moreover, for each 

miRNA-target pair, we have calculated the correlation of their expression within 15 different 

tissues from TCGA program. The expression data were obtained from (Bai et al., 2016) 

including 8 tissues from their published data and 7 tissues from their unpublished data. We 

provided these annotations to help users more easily rank and interpret a large number of 

candidate SNVs. 

Among the large number of annotations included, in this study, we focused only on those 

popular quantitative measurements that had been proven to be useful under different 

scenarios to prioritize functional SNVs. However, please note that other annotations could 

potentially be as or more useful depending on specific research goals and interests. The 16 

annotations we selected include eight conservation prediction scores: PhyloP46way primate, 

PhyloP100way vertebrate, PhyloP20way mammalian, PhastCons46way primate, 

PhastCons20way mammalian, PhastCons100way vertebrate, GERP_RS, and Siphy scores; 
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eight integrative annotations that adopted more than one features or combined multiple 

individual annotations: integrated fitCons, FATHMM-MKL (coding and non-coding), Eigen, 

Eigen-PC, CADD, DANN and GenoCanyon scores.  

Database Contents 

In our database, each SNV links to 221 unique fields with the first four columns as the primary 

identifier of the SNV: chromosome number, physical position on the chromosome as to hg38 

(1-based coordinate), reference allele (as on the + strand), alternate allele (as on the + strand). 

For users who are interested, we also provided the identifier of the SNV as to hg19 human 

reference genome from column 5 to 8. Following the identifier information there are 

annotations we retrieved from WGSA (column 10 to 131). From column 132 to 221, there are 

exclusive information we obtained from the three miRNA target prediction tools and miRNA-

target co-expression information. For each of the miRNA target prediction tools, there are 30 

fields of information: 13 fields of predictions using reference 3’UTRs, 13 fields of predictions 

using SNV-induced 3’UTRs, and 4 fields with site level summary information: maximum 

difference score, its rank score, the transcript ID correspond to the maximum difference score, 

and the predicted category of the SNV. A more comprehensive description of these fields can 

be found at Supp. Table S1. For this study, detailed information of the 16 quantitative 

annotation scores and miRNA specific scores could be found at Table 1. The relatively low 

coverage of miRanda and RNAhybrid predictions resulted partly from their high threshold of 

reporting a ‘true’ MTS, and partly from built-in limitations of the program, e.g. RNAhybrid was 

not able to predict 3’UTR with length greater than 2000. Their results could be considered as 

a more constrained set of potential MTS SNVs. 

Correlation structures of the abovementioned quantitative annotation scores are shown in 

Figure 2. There was high correlation between conservation and most integrative scores, while 
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there was little correlation between miRNA target prediction scores and all other scores. This 

could indicate that conservation or comparative genomic information was heavily used in these 

integrative algorithms, and those miRNA target prediction algorithms might be able to provide 

some additional information about functional importance of these SNVs regardless of 

conservation. 

Utility and discussion 

Functional 3’UTR SNVs are more likely to fall in dbMTS 

First, we checked if functionally important SNVs in 3’UTR are enriched in dbMTS. We retrieved 

two related datasets, namely ClinVar (Landrum et al., 2016, 

https://www.ncbi.nlm.nih.gov/clinvar/, 20160802) and the MiRNA SNP Disease Database or 

MSDD (Yue et al., 2018, http://www.bio-bigdata.com/msdd/home.jsp, June 2017). ClinVar is 

a public database with reported association between human variation and phenotypes. MSDD 

is a manually curated database containing experimentally supported associations between 

miRNA related SNVs and human diseases. For ClinVar, we identified 1,060 pathogenic SNVs 

in dbMTS, and an additional 1,797 SNVs in the rest of human 3’UTRs. Given that dbMTS 

includes 44,161,651 positions and human 3’UTRs have about 239,230,049 positions, it can 

be shown that pathogenic SNVs are over-represented in dbMTS (P < 0.00001). In addition, 

we extracted 118 unique SNVs in MSDD database that were labelled as 3’UTR variants. We 

found that seven of these SNVs were either located on chromosome X or resided in miRNA 

coding sequences which were not considered in our database. Among the remaining 111 

SNVs, we were able to identify 109 of them in dbMTS (98.2%). Using the same 111 SNVs, 

PolymiRTS Database 3.0 and miRNASNP v2.0 covered 100 (90.1%) and 85 (77.3%) SNVs, 

respectively. These results indicated that dbMTS could identify potential SNVs that can affect 
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miRNA targeting and are functionally important, which would provide users with increased 

ability to screen for functional SNVs in human 3’UTRs.  

