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Abstract

Purpose: Tumor Mutation Burden (TMB) is a potential genomic biomarker that could help

to identify patients benefiting from immunotherapy across many cancers. Various tissue-

based sequencing approaches have been widely used to determine the TMB status. However,

the clinical utility of these approaches is often limited, due to time, cost, and tissue availability

constraints. These methods could also provide inconsistent TMB status driven by spatial

intratumor heterogeneity. Hematoxylin and Eosin (H&E) stained whole slide images (WSI)

are routinely used for cancer diagnosis, thus mostly available for cancer patients. We present
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a deep learning based computational pipeline using WSIs for predicting patient-level TMB

status and quantifying its spatial heterogeneity within tumor regions.

Experimental Design: In an experiment to predict patient-level TMB status, we used The

Cancer Genome Atlas (TCGA) Urothelial Bladder Carcinoma (BLCA) and Lung Adenocar-

cinoma (LUAD) cohorts. To investigate spatial heterogeneity of TMB status within a tumor

and its prognostic utility, we used TCGA BLCA cohort.

Results: In an experiment of patient-level TMB predictions, our proposed method achieved

the Area Under ROC (AUROC) scores of 0.752 (95% CI, 0.683-0.802) and 0.742 (95%, 0.682-

0.794) for TCGA BLCA and LUAD cohorts, respectively, which are better compared to

those of state-of-the-art methods. In another experiment to investigate spatial heterogene-

ity of TMB per patient, we predicted TMB status for each tile in each WSI for patients from

TCGA BLCA cohort. We calculated entropy of TMB prediction probabilities in the WSI to

determine whether the patient has high or low spatial TMB heterogeneity within the tumor.

Kaplan Meier (KM) analysis showed that incorporating spatial heterogeneity of TMB infor-

mation with patient-level TMB status based on WSIs could improve identification of patient

subgroups with distinct survival outcome (a log rank test P<0.05).

Conclusions: Our proposed deep learning based approach using WSIs can predict patient-

level TMB status with good accuracy, sensitivity and specificity compared to state of the art

methods. The spatial analysis of TMB heterogeneity could provide a prognostic utility to

better select patient subgroups.

Code Availability: https://github.com/hwanglab/tcga tmb prediction
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1 Introduction

Tumor mutational burden (TMB) is a quantitative genomic biomarker that measures the number

of mutations within a tumor. TMB level has been shown to be associated with better prognosis

and clinical responses to immune-checkpoint inhibitors in various cancer types such as melanoma,

lung cancer and bladder cancer [2, 19]. Higher TMB levels are correlated with higher levels of

neoantigens which could help the immune system to recognize tumors [1]. Recent studies reported

that patients with high TMB status had favorable response to immunotherapy in many cancer types

including bladder cancer [15, 18, 19, 32]

Tissue-based DNA sequencing (e.g. Whole exome sequencing (WES), targeted sequencing,

etc.) is widely used to assess TMB status. However, due to the limited tissue availability, high

costs and time-consuming procedures, the clinical utility of the tissue-based DNA sequencing is

limited. Although the blood-based TMB measurement (e.g. liquid biopsies) has recently become

available, this approach poses similar challenges to tissue-based approaches to accurately measure

TMB [3]. In addition, because of spatial intratumor heterogeneity (ITH) present in a tumor, these

approaches often provide inconsistent TMB results [30]. Therefore, there is an urgent unmet need

to develop a method to accurately and cost-effectively predict TMB status while addressing the

spatial heterogeneity of TMB status within the tumor.

The use of widely available histopathological images poses a promising alternative. Rou-

tine histopathological examination is the gold standard for diagnosis and grading of various cancer

types in a clinical setting. Recent studies showed that deep learning models that utilize whole
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slide images (WSIs) could accurately predict genetic variations present in a tumor. Schaumberg

et al. (2018) [10] proposed a quantitative model to predict SPOP mutation state in prostate cancer

using Hematoxylin and Eosin (H&E) stained WSIs. Their technique first determines a cohort of

dominant tumor tiles based on tumor nuclei densities in WSI. Ensembles of residual networks [11]

are then trained and integrated to predict SPOP mutation state. Coudray et al.,(2018) [12] trained

