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Abstract13

14

High-TMB (TMB-H) could result in an increased number of neoepitopes from somatic mu-15

tations expressed by a patient’s own tumor cell which can be recognized and targeted by16

neighboring tumor-infiltrating lymphocytes (TILs). Deeper understanding of spatial het-17

erogeneity and organization of tumor cells and their neighboring immune infiltrates within18

tumors could provide new insights into tumor progression and treatment response. Here we19

developed and applied computational approaches using digital whole slide images (WSIs) to20

investigate spatial heterogeneity and organization of regions harboring TMB-H tumor cells21
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and TILs within tumors, and its prognostic utility. In experiments using WSIs from The Can-22

cer Genome Atlas bladder cancer (BLCA), our findings show that WSI-based approaches23

can reliably predict patient-level TMB status and delineate spatial TMB heterogeneity and24

co-organization with TILs. TMB-H patients with low spatial heterogeneity enriched with25

high TILs show improved overall survival indicating a prognostic role of spatial TMB and26

TILs information in BLCA.27

1 Introduction28

Tumor mutational burden (TMB) is a quantitative genomic biomarker that measures the number of29

mutations within a tumor. TMB level has been shown to be associated with better prognosis and30

clinical responses to immune-checkpoint inhibitors in various cancer types such as melanoma, lung31

cancer and bladder cancer [2,18,21,22,45]. Higher TMB levels are correlated with higher levels of32

neoantigens expressed by a cancer cell, which could help the neighboring tumor-infiltrating lym-33

phocytes (TILs) to recognize and kill them [1]. Various studies including clinical trials reported34

that patients with TMB high (TMB-H) and/or high density of TILs within tumors had favorable35

prognosis and response to immunotherapy in many cancer types [2,16,18,21–26,45]. Recent stud-36

ies showed that spatial heterogeneity and composition of immune cells in the tumor microenviron-37

ment could improve our understanding of how immune environment influences patients’ prognosis38

and response to treatments, including immunotherapy [28, 30–33]. These findings might suggest39

that detecting regions harboring TMB-H tumor cells and TILs within the tumor microenvironment40

and analyzing their spatial architecture could provide new insights into the relationship between41
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spatial TMB and TIL co-arrangement and patient’s outcome.42

Tissue-based bulk DNA sequencing (e.g. whole exome sequencing (WES), targeted sequenc-43

ing, etc.) and mRNA sequencing are widely used to assess patient-level TMB status and quantify44

TILs in tumors, respectively. However, due to the limited tissue availability, high costs and time-45

consuming procedures, the clinical utility of tissue-based DNA and mRNA sequencing are limited.46

In addition, these bulk DNA and mRNA sequencing approaches were not designed to take into ac-47

count spatial intratumor TMB and immune heterogeneity, thus provide potentially biased samples48

leading to inconsistent testing results [43]. Although the blood-based TMB measurement (i.e. liq-49

uid biopsies) has recently become available, this approach poses similar challenges to tissue-based50

TMB measurements [3]. The development of single-cell DNA and mRNAseq has revealed a spec-51

trum of tumor cell and immune cell heterogeneity in the patient’s tumor, but these approaches do52

not provide insight into the spatial organization of tumor and immune cell architecture [26,46–48].53

Most recently, spatial transcriptome technologies have enabled mapping of the spatial architecture,54

composition and interactions of various cell types within the tumor, but simultaneously elucidating55

both DNA (e.g., TMB status) and RNA-level characteristics of cells is still challenging [49–51].56

The use of widely available histopathological images poses a promising alternative. Routine57

histopathological examination is the gold standard for diagnosis, grading, and quantification of58

TILs for various cancer types in a clinical setting. With the recent development in deep Learning,59

computational approaches based on whole slide images (WSIs) have been explored to predict ge-60

netic characteristics (e.g., mutation status, gene expression, etc.) present within tumor regions in61
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prostate [12], lung [14], colon, stomach [41], and pan-cancer [37, 38].62

