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Abstract1

Ortholog inference is a key step in understanding the evolution and function of a gene or2

other genomic feature. Yet often no similar sequence can be identified, or the true ortholog3

is hidden among false positives. A solution is to consider the sequence’s genomic context.4

We present the generic program, synder, for tracing features of interest between genomes5

based on a synteny map. This approach narrows genomic search-space independently of6

the sequence of the feature of interest. We illustrate the utility of synder by finding7

orthologs for the Arabidopsis thaliana 13-member gene family of Nuclear Factor YC8

transcription factor across the Brassicaceae clade.9
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1 Introduction10

A powerful first step in understanding the evolution and function of a genomic feature is11

resolving its genomic context, that is, comparing the feature to orthologous features in12

other species. Comparing multiple orthologous features across species allows evolutionary13

patterns to be uncovered. These patterns may include evidence of purifying selection, which14

implies the feature is important to the survival of the species; positive selection, implying15

the feature is rapidly evolving along one lineage; and functional dependencies between sites16

(for example, amino acids in an enzyme reaction site) [1]. These evolutionary trends have17

direct application in fields such as rational protein design [2]. Distinguishing between18

orthologs (homologous features arising through speciation) and paralogs (homologous19

features arising through gene duplication) is foundational to understanding the history of a20

feature. Genomic context is also critical for discerning the origins of the often large21

numbers of species-specific “orphan” genes that are found in most genome projects [3–6].22

Identifying orthologs is not easy. A simple sequence similarity search of a query feature23

(e.g., a gene, transposon, miRNA, or any sequence interval) against a genome or proteome24

of a target species may obtain thousands of hits in a swooping continuum; these could25

include: the true ortholog, related family members (paralogs), and non-specific hits.26

Therefore, methods for winnowing the search results have been developed to identify the27

true orthologs. A straightforward approach to identify orthologs of protein-coding genes is28

reciprocal best hits [7]. In this technique, a protein encoded by a gene from the focal species29

is searched (e.g. with BLAST) against the target proteome. The highest scoring gene is30

then searched back against the proteome of the focal species. If the top scoring hit of the31

second search is the original query gene, then the two genes are accepted as orthologs.32

There are also methods that build on reciprocal best hits, such as the reciprocal smallest33

distance method that considers evolutionary distance in addition to similarity score [8].34

Little or no significant sequence similarity is expected across species for some classes of35
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features. A lack of significant similarity may stem from sequences being very short (e.g., a36

single promoter element or an miRNA) or it could result from very rapid mutation rates in37

the feature (e.g., intragenic intervals that are under little or no purifying selection).38

Orphan genes, which by definition have no protein homolog in related species, are an39

example of a feature for which sequence comparisons alone cannot delineate the region in40

the target genome from which the orphan gene arose [4]. These genes are often both short41

and rapidly evolving, making it very difficult to find orthologous genomic regions (possibly42

non-coding) even in closely-related target species. Without an ability to identify43

orthologous genomic intervals, the pathway of evolution of an orphan cannot be44

determined; for example, orphans of de novo origin cannot be distinguished from those45

orphans that stem from rapid mutation [3].46

Purely sequence-based methods are also problematic if the true ortholog of a query gene47

is duplicated in the target species. In this case, the target species contains two genes that48

are true orthologs of the query gene. The co-evolution of duplicate genes relative to their49

singleton ortholog, is of interest in theoretical evolution [9]. One of the copies may rapidly50

evolve to gain a new function or it may become a pseudogene [10]. In either case, the51

reciprocal best hits method would find only the conserved copy.52

A different approach to ortholog identification, one which does not depend on the53

genome-wide sequence similarity of the query features themselves and that does handles54

duplication events, is to consider the genomic context of the query, i.e., synteny [11].55

Genomic synteny is the conservation of the order of genomic features between two56

genomes [12].57

The most obvious approach to a context-based search is to include the flanking regions58

of a query feature of interest when searching for an ortholog in the target genome. This59

approach is used by MicroSyn [13] for finding orthologs of features, such as miRNAs, that60

are too short and numerous to be easily searched by their sequence alone. While this61

3

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/554501doi: bioRxiv preprint 

https://doi.org/10.1101/554501
http://creativecommons.org/licenses/by/4.0/


approach works well for an individual query feature, extending it to a high-throughput62

analysis is problematic, since no single cutoff for flank length will work well for all cases.63