the inception-v3 deep learning model [13] on lung adenocarcinoma (LUAD) WSIs to predict the

ten most commonly mutated genes in LUAD. They reported that six of those ten commonly mu-

tated genes, such as STK11, EGFR and FAT1, are predictable from pathology images by using

deep learning models. Fu et al., (2019) [24] performed a pan-cancer computational histopathology

study, which showed that histological imaging features had significant correlations with a number

of driver gene mutations across different cancer types. Kather et al., (2019) [25] performed another

pan-cancer computational pathology study, which further evidenced that many gene mutations are

predictable from pathology slides with deep transfer learning methods. In addition, Kather et.al.,

(2019) [28] showed that deep learning models based on WSIs could predict microsatellite instabil-

ity to guide immunotherapy for patients who are not eligible for genetic or immunohistochemical

tests.

Given these studies showing that computational approaches making use of morphological

features present in WSIs could reliably predict genetic characterizations present in tumors, we

hypothesize that a carefully designed image-based computational method could predict TMB status

given a WSI from a patient.
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In this work, we develop and evaluate deep-learning based computational pipelines to predict

patient and tumor tile-level (i.e., a small region within a WSI) TMB status, and then use the tile-

level TMB status to delineate spatial heterogeneity of TMB within WSIs. Our proposed pipeline

consists of four modules: 1) tumor detection, 2) representative tile selection, 3) feature extrac-

tion from selected tiles using transfer learning, and 4) TMB classification using support vector

machines (SVMs) based on image features. To the best of our knowledge, this is the first work

to predict bladder cancer patient TMB status, and interrogate TMB spatial heterogeneity and its

prognositc utility using WSIs.

In the experiments with TCGA Urothelial Bladder Carcinoma (BLCA) and LUAD cohorts,

we first evaluated the performance of our proposed method against state-of-the-art methods, includ-

ing deep learning and Multiple Instance Learning (MIL) methods, using WSIs to predict patient-

level TMB status. Then we applied our proposed model to predict TMB status at the tile level

within WSIs for BLCA cohort and applied entropy measurement to evaluate spatial heterogeneity

of TMB within WSIs. Identification of patient subgroups based on patient-level TMB status and

TMB spatial heterogeneity status indicated that incorporating spatial heterogeneity of TMB could

lead better patient stratification.

2 Materials and Methods

Datasets. A cohort of 386 TCGA BLCA patients (and corresponding clinical information) with

457 diagnostic H&E stained WSIs was downloaded from the TCGA data portal. We selected the
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first diagnostic slide image (i.e., with DX1 suffix) if there are multiple diagnostic slide images

available for a patient. Based on the percentile of total number single nucleotide variants [2], 386

TCGA BLCA patients were categorized into 3 groups: 128 low, 128 intermediate and 130 high

TMB patients. After excluding one high and four low TMB patients, due to severe pen marks on

slides, 124 low and 129 high TMB patients were used to train and test a model to predict patient-

level TMB high and low status.

Another cohort of 478 TCGA LUAD patients with 541 diagnostic H&E stained WSIs was

downloaded from TCGA data portal. In a similar way with TCGA BLCA cohort, TCGA LUAD

patients were categorized into 3 TMB levels: 158 low, 159 intermediate and 161 high TMB pa-

tients. Due to severe pen markers on slides, 18 low and 4 high TMB patients were excluded from

the analysis. Finally, 140 low and 157 high TMB patients were used to train and test a model to

predict patient-level TMB high and low status in the LUAD cohort.

Methods. We developed a deep learning-based computational pipeline using WSIs to predict

patient-level TMB status and delineate spatial heterogeneity of TMB present in tumors. The aim

of our approach is to accurately predict and incorporate spatial TMB heterogeneity with patient-

level TMB status to identify patient subgroups that could lead to better patient stratification. An

illustration of the proposed computational pipeline is provided in Fig. 1.