WSIs are also being widely used to detect tumor-infiltrating lymphocytes (TILs) and its63

quantification within the tumor by computational analysis. Recently, Saltz et al. (2018) proposed64

to use convolutional neural networks (CNN) to identify TIL in H&E stained WSIs and showed65

that spatial composition of TILs within tumors correlated with patient’s prognosis across cancers.66

Corredor et al. [35] and Acs et al. (2019) [11] developed the algorithms to segment and detect67

TILs and used spatial composition and co-orgarnization of TILs and cancer cell within tumors68

linked to cancer recurrence and progosis in non-small cell lung cancer and melanoma, respec-69

tively. Most recently, Abduljabbar et al. (2020) performed a study integrating multiregion exome70

and RNA-sequencing (RNA-seq) data with spatial histology to investigate spatial tumor and im-71

mune microenvironment in LUAD and showed that lung adenocarcinoma (LUAD) subgroup with72

immune cold and low neoantigen burden (i.e., low TMB) was significantly correlated with poorer73

disease free survival [10]. This study demonstrated that the deep learning approach utilizing digital74

pathology images could provide a deeper understanding of how spatial composition of tumor and75

immune cells within tumor microenvironment impact tumor evolution and progression.76

Given these studies showing that computational approaches and deep learning algorithms77

utilizing morphological features present in WSIs could reliably predict characteristics of tumor78

and immune cells and their spatial organization in tumors, we hypothesize that a carefully de-79

signed WSI-based computational method could accurately predict TMB status and TILs in given80

regions within tumors and be used to dissect spatial heterogeneity of TMB and its co-organization81
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with TILs across regions within tumors. Specifically, we hypothesize that the comprehensive un-82

derstanding of spatial co-occurrence of TILs with neighboring TMB-H or TMB-low (TMB-L)83

regions from pathology slides could provide a prognostic utility to identify patient subgroups with84

distinct survival outcome.85

In this work, we first develop and evaluate deep-learning based computational pipelines to86

predict patient and tumor tile-level (i.e., dividing a WSI into small tiles for analysis) TMB status87

and TILs. We then use the tile-level TMB status to delineate spatial heterogeneity of TMB within88

WSIs. We perform a joint spatial analysis of regions harboring predicted TMB status and TILs89

within the tumor and use the spatial heterogeneity and arrangement information to identify patient90

subgroups (e.g., TMB-H tumor with low spatial TMB heterogeneity enriched with high density of91

TILs). To the best of our knowledge, this is the first work to interrogate spatial heterogeneity and92

organization of TMB with TILs within tumors to evaluate its prognostic utility to stratify patients93

using WSIs.94

In experiments with TCGA Urothelial Bladder Carcinoma (BLCA) and Lung Adenocarci-95

noma (LUAD) cohorts, we first evaluated the performance of our proposed method using WSIs to96

predict patient-level TMB status against state-of-the-art methods, including deep learning and mul-97

tiple instance learning methods. The patient-level evaluation performed is mainly because ground98

truth TMB status is only assigned per patient. Then we applied our proposed model to predict TMB99

status at the tile level within WSIs for BLCA cohort and applied entropy measurement to evaluate100

spatial heterogeneity of TMB within WSIs. Finally, we performed a survival analysis of patient101
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subgroups based on spatial TMB and/or TILs information in BLCA cohort. Identification of pa-102

tient subgroups based on patient-level TMB status and TMB spatial heterogeneity status indicated103

that incorporating spatial heterogeneity of TMB could lead better patient stratification in BLCA104

cohort. We further investigated whether incorporating TILs status with spatial TMB status within105

the tumor could improve patient prognostication. We found that the integration of predicted TMB106

status and TIL densities within tumor regions could lead significant better patient risk stratification107

in BLCA.108

2 Results109

Whole Slide Image Analysis Workflow. We developed a computational pipeline using WSIs to110

predict patient-level TMB status and delineate spatial heterogeneity of TMB present in tumors. We111

also trained a deep learning model to detect TILs and quantify its densities within tumor regions.112

The aim of our approach is to incorporate spatial TMB heterogeneity with patient-level TMB113

status and TIL densities to identify patient subgroups that could lead to better patient stratification.114