For instance, a sequence residing within a highly repetitive centromere might require flanks64

of megabases.65

An alternative to looking at the flanking sequence of each query feature individually is66

to reference a genome-wide synteny map. Rather than searching for the feature directly,67

orthologs of flanking syntenic regions (blocks) can be identified, and a potential ortholog of68

the query feature can be identified in the target genome by searching within the syntenic69

region. This strategy has been applied to study the genomic origin of orphan genes [14]70

(and the method refined in [15]) where a map of one-to-one orthologous genes was used to71

infer the orthologous genomic intervals where the non-genic sequence corresponding to the72

orphan genes is expected to reside. The one-to-one map made the computational problem73

very easy, and could effectively identify a sub-set of the genes of de novo origin, but the74

map was very coarse, especially in regions of low gene density, so no information is75

obtained for other orphan genes.76

There are many programs designed to build synteny maps. Some programs build sparse77

synteny maps from given sets of orthologous genes (e.g., OrthoClusterDB [16]). Others78

perform full genome alignments. Of these, some focus on large scale (megabase range)79

syntenic blocks that are conserved across great evolutionary distances (e.g.,80

DiagHunter [17]), while others focus on micro-synteny, producing maps of many small81

syntenic blocks that capture local inversions, duplications and deletions (e.g., BLASTZ [18],82

MUMmer4 [19], and Satsuma [20]). These micro-synteny programs are of greatest interest in83

this paper.84

The diverse synteny mapping tools, though highly variable in granularity and85

accuracy [11,21], provide powerful approaches to enable the study of comparative genome86

evolution [12,22–24] and to glean novel information about the origin of de novo orphan87
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genes [14, 15,25–27]. However, the use of these maps as a tool for orthology has been88

generally limited to either manual inspection, or to considering only those query features89

that overlap syntenic blocks.90

synder is designed to infer orthologous regions in the target genome, even when the91

orthologs are between syntenic blocks, and to assess the quality of the inferences. To do92

this, it traces query features from a focal genome to a target genome using a whole-genome93

map. synder is a high-performance program with a core written in C++ and an R94

wrapper for integration into R workflows. It will work with any synteny map, but was95

designed for fine-grain micro-synteny maps that capture local inversions and transpositions.96

It assembles collinear sets of syntenic blocks from the map and uses them to infer tight97

search intervals for each query on the target genome, naturally handling duplication events98

and inversions. synder also provides detailed information about the quality of the search99

result. The only input required is a whole-genome synteny map and a set of features of100

interest in the focal genome. Thereby, synder automates the use of syntenic information to101

study orthologs across any pair of species with sufficiently conserved synteny.102

2 Algorithm103

The primary function of synder is to map a user-designated set of query features in the104

focal genome to a set of search intervals in a target genome (see Table 1 for terminology105

and Figure 1 for overview). To do this, synder contextualizes the query features based on106

a user-provided synteny map for the focal and target genomes. Query features of the focal107

genome are mapped to an associated synteny-based search interval on the target genome;108

this search interval delineates the region of the target genome where the query feature is109

predicted to be located.110

Algorithm 1 is an overview of the synder’s search algorithm. Each of the functions in111
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Table 1: Terminology
focal genome: The genome that contains the query features.
target genome: The genome in which search intervals are found for each feature of

interest.
query feature: The sequence interval delineating any feature of interest in the focal

genome. This could be a protein-coding gene, an miRNA, an intron,
a transposon, a nucleotide repeat, an lncRNA or any other genomic
feature

blocks: Focal and target genome intervals that are inferred to be orthologs
by an outside synteny program.

synteny map: A set of blocks for a pair of genomes.
syntenic interval: A single interval on one side of a synteny map.
adjacent intervals: Two syntenic intervals on the same scaffold with no syntenic interval

located entirely between them.
collinear blocks: Two blocks where both the focal and target syntenic intervals are

adjacent and in the same orientation.
collinear block set: An ordered set of blocks where block i is collinear to block i + 1.
query context: All blocks that overlap or are adjacent to the query interval.
search interval: An expected location of an ortholog of a query feature in the target

genome.
search space: The union of search intervals for a given query interval.
synteny score: A score for a syntenic block produced by the outside synteny pro-

gram.
synder score: A score for the relative reliability of a search interval (see Figure 5).
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A