Second, we checked if our calculated miRNA specific scores (i.e. TS_rankscore, M_rankscore 

and R_rankscore) using the three miRNA prediction tools, TargetScan, miRanda and 

RNAhybrid, can further help user discriminate between non-functional and functional SNVs. 

Using MSDD, we found that SNVs with low TargetScan rank score (TS_rankscore < 0.2) 

showed statistically significant depletion (P < 0.05). This under-representation of low scores 

illustrated that when a SNV has a low TS_rankscore (<0.2), it is less likely to be functional, or 

at least less likely to be functionally enough to produce observable downstream mRNA 

expression change through impacting the miRNA targeting pathways. 

Comparison of predictive power between different annotation scores  

After proving dbMTS’s ability to identify functional MTS SNVs, we next tried to compare some 

of the functional annotation scores in our database to check which one performs the best in 

separating potential functional MTS SNVs with non-functional ones. From ClinVar, we 

extracted 1,060 ‘pathogenic’ SNVs as a part of our true positive (TP) testing set and 2,939 

‘benign’ SNVs as our true negative (TN) testing set. From MSDD, we extracted the 109 unique 

SNVs that were labelled as 3’UTR variants and were identified in dbMTS. All SNVs identified 

at MSDD were labelled as TP in our testing dataset. Then testing samples extracted previously 

were combined. To ensure the SNVs being evaluated were completely non-coding and did 

not overlap with any coding regions, we removed those SNVs annotated as nonsynonymous 

or splicing by any of the three popular functional annotation tools, namely ANNOVAR (Wang, 

Li, & Hakonarson, 2010), VEP (McLaren et al., 2016) and SnpEff (Cingolani et al., 2012). 

Finally, we obtained a testing dataset with 160 TPs and 2,735 TNs. Using receiver operating 

characteristic (ROC) curves, we evaluated the performance of each annotation score in our 
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database (Figure 3). To check if the imbalance testing set was an issue, we randomly selected 

160 TNs and obtained similar result for each of the annotations. We found that the Eigen score 

had the overall best performance with the area under the curve (AUC) of 0.7335, followed by 

fathmm-MKL and several conservation scores. Interestingly, both TargetScan raw score and 

TargetScan rankscore had outperformed integrated fitCons score. This could probably be 

explained by the fact that currently available experimental data, such as those from the 

ENCODE project, was not comprehensive enough to correctly and fully capture miRNA 

binding information which highlighted the importance of such high-quality in-silico data 

(Consortium, 2012). For RNAhybrid and miRanda, all their predictions had AUCs with their 

95% confidence interval including 0.5, meaning their predictive power to this testing dataset 

was no better than random guesses. This implied that relying solely on the difference between 

binding stabilities and the difference between base-pairing scores showed little predictive 

power for whether a MTS SNV was functional or not. Other context information around the 

binding site was also indispensable to predicting the efficacy of miRNA regulation and to infer 

SNV’s impact on miRNA targeting. 

Utilities and future studies 

As mentioned previously, dbMTS included a large number of SNVs with their possible effects 

on miRNA targeting in the 3’UTR regions along with multiple functional annotation scores and 

predictions. Aside from simply using the overall best score, Eigen, another straightforward way 

to take advantage of the database is to use several annotation scores at once to find 

consensus predictions among them. This can be applied in two ways: the first way is to find 

consensus SNVs predicted by multiple miRNA target prediction algorithms to identify a 

stringent subset of SNVs that affect miRNA targeting; another way is to prioritize functional 

SNVs by using the predicted functional importance from multiple annotations (a list of 

recommended cut-off points for some of the annotations can be found at Supp. Table S2). 
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Using this method, studies interested in SNVs and MTS could filter out a large number of 

neutral SNVs and keep those highly confident SNVs that are more likely to affect miRNA 

targeting for further analyses. For example, we investigated variants reported in GWAS 

Catalog and found 1,127 3’UTR SNVs that could potentially affect miRNA targeting (Supp. 