The computational analysis workflow is shown in Fig. 1(a), which includes two main modules:115

automatic TMB prediction and TILs detection. In the automatic TMB prediction module, the116

trained convolutional neural network (CNN) based tumor detector is first applied to identify tumor117

regions in the WSI (see Fig. 1(b)). Affinity propagation (AP) clustering is then applied to select118

a subset of representative tumor regions (see Fig. 1(c)(d)). After that, transfer learning using119

Xception model is used to convert representative tumor patches into feature vectors. Finally, SVM120

with linear or RBF kernel is trained and tested on integrated patient-level feature vectors. In the121
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automatic TIL detection module, the trained tile-level Resnet18 deep learning model is utilized to122

identity TIL regions in the WSI. The ratio of identified TILs pixels over the total number of tumor123

pixels is quantified as a variable to characterize TIL density inside tumor regions. More technical124

details can be referred in the method section.125

Patient cohorts. Two patient cohorts with digitally scanned WSIs were collected from the TCGA126

project through the Genomic Data Commons Portal (https:// portal.gdc.cancer.gov/). The TCGA127

BLCA cohort consists of 386 patients (and corresponding clinical information) with 457 diagnostic128

H&E stained WSIs. The first diagnostic slide image (i.e., with DX1 suffix) was selected if there129

are multiple diagnostic slide images available for a patient. Based on the percentile of total number130

single nucleotide variants [2], 386 TCGA BLCA patients were categorized into 3 groups: 128 low,131

128 intermediate and 130 high TMB patients. One high and four low TMB patients were excluded132

due to severe pen marks on slides, thus 124 low and 129 high TMB patients were used to train and133

test a model to predict patient-level TMB-H and low status. Based on TMB prediction and TILs134

detection, the whole cohort of patients with survival information was used for prognosis analysis135

on patients’ overall survivals. While we focused on BLCA cohort, we also collected TCGA LUAD136

cohort as an additional dataset to evaluate our proposed computational pipelines. In a similar way137

with TCGA BLCA cohort, 478 TCGA LUAD patients with 541 diagnostic H&E stained WSIs138

were collected and divided into TMB high, intermediate and low based on the number of somatic139

mutations. Due to severe pen marks on slides, 18 low and 4 high TMB LUAD patients were140

excluded from the image analysis. Finally, 140 low and 157 high TMB patients were used to train141

and test a model to predict patient-level TMB-H and low status in the LUAD cohort.142
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Evaluation on patient-level TMB Prediction. We first investigated whether the use of either143

tumor detection, representative tile selection, or color normalization as well as different transfer144

learning models could impact the performance of patient-level TMB prediction. Using TCGA145

BLCA dataset, we ran patient-level TMB prediction experiments by excluding tumor detection146

(abbreviated as P-E-TD), no representative tile selection (abbreviated as P-E-RTS), or no color nor-147

malization (abbreviated as P-E-CN). We also tested transfer learning on two well-known models,148

Inception-v3 (abbreviated as P-InceptionV3) [15] and Resnet50 (abbreviated as P-Resnet50) [13],149

in addition to Xception model (abbreviated as P-Xception), to evaluate whether different trans-150

fer learning models could impact patient-level TMB prediction performance. We trained SVM151

classifiers with linear or RBF kernels to predict patient-level TMB status. The leave-one-out cross152

validation was employed during testing different configurations. ROC curves of patient-level TMB153

prediction using different settings in our pipeline are shown in Figs. 2(a) and (b) using SVM with154

linear kernel (Linear SVM) and SVM with RBF kernel (RBF SVM), respectively (see more details155

in Table s3). The linear and RBF SVMs with P-Xception and P-E-RTS models achieved overall156

best AUROC values compared to other methods. While both approaches showed good prediction157

performance, the P-Xception model used the 11,164 selected representative tiles out of 125,358158

tiles, which required significantly less computational time (see computational comparison exam-159

ple in Table s4) compared to the P-E-RTS model. This indicates that the use of AP clustering to160

select a set of representative tiles from a WSI increases computational efficiency without a signifi-161

cant loss of prediction performance. Therefore we used the AP clustering module in our proposed162

pipeline for further experiments. The patient-level TMB prediction performance using Xception163
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model (P-Xception) is more accurate than those of Inception-v3 (P-InceptionV3) and Resnet50164