Target genome

Focal genome

Query Feature

Search Interval

af bf

at bt

a b

B

Figure 1: The synder algorithm identifies search intervals for query features based on syn-
teny. (A) Diagram of a very simple syntenic relationship across focal and target genomes.
af , at, bf , and bt are four syntenic intervals that comprise block a (af , at) and b (bf , bt).
Blocks a and b are collinear and provide landmarks for associating the query feature in
the focal genome with its search interval in the target genome. (B) Flow chart of the
steps in the synder algorithm. synder: 1) transforms the synteny scores for each of the
blocks in an input synteny map, such that scores are additive; 2) merges doubly-overlapping
blocks; 3) assigns each block in the synteny map to exactly one collinear set of blocks; 4)
finds the overlapping or nearest flanking syntenic intervals for each query feature in the focal
genome (e.g., af and bf in A); 5) for each query feature (i.e. the interval corresponding to
a feature of interest on the focal genome) finds all collinear block sets that contain at least
one of the blocks that flank or overlap the query feature, and then relative to each of these
collinear block sets, maps the query interval to a search interval in the target genome; and 6)
calculates search interval scores for each query feature relative to the search interval of each
collinear set. The final output provides the query features with their corresponding hits in
the target genome and a composite score for each hit.
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this algorithm is defined in detail in the subsequent sections.112

1 function synderSearch(~q, M , r, k, t):
2 ~s = transformScores(M , t)
3 M ′ = mergeOverlapping(M , ~s)
4 C = collinearSets(M ′, k)
5 T = buildTree(M ′)

6 foreach q in ~q do
7 ~a = anchors(q, T)
8 ~c = searchSets(~a, C)

9 foreach c in ~c do
10 (i, b) = searchInterval(q, c)
11 s = score(q, c, r)
12 recordRow(q, i, s, b)

13 end

14 end
Algorithm 1: A high-level overview of the core synder search algorithm. ~q, list of query
features; M , synteny map; r, search interval score decay rate (see Figure 5); k, number
of interrupting blocks that is tolerated; t, type of synteny score; ~s, vector of transformed,
additive scores used in assigning final scores to each search interval. synder transforms
scores and merges overlapping blocks to yield a processed, reduced synteny map, M ′.
Sequential syntenic blocks, C, are determined from M ′. T , the interval tree data structure,
is then used to find the syntenic context (i.e., the anchors, ~a) on the focal genome for each
query feature, q. Next, query features are mapped to one or more collinear set of blocks, ~c.
For each block, the associated search interval, i, is identified and the type of boundary, b, is
determined. Each search interval is given a synder score, s. Finally, each search interval is
recorded in the output table as a single row including the query feature (q), search interval
(i), synder score (s), and search interval type (b).

2.1 Input Synteny Map113

The primary raw input to synder is a synteny map that is provided as a table where each114

row describes one block. Each block consists of: an interval in the focal genome; an115

inferred syntenic interval in the target genome; a synteny score representing some metric of116

the confidence that the pair of intervals is orthologous; and, the relative orientation of the117

intervals. The focal and target intervals are each described by a chromosome/scaffold name118

and a start and stop position. The synteny score for each block is some measure of119
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quality/certainty (e.g., percent identity or p-value) that is specific to the tool that used to120

generate the map. The orientation of the block is the strand in the target genome relative121

to the query, with ‘+’ indicating the same strand and ‘-’ indicating the inversion.122

2.2 Step 1. Transform synteny scores123

The synteny scores for the blocks in a synteny map may be expressed in a variety of ways124

by the various synteny programs. Strong similarity may be represented by low numbers125

(e.g., if scores are e-values) or high numbers (e.g., if scores are bitscores). Scores may be126

additive (e.g., bitscores) or averaged (e.g., percent similarity). The user must specify the127

type of the input synteny scores. Internally, the synder algorithm transforms these scores128

so that they are additive. More specifically, synder assumes S(a + b) = S(a) + S(b), that129

is, if the blocks a and b are concatenated, then the synteny score should be equal to the130

sums of the scores for blocks a and b. synder transforms the synteny map scores to an131

additive score using one of the transforms below:132

transformScore(s, l) =



score density l ∗ s

percent identity l ∗ s/100

e-value or p-value −log(s)

otherwise s

(1)

133

Where s is the input synteny score and l is the interval length. synder transforms the134

scores when it loads a synteny file, updates them as needed in Step 2, and ultimately uses135

them in Step 6 to generate scores for the final search intervals.136
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2.3 Step 2. Merge doubly-overlapping blocks137

In a “perfect” synteny map, blocks would not overlap on both the focal and target sides. In138

practice, however, synteny algorithms occasionally produce overlapping blocks. These cases139

would produce multiple collinear block sets that have the same orientation and cover the140

same region. To avoid this, synder merges any blocks that overlap on both the focal and141

target sides. The interval of the merged blocks is the union of the overlapping block142

intervals. The synder score of the merged blocks is calculated by summing the143

non-overlapping interval scores with the maximum of the overlapping intervals:144