Table S3), which are good starting points for future functional validation. Additionally, with 

miRNA-target co-expression information, we observed that 11,393,295 SNVs in our database 

are located in MTS of miRNA-target pairs which showed negative correlation in some tissues 

and no positive correlation in any of the 15 tissues being considered. Thus, these variants and 

their effect predicted by computational tools are more likely to be authentic. This co-expression 

information added another layer of evidence to help users screen for truly functional variants. 

Moreover, given the extensive involvement of miRNAs in oncogenesis (Esquela-Kerscher & 

Slack, 2006; Lin & Gregory, 2015), using this same approach our database can be used to 

prioritize candidate driver mutations in cancer genomes. The richness of the available 

information can easily be used to further boost the user’s power to interpret non-coding SNVs. 

For example, eQTL loci can be used to associate SNVs and their targeting miRNAs with gene 

expression to gain a more well-rounded picture of gene regulation pathways. 

Our database can be further improved in various ways. First, our database would benefit 

greatly from the future development of both miRNA target prediction tools and SNV functional 

annotation tools. Second, although we focused on SNVs, other types of genetic variations, 

such as insertions or deletions, can also disrupt miRNA targeting. Even though it is 

computationally expensive to evaluate their effects, including these types of mutations can 

undoubtedly further increase the comprehensiveness of our database. Third, since our 

database contained miRNA-specific raw scores from the three miRNA target prediction tools, 

they could be used to construct new measurements of functional importance other than the 

maximum potential difference we used in our study. Currently, our database is freely available 

at the dbNSFP website (https://sites.google.com/site/jpopgen/dbNSFP). We are planning to 
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add a web portal which will enable users to search for the entries in the database using any 

of the following fields: genomic position, mature miRNA name or Ensembl transcript ID.  

Conclusion 

In this study, we took advantage of three miRNA target prediction tools (TargetScan, miRanda 

and RNAhybrid) to identify all possible SNVs that could affect miRNA targeting in the 3’UTR 

of human mRNAs. We calculated the functional importance using the three above-mentioned 

tools and collected multiple popular functional annotation scores for these SNVs. In addition, 

we compared these functional annotation scores collected regarding their performance using 

a combined testing dataset. We found that Eigen outperformed all other individual annotations, 

and TargetScan showed statistically significant (though weak) predictive power regarding 

SNVs' pathogenicity. We hope the presented database could facilitate researches interested 

in using MTS to prioritize functional SNVs or interpret of WGS results. 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 26, 2019. ; https://doi.org/10.1101/554485doi: bioRxiv preprint 

https://doi.org/10.1101/554485
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

Agarwal, V., Bell, G. W., Nam, J. W., & Bartel, D. P. (2015). Predicting effective microRNA target sites 
in mammalian mRNAs. eLife, 4, 1-38. doi:10.7554/eLife.05005 

Bai, Y., Ding, L., Baker, S., Bai, J. M., Rath, E., Jiang, F., . . . Stuart, G. (2016). Dissecting the biological 
relationship between TCGA miRNA and mRNA sequencing data using MMiRNA-Viewer. BMC 
bioinformatics, 17(Suppl 13), 336. doi:10.1186/s12859-016-1219-y 

Bartel, D. P. (2018). Metazoan MicroRNAs. Cell, 173(1), 20-51. doi:10.1016/j.cell.2018.03.006 
Bhattacharya, A., Ziebarth, J. D., & Cui, Y. (2014). PolymiRTS Database 3.0: linking polymorphisms in 

microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids 
Res, 42(Database issue), D86-91. doi:10.1093/nar/gkt1028 

Bruno, A. E., Li, L., Kalabus, J. L., Pan, Y., Yu, A., & Hu, Z. (2012). miRdSNP: a database of disease-
associated SNPs and microRNA target sites on 3'UTRs of human genes. BMC Genomics, 13, 
44. doi:10.1186/1471-2164-13-44 

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., . . . Ruden, D. M. (2012). A 
program for annotating and predicting the effects of single nucleotide polymorphisms, 
SnpEff: SNPs in the genome of Drosophila melanogaster strain w 1118; iso-2; iso-3. Fly, 6, 80-
92. doi:10.4161/fly.19695 

Consortium, E. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 
489, 57-74. doi:10.1038/nature11247 

Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev 
Cancer, 6(4), 259-269. doi:10.1038/nrc1840 

Friedman, R. C., Farh, K. K. H., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are 
conserved targets of microRNAs. Genome Research, 19, 92-105. doi:10.1101/gr.082701.108 

Gong, J., Liu, C., Liu, W., Wu, Y., Ma, Z., Chen, H., & Guo, A. Y. (2015). An update of miRNASNP 
database for better SNP selection by GWAS data, miRNA expression and online tools. 
Database, 2015, 1-8. doi:10.1093/database/bav029 

Harrow, J., Frankish, A., Gonzalez, J. M., Tapanari, E., Diekhans, M., Kokocinski, F., . . . Hubbard, T. J. 
(2012). GENCODE: The reference human genome annotation for the ENCODE project. 
Genome Research, 22, 1760-1774. doi:10.1101/gr.135350.111 

Ionita-Laza, I., McCallum, K., Xu, B., & Buxbaum, J. D. (2016). A spectral approach integrating 
functional genomic annotations for coding and noncoding variants. Nature genetics, advance 
on, 214-220. doi:10.1038/ng.3477 

John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., & Marks, D. S. (2004). Human MicroRNA 
targets. PLoS biology, 2, e363. doi:10.1371/journal.pbio.0020363 

Kircher, M. (2014). A general framework for estimating the relative pathogenicity of human genetic 
variants. Nature g, 46, 310-315. doi:10.1038/ng.2892.A 

Landrum, M. J., Lee, J. M., Benson, M., Brown, G., Chao, C., Chitipiralla, S., . . . Maglott, D. R. (2016). 
ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res, 
44(D1), D862-868. doi:10.1093/nar/gkv1222 

Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, 
indicates that thousands of human genes are microRNA targets. Cell, 120, 15-20. 
doi:10.1016/j.cell.2004.12.035 

Li, C., Grove, M. L., Yu, B., Jones, B. C., Morrison, A., Boerwinkle, E., & Liu, X. (2018). Genetic variants 
in microRNA genes and targets associated with cardiovascular disease risk factors in the 
African-American population. Hum Genet, 137(1), 85-94. doi:10.1007/s00439-017-1858-8 

Lin, S., & Gregory, R. I. (2015). MicroRNA biogenesis pathways in cancer. Nat Rev Cancer, 15(6), 321-
333. doi:10.1038/nrc3932 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 26, 2019. ; https://doi.org/10.1101/554485doi: bioRxiv preprint 

https://doi.org/10.1101/554485
http://creativecommons.org/licenses/by-nc-nd/4.0/


Liu, C., Zhang, F., Li, T., Lu, M., Wang, L., Yue, W., & Zhang, D. (2012). MirSNP, a database of 
polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs 
and eQTLs. BMC Genomics, 13, 661. doi:10.1186/1471-2164-13-661 

Liu, X., White, S., Peng, B., Johnson, A. D., Brody, J. a., Li, A. H., . . . Boerwinkle, E. (2015). WGSA: an 
annotation pipeline for human genome sequencing studies: Figure 1. Journal of Medical 
Genetics, 0, jmedgenet-2015-103423. doi:10.1136/jmedgenet-2015-103423 

Ludwig, N., Leidinger, P., Becker, K., Backes, C., Fehlmann, T., Pallasch, C., . . . Keller, A. (2016). 
Distribution of miRNA expression across human tissues. Nucleic acids research, 44, 3865-
3877. doi:10.1093/nar/gkw116 

McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R., Thormann, A., . . . Cunningham, F. (2016). 
The Ensembl Variant Effect Predictor. Genome Biol, 17(1), 122. doi:10.1186/s13059-016-
0974-4 

Nicoloso, M. S., Sun, H., Spizzo, R., Kim, H., Wickramasinghe, P., Shimizu, M., . . . Calin, G. A. (2010). 
Single-nucleotide polymorphisms inside microRNA target sites influence tumor 
susceptibility. Cancer Res, 70(7), 2789-2798. doi:10.1158/0008-5472.CAN-09-3541 

Quang, D., Chen, Y., & Xie, X. (2015). DANN: A deep learning approach for annotating the 
pathogenicity of genetic variants. Bioinformatics, 31, 761-763. 
doi:10.1093/bioinformatics/btu703 