(P-Resnet50), thus we used Xception model as the transfer learning algorithm in our pipeline for165

the rest of experiments.166

To compare the performance of patient-level TMB prediction with other state-of-the-art167

methods, we trained our designed CNN model (see Fig.s1 in supplementary methods), VGG16-168

TL2 [39] and Resnet18 [41], and Multiple Instance Learning based deep learning algorithm [42]169

as baseline models. To train these deep learning models, tumor tiles of each WSI were assigned170

the same label (e.g., TMB-H or low status) as the corresponding patient-level TMB status. The171

final patient-level TMB prediction was obtained by averaging prediction probabilities of all tumor172

tiles. In addition, we also extracted local binary pattern (LBP) texture features from representative173

tumor tiles and made predictions using an SVM classifier with RBF kernel as the baseline. Three-174

fold cross validation was applied to evaluate baseline deep leaning models, due to computational175

complexity, and the leave-one-out cross validation was used to evaluate the rest methods. Table 1176

shows patient-level TMB prediction results in terms of accuracy (ACC), specificity (SPE), sensi-177

tivity (SEN ) and AUROC values for our proposed method and baseline models. Fig. 2(c) and (d)178

shows patient-level TMB prediction performance in TCGA BLCA and LUAD, respectively. Over-179

all, the proposed pipeline provides better performance over baseline methods, which achieves from180

2% to 5% improvements with respect to AUROC values. Taken together, these results indicate the181

efficacy of the proposed method to predict patient-level TMB status using WSIs.182

9

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2020. ; https://doi.org/10.1101/554527doi: bioRxiv preprint 

https://doi.org/10.1101/554527


Spatial heterogeneity of TMB status correlated with overall survival outcome in BLCA. We183

investigated whether patient-level TMB status predicted based on WSIs could be useful to identify184

patient subgroups with distinct clinical outcome on the whole TCGA BLCA cohort. The patient-185

level TMB status for WES-based TMB high or low group was predicted from our trained SVM186

with RBF kernel during the leave-one-out cross validation as described in above section. The187

patient-level TMB status for WES-based TMB intermediate group was independently predicted as188

TMB high or low by our trained SVM with RBF kernel on WES-based TMB high and low groups.189

We grouped the whole TCGA BLCA cohort into two subgroups: predicted TMB-High vs TMB-190

Low, and then generated a Kaplan Meier (KM) plot of the two subgroups using overall survival191

(OS) (see Fig.s8(a)). While the predicted patient-level TMB-High subgroup shows a trend towards192

better overall survival (OS), OS difference was not significant between two subgroups using log-193

rank test (P=0.072). We then evaluated if the the spatial heterogeneity of TMB (SH-TMB) within194

the patient’s tumor could be used to stratify patient subgroups with distinct clinical outcome. We195

applied the proposed TMB prediction approach on the APC-selected representative tumor tiles.196

Then, the corresponding tumor regions were assigned the same TMB status of their respective197

representative tile. To determine the SH-TMB status, we calculated the Shannon entropy [36] of198

predicted TMB levels of tumor regions within the WSI, i.e., S = −∑
k
Pklog2 (Pk), where Pk is199

the ratio between the number of the kth unique TMB prediction probability and the total number200

of tumor tiles within the WSI. A high entropy value indicates high SH-TMB (e.g., mixture of201

predicted TMB-H and low regions), while low entropy value indicates low SH-TMB within a202

tumor (e.g., either TMB-H or low status across most of tumor regions within WSIs). High or203
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low entropy status was determined by using the median entropy value from all patients of TCGA204

BLCA cohort as the threshold (see Fig.s10(a), Table s10). Fig. 3 shows a visualization of SH-TMB205

heatmaps based on tile-level TMB prediction, where red and blue colors indicate predicted TMB-206

H and low status probability, respectively. Fig. 3(a) shows a SH-TMB heatmap of TMB-H patient207

based on Whole Exome Sequencing (WES) data. Our WSI-based method correctly predicted the208

patient-level TMB status. The entropy value based on tile-level TMB prediction indicated low209