Sab = da(laf − lo) + db(lbf − lo) + lomax(da, db) (2)

Where da and db are the score densities of blocks a and b (density is the synteny score for a145

block divided by the length of the syntenic interval on the focal genome); and where laf , lbf146

and lo are the lengths of a, b, and their overlap, respectively.147

A potential downside of this approach is that, when more than two intervals are148

doubly-overlapping, the order in which the scores are merged matters, with blocks merged149

later having a stronger influence. A second issue is that the merged score is calculated150

based on the intervals on just one side of the synteny map. The length of each interval, and151

the length of the overlap between the intervals, may vary between the two sides of the152

synteny map. For now, we do not address either of these issues, since doing so would153

complicate the algorithm and probably have little effect on any biological dataset (since154

doubly-overlapping intervals are uncommon).155

The output of Step 2 is a processed synteny map without doubly-overlapping blocks.156

2.4 Step 3. Determine collinear block sets157

synder assigns each block in a synteny map to exactly one set of collinear syntenic blocks158
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(Figure 2). Each collinear block set consists of adjacent blocks that are ordered on the159

query and target sides. synder considers two syntenic intervals “adjacent” if they are on160

the same scaffold and no syntenic interval is contained entirely between them. Adjacency161

on the target-side further requires that the intervals have the same orientation (+/-)162

relative to the focal genome. Two blocks are collinear if the syntenic intervals on the163

focal-genome and target-genome are adjacent. The collinear block sets may be inverted164

and/or may overlap other collinear block sets on either the focal or target side (e.g., for165

duplicated sequences). The individual blocks that make up the collinear set are used in166

Steps 4 and 5 to delimit the search intervals on the target genome relative to each query167

feature of the focal genome.168

This approach can be overly strict, resulting in many small collinear block sets. Tracing169

blocks across whole genome duplication, and subsequent genome alterations [28], is170

particularly challenging, since intervals in the homologous chromosomes could randomly171

diverge, resulting in a synteny map that alternates between mapping to one chromosome172

and the homologous chromosome. This is especially problematic in plants, where whole173

genome duplications are common [29]. To reduce this potential complication, synder174

provides the user an option to relax the adjacency restriction by allowing k syntenic175

intervals that map to alternative target scaffolds to interrupt a pair of query-side intervals176

in a collinear set.177

The output of Step 3 is the set of blocks that are non-overlapping and adjacent. Each178

block is assigned to exactly one collinear block set.179

2.5 Step 4: Find the contextual anchors on the focal genome for180

each query feature181

The next step is to find the blocks that contain, overlap, or are adjacent to each query182

feature on the focal genome. These blocks will provide “anchors” that will be used in183

11

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/554501doi: bioRxiv preprint 

https://doi.org/10.1101/554501
http://creativecommons.org/licenses/by/4.0/


Step 5 to map the query feature to one or more collinear sets of blocks in the target184

genome and hence to identify the search interval(s) in the target species.185

The user provides the query features as a Gene Feature Format (GFF) file that186

describes the genomic intervals on the focal genome corresponding to the query features of187

interest. A modification is to provide the GFF file along with BLAST or other188

whole-genome similarity scores; this modification was used as input for the case study on189

the NF-YC gene family (see RESULTS section).190

A
Target Genome

Focal Genome

B
Target Genome

Focal Genome

C
Target Genome

Focal Genome

+ + + +

+ + + + +

+ + +

+

Figure 2: Collinear block set construction with focal-genome “anchors” to infer search inter-
vals on the target genome. The blue bars below each focal genome are the query features.
Genome-wide collinear block sets (colored orange, teal or green) are identified in Step 3, and
are used to identify the focal-side anchors for each query feature in Step 4. The red bars
above the target genome are the search intervals inferred by synder in Step 5. (A) a simple
case where the query feature does not overlap a syntenic interval and is bound between syn-
tenic intervals in a collinear set of blocks. (B) a tandem duplication where synder resolves
the blocks into two collinear block sets (teal and orange) and infers search intervals for each.
(C) a query feature that is unbound on each side (see Figure 4) resulting in one search
interval relative to the orange collinear block set (red bar on left) and one search interval
relative to the inverted teal block collinear set (red bar on right). (+/-) signs in the target
search intervals represent their strand orientation relative to the query (‘-’ is an inversion).
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synder uses a modified interval tree algorithm to locate the syntenic intervals on the191

focal genome that “anchor” the query feature. Building the interval tree is an O(n log(n))192

operation (see Algorithm 2) and searching for a given interval is O(log(n) + m), where m193

is the number of overlapping intervals returned and n is the size of the synteny map (see194