(1) Tumor Detection. We trained a light-weight convolutional neural network (CNN) model

with only about 0.28M trainable parameters to detect tumor regions in the WSI. Given an input

image tile (512×512 pixels), the CNN-based tumor detector outputs the probability of belonging to

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 20, 2020. ; https://doi.org/10.1101/554527doi: bioRxiv preprint 

https://doi.org/10.1101/554527


cancer regions. The prediction map corresponding to the WSI is generated by stitching predicted

probabilities for all image tiles. An empirical threshold (e.g., 0.5) is applied on the prediction

map to obtain tumor regions. Fig. 2(a) illustrates an example of cancer detection on a WSI. All

prediction maps of tumor regions were manually inspected by a pathologist. More details about

our trained CNN-based tumor detector are provided in Fig.s1. Results are provided in Fig.s5, s6

and Table s1 in supplementary results.

(2) Representative Tile Selection. To improve computational efficiency of the method to

analyze a large size of predicted tumor regions, we selected a subset of representative regions

from all predicted tumor regions. We first divided predicted tumor regions into a set of non-

overlapping tiles (128×128 pixels) at 2.5× magnification. We then characterized each tumor tile

by a 42 dimensional feature vector (i.e., 40 multi-scale local binary pattern features [14] and 2D

location of the tumor tile). After that, affinity Propagation (AP) clustering [16] was applied to

identify tumor regions containing tiles with similar morphological patterns [31]. The AP clustering

simultaneously identified a number of r local tumor regions and their representative tilesRj , where

1 ≤ j ≤ r. Figs. 2(b)(c) illustrates AP clustering of tumor tiles on a WSI, where tumor tiles

belonging to different clusters are indicated by different color of blocks in the image. Note that

there are 56 (r = 56 for this example) representative tiles selected among 490 tumor tiles for the

patient slide shown in Fig. 2(b). More details about representative tile selection are described in

the supplementary method section 2.

(3) Feature Extraction. We used transfer learning on pre-trained deep learning models to
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generate features for selected representative tumor tiles. First, to suppress the influence of color

variations, a color deconvolution based method [17] is utilized to normalize tumor tiles into a

standard color appearance. Second, Transfer learning on pre-trained Xception [20] model was

used to extract features from selected tumor tiles. Given an input tumor tile Rj at 20× magnifi-

cation (1024×1024 pixels), the transfer learning model outputs a high-level feature representation

Vj which is a 2048 dimensional vector. Finally, the feature vector V representing the WSI was

obtained by integrating features of representative tumor tiles together, i.e., V̄ =
r∑

j=1
ρjVj , where

ρj = λj
/∑r

j=1 λj and λj represents the number of tumor tiles belonging to the jth cluster. The

feature vector V̄ is the weighted mean of features extracted from representative tiles, where each

representative tile stands for the major characteristics of tumor tiles within the cluster. See details

about feature extraction in the supplementary method section 3.

(4) TMB classification. We trained the Support Vector Machine (SVM) classifier based on

features generated from the transfer learning model to predict patient-level TMB status. First,

principal component analysis (PCA) was used to reduce the feature dimension to prevent over-

fitting. Second, feature standardization was performed on each feature component, which ensured

its values have zero mean and unit variance. Finally, SVM with radial basis function (RBF) and

linear kernels using default parameters were trained to predict patient-level TMB status. See details

about TMB classification in the supplementary method section 4.
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3 Results

In experiments using TCGA BLCA and LUAD cohorts, we first evaluated the performance of

our proposed method and baseline methods to predict patient-level TMB status using WSIs. To

investigate the prognostic utility of spatial heterogeneity of TMB status within a tumor, we used

TCGA BLCA cohort to measure TMB heterogeneity and incorporated spatial TMB heterogeneity

status to identify patient subgroups.

Evaluation on patient-level TMB Prediction for TCGA BLCA and LUAD cohorts. We first

investigated whether the use of either tumor detection, representative tile selection, or color nor-

malization module as well as different transfer learning models could impact the performance of

patient-level TMB prediction. Using TCGA BLCA dataset, we ran patient-level TMB predic-

tion experiments by excluding tumor detection (abbreviated as P-E-TD), representative tile selec-

tion (abbreviated as P-E-RTS), or color normalization (abbreviated as P-E-CN). We also tested

two well-known transfer learning models, Inception-v3 (abbreviated as P-InceptionV3) [13] and

Resnet50 (abbreviated as P-Resnet50) [11], in addition to Xception model (abbreviated as P-