SH-TMB. Specifically, the heatmap showed that most tumor regions within the WSI presented210

TMB-H status, while few tumor regions presented TMB low status. Similarly, Fig. 3(b) showed211

that our WSI-based method correctly predicted the patient level TMB status as TMB low and low212

SH-TMB for the WSI-based TMB low patient. Fig. 3(c) and (d) showed that while WSI-based213

patient level TMB status of these two patients agreed with WES-based patient level TMB status,214

there are different mixtures of TMB-H and low status within tumor regions. Higher entropy values215

based on tile-level TMB status indicate higher degree of SH-TMB within WSIs.216

To investigate the prognostic utility of SH-TMB status, we selected patient subgroups by uti-217

lizing both patient-level TMB prediction and SH-TMB status. In experiments using TCGA BLCA218

cohort, we predicted patient-level TMB status for 368 patients using our proposed WSI-based219

method. For each patient, we assigned low or high SH-TMB status based on entropy values de-220

rived from tile-level TMB prediction. We assigned patients with predicted patient-level TMB-high221

and low SH-TMB into one subgroup and the rest of patients to the ”Others” subgroup. Then, we222

generated an OS KM plot segregating by these subgroups (Fig. 4(a)), which indicates that the two223

subgroups have statistically significantly different OS by using log-rank test (P = 0.016). By uni-224
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variate analysis using Chi-square test, the TMB subtypes correlated significantly with differences225

in tumor stage (P = 0.024), but not age (Age>60 vs others, P = 0.872), sex (P = 0.086), lym-226

phovascular invasion (P = 0.064) and inflammatory infiltrate response (P = 0.428) (see Table s5).227

The patients in patient-level TMB-H with low spatial heterogeneity subgroup had more advanced228

tumor stage. The TMB subtypes did not significantly correlate with known molecular subtypes229

determined by Reverse Phase Protein Array (RPPA) (P = 0.761) and mRNA subtypes (P = 0.942)230

from TCGA BLCA study. Multivariable Cox proportional-hazard analyses of cancer stage and231

TMB subtypes in relation to the risk of death showed that TMB subtypes remained statistically232

significantly correlated with survival (see Table s6). A KM analysis of TMB subtypes based on233

both patient-level TMB and SH-TMB status showed that TMB subtypes with high SH-TMB status234

have worse OS, regardless of patient-level TMB status (see Fig.s8(b)). We further investigated235

whether incorporating WSI-based patient-level TMB and spatial heterogeneity with tissue-based236

TMB testing could improve patient stratification. While WES-based TMB-H patients tend to have237

better prognosis, we hypothesize that integrating WSI-based patient-level TMB status as well as238

spatial heterogeneity with WES-based TMB status could further improve patient stratification. To239

test our hypothesis, we selected 126 WES-based TMB-high patients and divided them into two240

subgroups: 1) WSI-based patient-level TMB-high and low SH-TMB patient subgroup (HHL) and241

2) the rest of WES-based TMB-high patient subgroup (w/o HHL), respectively. Fig. 4(b) showed242

that WES-based TMB-H & WSI-based patient-level TMB-H and low SH-TMB patient subgroup243

has better OS compared to the other subgroup (log rank test P = 0.018). Taken together, these244

results indicate that incorporating WSI-based patient-level TMB status with SH-TMB information245
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could lead to better patient subgroup identification with distinct OS outcome.246

Spatial analysis of TMB heterogeneity and TILs within tumors further improved patient risk247

stratification in BLCA. Finally, we investigated that whether the use of spatial co-organization of248

predicted TMB-H and TILs within the tumor could improve prognostication. We hypothesize that249

a patient whose majority tumor regions are enriched with TMB-H status (e.g., patient-level TMB-250

H with low spatial TMB-H heterogeneity) and co-localized with high densities of TILs might have251

better prognosis. For instance, tumors with patient-level TMB-H and low spatial TMB-H hetero-252

geneity status enriched with high density of TILs (i.e., high number of both TMB-H and TILs253

regions within the tumor) could show better prognosis compared to patients either having low254

number of TILs with TMB-H tumors or TMB-L tumors regardless of TILs status. We measured255