Algorithm 3). We modified an algorithm that returns only directly overlapping195

intervals [30], to enable synder to find the flanking intervals (upstream and downstream196

intervals) when no overlapping intervals are found (see Figure 3).197

1 function buildTree(~q):
2 if length(~q) == 0 then
3 return Null
4 end
5 c = midpoint(~q)
6 ~vleft = filter(~q, λ q → c < q1)
7 ~vmid = filter(~q, λ q → q1 ≤ c ≤ q2)
8 ~vright = filter(~q, λ q → q1 < c)
9 Tleft = buildTree(~vleft)

10 Tright = buildTree(~vright)
11 return Tree(c, ~vmid, Tleft, Tright)
Algorithm 2: Build a synteny interval tree. buildTree takes a vector of intervals, ~q, on a
given scaffold/chromosome of the focal genome and returns an interval tree data structure.
The midpoint c is an integer equal to the middle position in the interval in the middle
of the vector of intervals (by index). If the input vector is sorted, then the midpoint will
tend to be near the center of the scaffold. filter(~q, f) selects the subset of intervals in
~q for which the condition f(q) is true. The filters in lines 6-8 partition each element in
~q into one of three sets: intervals on the left of the midpoint c, intervals overlapping the
midpoint c, and intervals on the right of the midpoint c. New trees are created recursively
for the left (less than) and right (greater than) sets of intervals. buildTree returns a
new syntenic interval Tree object, (T ), that stores the midpoint c, all overlapping syntenic
intervals (~vmid), and the left and right child trees. The Tree will be used in Algorithm 3
to identify the anchors for each query feature.
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1 function search(T , t, q):
2 if t = Null then
3 return Empty
4 end
5 ~r = []
6 if tmidpoint < q1 then
7 foreach i in stopSorted(t) do
8 if q1 ≤ i2 then
9 ~r.add(i)

10 end

11 end
12 if tright = Null and length(r) = 0 then
13 ~r.add(opposite(T , t))
14 end
15 ~r.add(search(T , tright, q))

16 end
17 else if tmidpoint > q2 then
18 foreach i in startSorted(t) do
19 if q2 ≥ i1 then
20 ~r.add(i)
21 end

22 end
23 if tleft = Null and length(r) = 0 then
24 ~r.add(opposite(T , t))
25 end
26 ~r.add(search(T , tleft, q))

27 end
28 else
29 foreach i in startSorted(t) do
30 ~r.add(i)
31 end
32 ~r.add(search(T , tleft, q))
33 ~r.add(search(T , tright, q))

34 end
35 return ~r
Algorithm 3: Given the input of a syntenic interval tree (T ), the current node in the tree
(t), and a query feature (q), find all syntenic intervals in the focal genome that overlap
the query feature. ~r.add(~x) means intervals ~x are added to the search result ~r. q1 and
q2 represent the left- and right-hand edges of the query feature. i is an interval in the
interval tree. tmidpoint is the midpoint of the current node in the tree. tleft and tright and
the left- and right-hand subtrees. If no intervals are found, the opposite function returns
the nearest blocks on each side of q (see Figure 3).
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...
...

...

...

A

B

b1
b2
b3

a1
a2 query feature

Figure 3: Identification of the syntenic intervals that anchor a query feature on the interval
tree from the focal genome. A and B are nodes in the interval tree. A stores the overlapping
syntenic intervals a1 and a2. B stores the overlapping intervals b1, b2 and b3. The query
feature falls between the syntenic intervals stored in nodes A and B. The interval tree
algorithm first makes the tree, and then finds the nearest node to the query. If the closest
node found is A, and the nearest syntenic interval (a1) detected is on the left side of the
query feature, then the algorithm will trace the tree until it finds the first node to the right
of the query feature (i.e., node B). Conversely, if the closest node found is to the right of
the query feature (node B), then the tree is traced one branch to the left, and then as many
branches to the right as possible (i.e., until node A is found). In either case, all overlapping
nodes in A and B are returned as the anchors for this query sequence.