Xception), to evaluate whether different transfer learning models could impact patient-level TMB

prediction performance. After performing principal component analysis to reduce the number of

features generated by transfer learning models, we selected the top 100 principal components to

train SVM classifiers with linear or RBF kernels to predict patient-level TMB status using leave-

one-out cross validation. Fig. 3(a)(b) shows ROC curves of patient-level TMB prediction results

using different settings of our pipeline, that is Linear SVM and RBF SVM, respectively (see more
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details in Table s2). The P-E-RTS model, which exhaustively uses all tiles within a WSI without se-

lecting representative tiles, and the P-Xception model, which uses the selected representative tiles,

showed overall best AUROC values, achieving 0.769 and 0.748 for linear SVM, and 0.753 and

0.752 for RBF SVM, respectively. While both approaches showed good prediction performance,

the P-Xception model used the 11,164 selected representative tiles out of 125,358 tiles, which re-

quires significant less computational time (see computational comparison example in Table s3).

This indicates that the use of AP clustering to select a set of representative tiles from a WSI could

bring computational efficiency and therefore we used the AP clustering module in our proposed

pipeline for further experiments. The patient-level TMB prediction performance using Xception

model (P-Xception) is much better than those of Inception-v3 (P-InceptionV3) and Resnet50 (P-

Resnet50), thus we used Xception model as the transfer learning algorithm in our pipeline for the

rest of experiments.

To compare the performance of patient-level TMB prediction of our proposed method and

the state-of-the-art methods, we trained our designed CNN model (see Fig.s1 in supplementary

methods), VGG16-TL2 [26] and Resnet18 [28], and MIL based deep learning algorithm [29] as

baseline models. To train these deep learning models, tumor tiles of each WSI were assigned the

same label (e.g., TMB high or low status) as the corresponding patient-level TMB status. The final

patient-level TMB prediction was obtained by averaging prediction probabilities of all tumor tiles.

In addition, we also extracted local binary pattern (LBP) texture features from representative tumor

tiles and made predictions using an SVM classifier with RBF kernel as the baseline. Three-fold

cross validation was applied to evaluate baseline deep leaning models, due to computational com-
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plexity, and the leave-one-out cross validation was used to evaluate the rest of the methods. Table 1

shows patient-level TMB prediction results in terms of accuracy (ACC), specificity (SPE), sensi-

tivity (SEN ) and AUROC values for our proposed method and baseline models. Fig. 3(c) and (d)

shows patient-level TMB prediction performance in TCGA BLCA and LUAD, respectively. Over-

all, the proposed pipeline provides better performance over baseline methods, which achieves from

2% to 5% improvements with respect to AUROC values. Taken together, these results indicate the

efficacy of the proposed method to predict patient-level TMB status using WSIs.

Spatial heterogeneity of TMB status within a tumor and its prognostic utility to identify

patient subgroups with distinct overall survival outcome in TCGA BLCA. We investigated

the spatial heterogeneity of TMB status by predicting TMB status of each representative tumor

tile within a WSI. We used our proposed pipeline to predict TMB status on selected representative

tiles from tumor regions and then assigned predicted TMB status for each representative tile to

corresponding tumor regions. Specifically, instead of integrating a set of selected representative

tiles from the WSI to predict a patient-level TMB, we used the trained SVM with Linear kernel

to predicted TMB status of each selected representative tile within a WSI. Corresponding tumor

regions of the representative tumor tiles were assigned with the same TMB prediction status as the

predicted TMB status of the representative tumor tile. To determine spatial TMB heterogeneity

status (i.e., high or low spatial heterogeneity), we calculated the Shannon entropy [23] of predicted

TMB levels of tumor regions within the WSI, i.e., S = −∑
k
Pklog2 (Pk), where Pk is the ratio

between the number of the kth unique TMB prediction probability and the total number of tumor

tiles within the WSI. High entropy value indicates high spatial TMB heterogeneity (e.g., mixture
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of predicted TMB high and low regions), while low entropy value indicates low spatial TMB

heterogeneity within a tumor (e.g., either TMB high or low status across most of tumor regions

within WSIs). High or low entropy status was determined by using the median entropy value from

all patients from TCGA BLCA cohort as the threshold. Fig. 4 shows visualization of spatial TMB

heterogeneity heatmaps based on tile-level TMB prediction, where red and blue colors indicate

predicted TMB high and low status probability, respectively. Fig. 4(a) shows a heatmap of spatial