TIL densities within tumor regions for all patients of TCGA BLCA cohort and used the median256

TIL density score to divide patients into TIL high or low patient subgroups (e.g., >8.12% as TIL257

high patient subgroup) (see Fig.s10(b)). Then we selected a subset of patients from a TIL high sub-258

group with the following criteria: predicted TIL High & predicted TMB High & predicted Low259

SH-TMB (HHL). Similarly, to investigate whether high or low level of TILs densities could be260

linked to patients’ prognosis, we also selected patients from a TIL low subgroup with the following261

criteria: predicted TIL Low & predicted TMB High & predicted Low SH-TMB (LHL). Patients262

belonging to the HHL subgroup tend to have most tumor regions carrying TMB-H status (i.e., a263

patient-level TMB-H with low SH-TMB) and higher level of TILs co-present within the patient’s264

tumor (ANOVA testing p<0.001) (see Fig.s11(a)). Fig. 5 shows visualization of TMB-H and TILs265

carrying regions within the tumors in the HHL, LHL and other subgroups. Fig. 4(c) shows a KM266
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plot of three subgroups (e.g., the HHL subgroup vs the LHL subgroup vs other patients) and a267

log rank test indicates that three subgroups have statistically significant different OS (P=0.0027).268

The HHL subgroup showed overall best OS compared to two other subgroups. Multivariable Cox269

proportional-hazard analyses of cancer stage, lymphovascular invasion, mRNA-based molecular270

subtype, and joint TIL-TMB based patient subgroups in relation to the risk of death showed that271

joint TIL-TMB based patient subgroups remained statistically significantly correlated with OS (see272

Table s7). Interestingly, although patients in the LHL subgroup carry patient-level TMB-H with273

low spatial TMB-H heterogeneity, the LHL subgroup showed poorer OS compared to the HHL sub-274

group (HR: 3.30, 95% CI: 1.34-8.12, P<0.01). Lastly, we selected WES-based TMB-H patients275

and divided into three subgroups: predicted TIL High & WES-based TMB High & WSI-based pre-276

dicted TMB High & predicted Low SH-TMB (HHHL) vs predicted TIL Low & WES-based TMB277

High & WSI-based predicted TMB High & predicted Low SH-TMB (LHHL) vs other WES-based278

TMB-H patients. Three subgroups from WES-based TMB-H patients have statistically different279

TMB-H and TILs overlapped ratio while the HHHL subgroup carrying the highest TMB-H and280

TILs overlapped ratio among the subgroups (ANOVA testing p=0.005) (see Fig.s11(b)). Fig. 4(d)281

shows a KM plot of three subgroups and indicates that patients in the HHHL subgroup present282

better OS than other WES-based TMB-H patient subgroups (log rank test p=0.034). These results283

show that incorporating TILs density with patient-level and SH-TMB within the tumor based on284

WSIs and could provide a novel prognostic biomarker to identify high or low risk patient sub-285

groups.286
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3 Discussion287

Intratumor heterogeneity is one of key mechanisms driving disease progression, response and resis-288

tance to therapies [29,31]. Multi-regional tissue-based sequencing from a tumor has shown spatial289

heterogeneity of mutational signature, mutational burden, T-cell receptor repertoire, etc. [3, 4, 6, 7]290

and its implication for treatment strategy [8]. While the multi-regional tissue-based sequencing291

approach could provide landscape of spatial heterogeneity, it is practically challenging to gener-292

ate such data, due to high costs, limited tissue availability, etc.. In this study, we present 1) the293

transfer learning based computational pipeline utilizing WSIs to predict patient-level TMB sta-294

tus and investigate spatial heterogeneity of TMB within tumors. We showed that our proposed295

computational pipeline could achieve overall best performance to predict patient-level TMB status296

compared to other state of the art methods. We also showed that measuring and incorporating297

spatial heterogeneity of TMB status with patient-level TMB status based on WSIs or combined298

with WES-based TMB status could lead to identify patient subgroups with distinct OS outcomes.299