2.6 Step 5. Map query features and infer search intervals on the198

target genome199

Each query feature is mapped to a search interval that is created with respect to each200

associated collinear block set (Figure 2). To do this, synder first classifies each edge of201

the query feature relative to its relationship to an associated collinear set of blocks (Figure202

4), where each query feature edge may fall: 1) between two collinear sets of blocks203

(unbound); 2) inside a block (inblock); 3) between blocks comprising a collinear block set204

(bound); or 4) beyond all blocks, i.e., near the beginning or end of the scaffold (extreme).205

synder sets each boundary of the target genome search interval to the nearest edge of a206

block in the collinear set if the edge is inblock or bound; to the nearest syntenic interval207

beyond the collinear set if the edge is unbound; or to the end of the scaffold if the edge is208

extreme (see Figure 4).209

If a search interval is bound by two blocks, a and b, which define the two bounding210
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intervals, [a1, a2] and [b1, b2], then the search interval be the inclusive interval [a2, b1]. We211

use an inclusive interval, rather than the exclusive interval from (a2 + 1) to (b1 − 1), to212

avoid negative length intervals that would occur when b1 = a1 + 1 (as would occur if there213

is a deletion in the target genome).214

Extreme

Bound

Inblock

Unbound

Syntenic interval
Collinear Block

Scaffold
Query Feature

Search interval right-hand bound

Figure 4: Snapping rules to define the location of the search interval edges on the target
genome. 1) The left and right edges of the query feature are used to define the search interval
relative to a given collinear block. Only the target genomes and the right edge of the query
featured (represented by perpendicular line on query feature) are shown. 2) The right-hand
edge of the search interval is then assigned (red triangles) (Rules are the same for the left
edge). Unbound: the edge does not overlap the collinear block set. Inblock: the edge is
inside a syntenic interval. Bound: the edge is between intervals in a collinear block set.
Extreme: the edge is beyond any syntenic interval (near end of scaffold).

2.7 Step 6. Calculate scores for each collinear set relative to215

each overlapping query feature216

synder calculates the synder score for each input query feature relative to each associated217

collinear block set (Figure 5). The score reflects the intuitive ideas that: 1) query features218

are more reliable if a greater proportion of their sequence overlaps blocks in a collinear set;219

and, 2) query features are more reliable if they are within collinear block sets that are220

densely packed. In cases where many possible search intervals are identified for a given221

query feature, the synder scores can be used to compare the relative quality of the search222
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intervals. The synder score is especially important when k (the number of interrupting223

blocks that is tolerated) is high, since a large k allows large gaps between blocks in the224

collinear block sets. The pseudocode for synder’s scoring algorithm is shown in225

Algorithm 4. Note that input scores for syntenic blocks have been transformed to be226

additive (Equation 2.2 (Step 1)).227

1 function score(q, ~b, r):
2 s = 0

3 foreach b in ~b do
4 o = overlap(q, b)
5 d = bscore/(b2 − b1 + 1)
6 s += d * (o2 − o1 + 1)
7 if b1 < q1 then

8 s += d
∫ max(0,q1−b2)
q1−b1 erxdx

9 end
10 if b2 > q2 then

11 s += d
∫ max(0,b1−q2)
b2−q2 erxdx

12 end

13 end
14 return s
Algorithm 4: Calculating the synder score (s) for a query feature and the set of collinear
blocks from the target genome to which it is anchored. q is the query feature, b is a focal
genome-side syntenic interval within collinear block set ~b, and o is the intersection (of zero
length or greater) between q and b. The start and end points (edges) of the query feature
q are q1 and q2 (as for edges of b and o). bscore is the synteny score associated with syntenic
interval b. r is an adjustable parameter, the decay rate.

In Algorithm 4, each block in the collinear block set can contribute to the total synder228

score (Figure 5). The score decay rate is controlled by the adjustable parameter r. For229

the default settings, the weight of the scores of blocks that neither overlap nor partially230

overlap the query feature decays exponentially with the absolute distance from the nearest231

query feature bound on the focal side. If the user sets r to be a low positive number, the232

weight at a given position will fall slowly with distance from the query interval (e.g., when233

r = 0.001 the weight will fall by half by 1000 bases from the nearest query feature bound);234
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thus, all blocks in the collinear set will contribute to the score, but they matter less with235

distance (Figure 5, r > 0). r = 0 would give equal weight to all blocks in the collinear set,236

in that case, the density of the map will not affect the score, and the score would simply be237

equal to the sums of the total scores for all the syntenic blocks. A high value, such as238

r = 100, would completely ignore genomic context, basing the query feature score only on239

the portions of syntenic blocks that overlap the query feature. With this r setting, the240

synder score would be 0 if the query feature does not overlap any syntenic block.241

Query Feature

Focal Genome
r = 0

r > 0
r >> 0

scored regionunscored region

Figure 5: Calculation of synder score for a query feature relative to a collinear block set.
Black bars: the collinear set of syntenic blocks that anchor the focal genome to the target
genomes. (Only depicted on focal genome.) The total score of the search interval is the sum
of the scores for each block. The score for each block, relative to the query feature (blue
bar), is equal to the synteny score for the block times the “weight” of the block (determine
by the adjustable parameter, r). Three values for r are depicted. The weight of each block
is the area represented by the solid green. The intervals between blocks (empty green)
do not contribute to the score.