TMB status of TMB high patient based on Whole Exome Sequencing (WES) data. Our WSI-based

method correctly predicted the patient-level TMB status as TMB high for this patient. Tile-level

TMB prediction and the entropy measurement of the predicted TMB levels of tumor tiles within

the WSI showed low spatial TMB heterogeneity. Specifically, the heatmap showed that most tumor

regions within the WSI presented TMB high status, while few tumor regions presented TMB low

status. Similarly, Fig. 4(b) showed that our WSI-based method correctly predicted the patient

level TMB status as TMB low and low spatial TMB heterogeneity for the WSI-based TMB low

patient. Fig. 4(c) and (d) showed that while WSI-based patient level TMB status of these two

patients agreed with WES-based patient level TMB status, there are mixtures of TMB high and

low status within tumor regions. Higher entropy values based on tile-level TMB status indicates

higher degree of spatial TMB heterogeneity within WSIs.

To investigate the prognostic utility of spatial TMB heterogeneity status, we used spatial

TMB heterogeneity status to select patient subgroups. In experiments using TCGA BLCA cohort,

we predicted patient-level TMB high and low status for 368 patients using our proposed WSI-

based method. In each patient, we assigned low or high spatial TMB heterogeneity status based
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on entropy values using tile-level TMB prediction of tumor regions within WSIs for all patients.

We assigned patients with predicted patient-level TMB-high and low spatial TMB heterogeneity

into one subgroup and the rest of patients as another subgroup. Then, we generated a Kaplan

Meier (KM) plot using overall survival (OS). Fig. 5(a) shows a KM plot for two TMB subgroups

indicating that two subgroups have statistically significant OS difference using log-rank test (P

= 0.016). In univariate analysis using Chi-square test, the TMB subtypes correlated significantly

with differences in tumor stage (P = 0.024), but not age (Age>60 vs others, P = 0.872), sex (P

= 0.086), Lymphovascular invasion (P = 0.064) and Inflammatory Infiltrate Response (P = 0.428)

(see supplementary Table s4). The patients in patient-level TMB high with low spatial heterogene-

ity subgroup had more advanced tumor stage. The TMB subtypes did not significantly correlate

with known molecular subtypes determined by Reverse Phase Protein Array (RPPA) (P = 0.761)

and mRNA subtypes (P = 0.942) from TCGA BLCA study. Multivariable Cox proportional-hazard

analyses of cancer stage and the TMB subtypes in relation to the risk of death showed that the TMB

subtypes remained statistically significantly correlated with survival. The Hazard Ratio (HR) of

the TMB variable is 1.796 (95% CI: 1.18-2.73, P = 0.006), which indicates that the hazard for

patients belonging to the group of TMB others is about 1.8 times higher than patients belonging to

the group of TMB high & Low spatial TMB heterogeneity (see supplementary Table s5). We also

assigned patients into two subgroups as WSI-based, patient-level TMB high or low, without con-

sidering spatial TMB heterogeneity. While the subgroup with predicted patient-level TMB-high

status tended to have better OS compared to the subgroup with predicted patient-level TMB-low

patient subgroup, the log rank test did not show a statistically significant difference (P = 0.072, see
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Fig.s7 in supplementary results). Finally, to investigate whether incorporating WSI-based patient-

level TMB and spatial TMB heterogeneity with tissue-based TMB testing could improve patient

stratification, we divided 126 WES-based TMB-high patients (with tile-level predictions) into two

subgroups: 1) WSI-based patient-level TMB-high and low spatial TMB heterogeneity patient sub-

group and 2) the rest of WEX-based TMB-high patient subgroup, respectively. Fig. 5(b) showed

that WES-based TMB high & WSI-based patient-level TMB high and low spatial TMB hetero-

geneity patient subgroup have better OS compared to the other subgroup (log rank test P = 0.018).

Taken together, these results indicate that incorporating WSI-based patient-level TMB status with

spatial TMB heterogeneity information could lead to better patient stratification.