Specifically, we found that incorporating SH-TMB information with predicted patient-level TMB300

status could improve patient risk stratification compared to the use of predicted patient-level TMB301

status alone (See Fig.s8(a) and (b)) in TCGA BLAC cohort. More specifically, patient-level TMB-302

H with low SH-TMB status was correlated with better OS. Visual inspection of selected tumor303

tiles from WSIs by our pathologist indicates that predicted TMB-H representative tumor tiles from304

patient-level TMB-H WSIs are present with higher densities of TILs, while showing more high305

grade tumors (see Table s9). This is consistent with the univariate analysis of TMB subtypes306

showing a higher portion of high grade tumors in patient-level TMB-H and low SH-TMB tumors.307

15

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2020. ; https://doi.org/10.1101/554527doi: bioRxiv preprint 

https://doi.org/10.1101/554527


Although we observe an enrichment of high graded tumors in this TMB-H subgroup, we reasoned308

that the higher presence of TILs within the tumors from this subgroup might lead better prognosis.309

To further investigate whether higher level of TILs with SH-TMB within tumors correlates with310

patients’ OS, we trained end-to-end deep learning models to detect TILs and quantify TILs density311

within tumor regions. The predicted TILs density scores were incorporated with SH-TMB infor-312

mation within tumors to identify patient subgroups. The survival analysis of patient subgroups313

with and without high TILs presence within TMB-H tumors showed that patients carrying TMB-H314

status within most of tumor regions enriched with high number of TILs have statistically signifi-315

cant better OS. It is worth to note that patient subgroup identification and survival analysis using316

solely TILs high and low densities information (e.g., TILs high vs low ) did not show statistically317

significant OS difference using log rank test in TCGA BLAD and LUAD cohorts (P=0.32 and318

P=0.35 in Fig.s8(c) and s9(d), respectively), which indicates the importance of joint spatial TILs319

and TMB analysis as a prognostic biomarker. It is also worth to note that in TCGA LUAD co-320

hort a patient subgroup carrying patient-level TMB-H and low SH-TMB status with high TILs has321

statistically significant better overall survival compared to another patient subgroup (log rank test322

P=0.04 in Fig.s9(e)). However, we did not find meaningful correlation among patient subgroups323

based on other criteria (e.g., patient-level TMB-H and spatial low heterogeneity of TMB-H status324

vs others in Fig.s9(a)(b)(c)(d)(f)). This may indicate that the correlation between spatial TMB and325

TILs patterns linked with OS would be present in a specific type of cancers rather than pan-cancer326

types, and would need for further investigation across cancer types. Nonetheless, our analysis327

demonstrated the prognostic utility of spatial TMB and TILs information based on WSIs in BLCA328
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cohort. To the best of our knowledge, this is the first study to predict SH-TMB and investigate329

prognostic utility of spatial organization of TMB and TILs information for patient stratification in330

bladder cancer.331

There are several limitations and challenges in our study. While we showed overall better332

performance to predict patient-level TMB status compared with baseline methods, a larger inde-333

pendent cohorts from multiple institutes are needed to validate the performance of the proposed334

pipeline and its generalizability. Our evaluations indicated that various deep learning-based pre-335

diction models, including end-to-end deep learning models, to predict patient-level TMB status did336

not show superior performance. Larger and more well-annotated WSI datasets would be needed337

to better train and improve the performance of deep learning-based prediction models (and thus338

our computational pipeline too, since we employ deep learning-based transfer learning models).339

Our WSI-based image analysis is performed based on a tile-level not a single cell level without340

distinguishing certain types of immune cells, and did not take into account specific types of spa-341

tial arrangement patterns between regions harboring TMB-H and TILs (e.g., TILs densities within342

local TMB-H clustered regions). For instance, the single cell level lymphocyte/immune cell detec-343

tion (e.g., CD4+/CD8+/FOXP3+) and joint spatial analysis of TMB-H tumor cell and/or region and344