3 RESULTS AND DISCUSSION242

Mapping genes in a gene family in one species to their orthologs in a related species is a243

major usage case for synder. To demonstrate the use of synder, we identify orthologs of244

the A. thaliana NF-YC family genes across several species in Brassicaceae (Figure 6).245

The canonical NF-Y is a heterotrimeric, eukaryotic transcription factor that is246

comprised of subunits NF-YA, NF-YB and NF-YC [31]. NF-Y has been associated with247

characteristics as diverse as cell division [32], cancer [33,34], drought tolerance [35], broad248
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Arabidopsis lyrata

Arabidopsis thaliana

Capsella rubella

Eutrema salsuineum

Brassica rapa

Figure 6: The species tree of the Brassicaceae used in this study. A. thaliana is the focal
species.

.

spectrum disease resistance [36], and carbon and nitrogen partitioning [37]. In animals and249

fungi, a single gene encodes each of the three NF-Y subunits. In contrast, the NF-Y250

subunits in plants are each encoded by gene families of 10-15 genes [34,38,39]. The251

combinatorial complexity of the potential plant NF-Y complexes that could be formed252

from the three NF-Y subunits has obfuscated the role of each individual family member,253

although progress is being made. For example, NF-YA1 of alfalfa controls successful254

symbiosis between rhizobia and plant, and is required for the persistence of the nodule255

meristem [40,41].256

Compounding the complexity of the action of NF-Y subunits in the cannonical257

heterotrimer, specific family members of at least two of the subunits, NF-YC and NF-YB,258

can also form associations with a variety of other nuclear proteins [37,42,43]. One of three259

NF-YC proteins can interact with one of two NF-YB proteins to enable260

CONSTANS-promoted photoperiod-induced flowering [44,45]. NF-YC4 of A. thaliana261

interacts with the protein of the orphan gene QQS to modulate carbon and nitrogen262

partitioning [37]. Several NF-YC family members interact with histone deacetylase 15263

(HDA15) in the light to reduce histone acetylation, which in turn decreases hypocotyl264

elongation [42].265

Clear determination of NF-YC orthologs across species would permit the assessment of266
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the relationships among orthology and function in evolution of this gene family. In practice,267

ortholog identification is often based only on sequence similarity scores. The highest scoring268

match, however, may not be the true ortholog. synder allows more reliable ortholog269

inference by finding the similarity matches that overlap the inferred syntenic regions. In270

this way, synder may serve as a syntenic filter downstream of the similarity search.271

3.1 NF-YC orthologs: Arabidopsis thaliana compared to272

Arabidopsis lyrata273

The specific case of determining the A. thaliana NF-YC orthologs in its sister species,274

A. lyrata, illustrates the use of synder in resolving orthologs. Since NF-Y is a large family,275

the paralogous NF-YC family members must be distinguished from the true orthologs.276

The genomic relationship between the two species further challenges analysis. While the277

species diverged only about 8.8 million years ago [46], A. lyrata has undergone a whole278

genome duplication since splitting from the common ancestor it shares with A. thaliana.279

This complicates orthology inference, since each A. thaliana gene is expected to have two280

orthologs in A. lyrata. Only one of each duplicate A. lyrata ortholog may have preserved a281

function. Its sister ortholog may have been deleted or become a pseudogene through282

genome fractionation [28,47]. Alternatively, a sister ortholog may have undergone selection283

for a completely new molecular function [48,49]. A third possibility is that the molecular284

function of each sister ortholog was preserved through the neutral process of285

subfunctionalization [48].286

In this analysis, we built a synteny map with Satsuma [20] using default parameters that287

yielded 229,562 syntenic blocks with a median length of 163 nt (1st quantile = 33 bases,288

3rd quantile = 365 bases). This is a very dense map: the A. thaliana genome is about289

120M in length, thus there are an average of around 1900 syntenic blocks per megabase.290