4 Discussion

Intratumor heterogeneity is one of key mechanisms driving disease progression and resistance to

therapies [5, 21]. Multi-regional tissue-based sequencing from a tumor has shown spatial hetero-

geneity of mutational signature, mutational burden, T-cell receptor repertoire, etc. [3,4,6,7] and its

implication for treatment strategy [8]. While tissue-based sequencing from multiple regions could

provide landscape of spatial heterogeneity, it is practically challenging to generate such data, due

to high costs, tissue availability, etc.. In this study, we present the computational pipeline based on

WSIs to predict patient-level TMB status and investigate spatial heterogeneity of TMB within tu-

mors. We showed that our proposed computational pipeline could achieve overall best performance

to predict patient-level TMB compared to other state of the art methods. We also showed that mea-

suring and incorporating spatial heterogeneity of TMB status with patient-level TMB status based
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on WSIs or combined with WES-based TMB status could lead to better patient stratification with

distinct overall survival outcomes. In particular, patient-level TMB high with low spatial hetero-

geneity of TMB status was correlated with better overall survival. Visual inspection of selected

tumor tiles from WSIs by our pathologist indicates that predicted TMB-high representative tumor

tiles from patient-level TMB high WSIs are more enriched with Tumor Infiltrated Lymphocytes

(TILs) while showing more high grade tumors (see supplementary Table s6 and Fig.s9). This is

consistent with the univariate analysis of TMB subtypes showing a higher portion of high grade

tumors in patient-level high TMB and low heterogeneity tumors. Although we observe an en-

richment of high graded tumors in this TMB subgroup, the higher presence of TILs in tumors

from this subgroup might be one of reasons why this subgroup has better prognosis. To the best

of our knowledge, this is the first study to predict spatial TMB heterogeneity status and study its

prognostic utility for patient stratification.

There are several limitations and challenges in our study. Due to the limited access of data

cohorts, the evaluation of the proposed method and baselines to predict patient-level TMB was lim-

ited to TCGA BLCA and LUAD datasets without additional validation cohorts. While we showed

overall better performance to predict patient-level TMB status compared with baseline methods, in-

dependent cohorts from multiple institutes are needed to evaluate its generalizability. In addition,

our evaluations indicated that various deep learning-based prediction models, including end-to-

end deep learning models, to predict patient-level TMB status did not show superior performance.

Larger and more well-annotated WSI datasets would be needed to better train and improve the

performance of deep learning-based prediction models (and thus our computational pipeline too,
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since we employ deep learning-based transfer learning models). Finally, we showed that incorpo-

rating WSI-based, patient-level TMB status with spatial TMB heterogeneity status could improve

patient stratification in TCGA BLCA cohort, thus, it can potentially be used to select patients likely

benefit to immunotherapy. However, we could not access WSI datasets from patients treated with

immunotherapy to test its utility as a predictive biomarker. Further retrospective and/or prospective

studies should be performed to evaluate the utility of WSI-based, patient-level TMB status with

spatial TMB heterogeneity status as a predictive biomarker to select patients likely to respond to

immunotherapy. It is worth noting that in experiments using TCGA LUAD corhort, WSI-based

patient-level TMB status with spatial TMB heterogeneity status was not found to be correlated

with OS (see Fig.s8 in supplementary results). However, WES-based TMB status was not signifi-

cantly correlated with OS either. Recent study integrating multiregion exome and RNA-sequencing

(RNA-seq) data with spatial histology to investigate spatial tumor and immune microenvironment

(TIME) in LUAD showed that LUAD subgroup with immune cold and low neoantigen burden was

significantly correlated with poorer disease free survival [9]. This may indicate that integrating

TIME and spatial TMB heterogeneity could lead to improvement to stratify patients in a certain

type of cancers.