Rehmsmeier, M., Steffen, P., Höchsmann, M., Giegerich, R., & Ho, M. (2004). Fast and effective 
prediction of microRNA / target duplexes. Spring, 1507-1517. doi:10.1261/rna.5248604.and 

Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). 
dbSNP: the NCBI database of genetic variation. Nucleic Acids Res, 29(1), 308-311. Retrieved 
from https://www.ncbi.nlm.nih.gov/pubmed/11125122 

Shihab, H. a., Rogers, M. F., Gough, J., Mort, M., Cooper, D. N., Day, I. N. M., . . . Campbell, C. (2015). 
An integrative approach to predicting the functional effects of non-coding and coding 
sequence variation. Bioinformatics (Oxford, England), 31, 1536-1543. 
doi:10.1093/bioinformatics/btv009 

Wang, K., Li, M., & Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from 
high-throughput sequencing data. Nucleic acids research, 38, e164. doi:10.1093/nar/gkq603 

Yue, M., Zhou, D., Zhi, H., Wang, P., Zhang, Y., Gao, Y., . . . Li, X. (2018). MSDD: a manually curated 
database of experimentally supported associations among miRNAs, SNPs and human 
diseases. Nucleic Acids Res, 46(D1), D181-D185. doi:10.1093/nar/gkx1035 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 26, 2019. ; https://doi.org/10.1101/554485doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/pubmed/11125122
https://doi.org/10.1101/554485
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables 

Table 1. Annotations in dbMTS with their score range and missingness 

Annotations 

min 

score 

max 

score 

No. 

Missing 

No. 

SNVs 
Percent non-
missing (%) 

phyloP46way_primate -8.04 0.66 402463 131379720 99.69 

phyloP20way_mammalian -12.51 1.2 161466 131620717 99.88 

phyloP100way_vertebrate -20 10 153104 131629079 99.88 

phastCons46way_primate 0 1 402460 131379723 99.69 

phastCons20way_mammalian 0 1 161466 131620717 99.88 

phastCons100way_vertebrate 0 1 153104 131629079 99.88 

GERP_RS -12.3 6.17 2938733 128843450 97.77 

SiPhy_29way 0 34.19 18703515 113078668 85.81 

integrated_fitCons 0 0.84 151672 131630511 99.88 

GenoCanyon 0 1 146368 131635815 99.89 

CADD -6.41 35.5 596677 131185506 99.55 

DANN 0.01 1 596677 131185506 99.55 

fathmm-MKL_non-coding 0 1 633718 131148465 99.52 

fathmm-MKL_coding 0 1 633535 131148648 99.52 

Eigen -3.33 6.84 601953 131180230 99.54 

Eigen-PC -3.38 17.69 601953 131180230 99.54 

miRanda_raw 0 216 42475524 89306659 67.77 

miRanda_rankscore 0 1 42475524 89306659 67.77 

TargetScan_raw 0 11.07 1651761 130130422 98.75 

TargetScan_rankscore 0 1 1651761 130130422 98.75 

RNAhybrid_raw 0 60.8 74383715 57398468 43.56 

RNAhybrid_rankscore 0 1 74383715 57398468 43.56 
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Figure Legends: 

Figure 1. Illustration of the three types of SNVs and maximum difference score calculation 

using putative variants and putative miRNA and 3’UTR sequences. In first row, the C>A 

mutation caused substitution of targeting miRNAs. A substitution is when there were regulating 

miRNAs targeting with their seed regions overlapping with this locus, after introducing a 

mutation there was still at least one different miRNA targeting this locus. In second row, the 

C>A mutation caused target gain. A target gain is when there was no regulating miRNA, after 

introducing a mutation it gained at least one regulating miRNA. In third row, the C>G mutation 

caused target loss. A target loss is when there were regulating miRNAs, but after introducing 

a mutation there was no targeting miRNA. The maximum differences are calculated as abs(-

0.59 – (-0.02)) = 0.57 for the C>A substitution SNV; abs(-0.25) = 0.25 for the C>A target gain 

SNV; abs(-0.12) = 0.12 for the C>G target loss SNV. 

Figure 2. Correlation structure between different annotation scores. 

Figure 3. ROCs for functional annotation scores in our database using our curated testing set. 
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