A synder search mapped 12 of the 13 query NF-YC family member genes to a search291
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interval in A. lyrata that also contained the top BLAST hit (see Hits worksheet in292

supplementary) (Figure 7). Further, synder uniquely mapped 11 of the 13 query genes to293

a single A. lyrata gene. NF-YC5 and NF-YC10 are mapped by synder to two genes in294

A. lyrata, potentially reflecting that the genome duplication of A. lyrata was syntenically295

conserved. In contrast, a BLAST search yielded a nearly fully connected graph between296

NF-YC members in the two species. In the case of NF-YC8, synder identified orthologs297

that were located in the same syntenic region of the two genomes; however,the whole298

genome BLAST did not identify these likely orthologs, but rather other sequences were299

among the top hits. synder and BLAST identified the same gene as having the highest300

score. A second NF-YC12 ortholog was identified by synder that was not selected by301

BLAST.302

If each pair of orthologs in A. lyrata had undergone only minimal sequence divergence303

and if synteny was maintained in each case, a synder analysis might uniquely identify two304

A. lyrata orthologs for each of the 13 NF-YCs of A. thaliana. Indeed, synder identified two305

hits for three of the family member: NF-YC5, NF-YC10 and NF-YC12. The BLAST306

results cannot reveal whether the second top BLAST hit is an ortholog or not.307

3.2 NF-YC orthologs across the Brassicaceae family308

This approach can be easily extended across the Brassicaceae family. We consider the309

species in Figure 6. In each species, tBLASTn alone links each NF-YC gene to nearly all310

of the other NF-YC genes; in contrast, synder identifies unique mappings to orthologs,311

many of which differ from the highest BLAST hit. As syntenic distance increases, the312

orthologs become more difficult to identify through syntenic methods (Figure 7).313

However, for those genes located in syntenically-conserved regions, synder would more314

reliably identify the ortholog. For example, in B. rapa, synder identifies an NF-YC315

ortholog within the syntenic search space for NF-YC3, NF-YC5, NF-YC7, and NF-YC8316

21

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/554501doi: bioRxiv preprint 

https://doi.org/10.1101/554501
http://creativecommons.org/licenses/by/4.0/


that does not correspond to the top BLAST hit (Figure 7). synder identified a syntenic317

ortholog of NF-YC6 that is only a weak BLAST hit. For NF-YC2, the ortholog identified318

by synder is not annotated at all in B. rapa. It may or may not be an expressed gene, but319

it is most likely an ortholog. Thus, synder can be used to augment whole-genome320

similarity inferences with syntenic context information.321

4 CONCLUSION322

synder provides a flexible, reproducible method to track specific genetic events. It also323

provides a pathway to evaluate broad biological concepts, including the evolution and324

diversification of gene families; the predominant mechanisms of diversification across325

lineages of eukaryotes and prokaryotes; the effects of genome duplication; and the326

relationship of different features to genomic instability. These types of analyses can327

ultimately reveal those genetic events that might be associated with particular evolutionary328

consequences, such as rapid evolution, horizontal transfer, de novo emergence of genes,329

transposition, or duplication.330

5 IMPLEMENTATION331

synder is a C++ program wrapped in an R package via Rcpp [50]. It is designed to be332

compatible with Bioconductor, an R-based bioinformatics ecosystem [51].333

6 AVAILABILITY334

As an R package, synder should work on any system. It is distributed under a GPL-3 open335

source license and the source code is available at https://github.com/arendsee/synder.336

All code required to run the case study is available at337
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Figure 7: Comparison of orthologs inferred by synder and BLAST for the 13 A. thaliana
NF-YC family members across genomes of four target species from Brassicaceae. Each row
represents predicted orthologs in a target species. The x-axis for each box compares synder
and tBLASTn scores. Blue dots, search intervals on the target genome that overlap a gene;
gray circles, tBLASTn hits (E-value<0.001) on the target genome; red X’s, tBLASTn hits
on the target genome that do not overlap any annotated gene. The normalized Score (y-axis)
is the score for synder search intervals and tBLASTn hits; synder scores were logged, and
tBLASTn E-values were transformed with a negated, base10 log. Values were normalized by
subtracting the means and dividing by the standard deviation. Gray lines, overlap between
the tBLASTn hit interval and the synder search interval, i.e., tBLASTn finds a hit on the
expected strand within the synder-inferred search interval.
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https://github.com/arendsee/synder-case-study and the required input data is on338

DataHub at https://datahub.io/arendsee/synder-nfyc.339
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