In summary, this study demonstrates the feasibility of predicting patient-level TMB status

and delineating spatial heterogeneity of TMB by using computational models based on histologi-

cal images. Our spatial TMB heterogeneity analysis shows that patients with more homogeneous

TMB high status across regions present better prognosis in bladder cancer. By combining tissue-

based TMB high status with image-based TMB high and low spatial TMB heterogeneity status
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could further improve patient stratification in bladder cancer. Taken together, integrating image-

based TMB prediction and the degree of spatial TMB heterogeneity on WSI yields better patient

stratification than tissue-based TMB alone and represents a novel prognostic biomarker. Our com-

putational pipeline is a general model applicable to different types of tumors thus could pave new

opportunities to develop rapid and cost-effective biomarkers based on WSIs. Future studies would

be required to further refine the presented technique and validate it in prospective patient cohorts

with bladder cancer or other cancer types.
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Figure 1: Pipeline of the presented technique.
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(a) (b) (c)

Figure 2: Illustration of tumor detection and AP clustering. (a) Tumor detection result (overlapped
green contours). (b) Example of AP clustering on tumor tiles, where tumor tiles belonging to
different clusters are indicated by different color of blocks in the image. Several representative
tumor tiles indicated by arrows are zoomed-in for better viewing. (c) 56 representative tumor tiles
selected by AP clustering for the slide shown in (b).
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Figure 3: Evaluations on TMB prediction. Ablation study of our method on TCGA BLCA TMB
prediction: (a) using SVM with Linear kernel, (b) using SVM with RBF kernel. (c) Baseline
comparisons of TCGA BLCA patient-level TMB predictions. (d) Baseline comparisons of TCGA
LUAD patient-level TMB predictions. Note that in (c)(d) Proposed-LIN and Proposed-RBF rep-
resent the proposed technique using Linear SVM and RBF SVM, respectively.
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Figure 4: Tile-level TMB prediction visualization. (a) Tissue-based TMB high patient (TCGA-XF-
AAN2) was predicted as patient-level TMB high based on our WSI-based method. Tile-level TMB
prediction and entropy measurement indicated low spatial TMB heterogeneity (Shannon entropy
S = 4.99). (b) Tissue-based TMB low patient (TCGA-XF-A9SH) was predicted as patient-level
TMB low and low spatial TMB heterogeneity based on our WSI-based method (S = 4.60). (c)
Tissue-based TMB high patient (TCGA-DK-A3IT) was predicted as patient-level TMB high, while
tile-level TMB prediction indicated high spatial TMB heterogeneity (S = 5.30). (d) Tissue-based
TMB low patient (TCGA-FD-A3B7) was predicted as patient-level TMB low and tile-level high
entropy (S = 6.21). The median cut-off value for entropy S was 5.19. High entropy indicated high
spatial TMB heterogeneity.
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Figure 5: WSI-based TMB subtypes (a) A Kaplan-Meier plot for overall survival according to
WSI-based TMB high & low spatial TMB heterogeneity vs other subtypes. (b) A Kaplan-Meier
plot for overall survival according to WSI-based TMB high & low spatial TMB heterogeneity vs
other subtypes for WES-based TMB high patients.
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Table 1: Comparison of patient-level TMB prediction using different methods. In this table,
Proposed-LIN uses SVM classifier with linear kernel, while Proposed-RBF uses SVM classifier
with RBF kernel.

Cohorts Methods ACC (%) SPE (%) SEN (%) AUROC (95% CI)

TCGA-BLCA

LBP+SVM 60.47 64.52 56.59 0.623 (0.550-0.689)
Designed CNN 61.66 62.10 61.24 0.651 (0.581-0.741)

VGG16-TL2 [26] 65.22 66.94 63.57 0.707 (0.639-0.766)
MIL [29] 58.89 58.87 58.91 0.647 (0.577-0.710)

Resnet18 [28] 66.80 65.32 68.22 0.701 (0.638-0.765)
Proposed-LIN 69.57 68.55 70.54 0.748 (0.683-0.802)
Proposed-RBF 73.12 75.81 70.54 0.752 (0.694-0.810)

TCGA-LUAD

LBP+SVM 66.67 70.00 63.69 0.706 (0.645-0.763)
Designed CNN 63.82 67.02 60.95 0.667 (0.583-0.741)

VGG16-TL2 [26] 69.85 62.77 76.19 0.703 (0.621-0.766)
MIL [29] 60.27 60.00 60.51 0.643 (0.578-0.698)

Resnet18 [28] 67.00 65.00 68.79 0.727 (0.666-0.779)
Proposed-LIN 69.02 62.14 75.16 0.737 (0.671-0.796)
Proposed-RBF 70.37 67.86 72.61 0.742 (0.682-0.794)
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