TILs and/or more advanced statistical TMB and TILs spatial modeling [10] could provide higher345

resolution of TMB-H tumor and immune co-localization within tumor and immune microenviron-346

ment (TIME).347

In summary, this study demonstrates the feasibility of predicting patient-level TMB status348
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and delineating spatial heterogeneity and organization of TMB and TILs by using computational349

models based on histological WSIs. Our spatial TMB and TILs analysis shows that patients with350

more homogeneous TMB-H status across regions within the tumor carrying high density of TILs351

present better prognosis in bladder cancer. Joint spatial analysis of TILs and TMB within TIME352

for patients’ tumor provides an unique insight into how immune environment might have an in-353

fluence on prognosis of patients with TMB-H status. By combining tissue-based TMB-H status354

with image-based TMB-H/L SH-TMB status could further improve patient stratification in bladder355

cancer. Taken together, our work provides new foundation of how spatial characterization of tumor356

(e.g., TMB-H status) and immune environment within the tumor based on WSIs could be used to357

improve risk stratification in bladder cancer.358

4 Materials and Methods359

Automatic TMB Prediction. Our designed patient-level TMB prediction includes the following360

four steps. More implementation details and parameter settings could be referred in the supple-361

mentary methods.362

(1) Tumor Detection: We trained a light-weight convolutional neural network (see the archi-363

tecture in Fig.s1) model with only about 0.28M trainable parameters to detect tumor regions in the364

WSI. Given the WSI, it is first divided into non-overlapping tiles (512×512 pixels at 20× magni-365

fication). The CNN-based tumor detector then predicts each tile as the probability of belonging to366

cancer regions. The prediction map corresponding to the WSI is generated by stitching predicted367
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probabilities for all image tiles. An empirical threshold (e.g., 0.5) is applied on the prediction368

map to obtain tumor regions. Our quantitative evaluations showed that the designed CNN-based369

tumor detector could provide over 90% dice coefficient in bladder cancer detection and a superior370

performance than several comparative models (see Fig.s6, s7 and Table s1). Fig. 1(b) illustrates an371

example of cancer detection on a WSI.372

(2) Representative Tile Selection. To improve computational efficiency in analyzing large373

predicted tumor regions, we selected a subset of representative tumor regions for analysis. We374

first divided predicted tumor regions into a set of non-overlapping tiles (128×128 pixels) at 2.5×375

magnification. We then characterized each tumor tile by a 42 dimensional feature vector (i.e.,376

40 multi-scale local binary pattern features [17] and 2D location of the tumor tile). After that,377

affinity Propagation (AP) clustering [19] was applied to identify tumor regions containing tiles378

with similar morphological patterns [44]. The AP clustering simultaneously identified a number of379

r local tumor regions and their representative tiles Rj , where 1 ≤ j ≤ r. Fig. 1(c)(d) illustrates AP380

clustering of tumor tiles on a WSI, where tumor tiles belonging to different clusters are indicated by381

different color of blocks in the image. Note that there are 56 (r = 56 for this example) representative382

tiles selected among 490 tumor tiles for the patient slide shown in Fig. 1(c).383

(3) Feature Extraction. We used transfer learning on pre-trained deep learning models to384

generate features for selected representative tumor tiles. First, to suppress the influence of color385

variations, a color deconvolution based method [20] is utilized to normalize tumor tiles into a386

standard color appearance. Second, transfer learning on pre-trained Xception [27] model was used387
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to extract features from selected tumor tiles. Given an input tumor tile Rj at 20× magnification388

(1024×1024 pixels), the transfer learning model outputs a high-level feature representation Vj389

which is a 2048 dimensional vector (see Fig.s4). Finally, the feature vector V representing the390

WSI was obtained by integrating features of representative tumor tiles together, i.e., V̄ =
r∑

j=1
ρjVj ,391

where ρj = λj
/∑r

j=1 λj and λj represents the number of tumor tiles belonging to the jth cluster.392

The feature vector V̄ is the weighted mean of features extracted from representative tiles, where393

each representative tile stands for the major characteristics of tumor tiles within the cluster.394

(4) TMB classification. We trained the Support Vector Machine (SVM) classifier based on395

features generated from the transfer learning model to predict patient-level TMB status. First, prin-396

cipal component analysis (PCA) was used to reduce the feature dimension to prevent over-fitting.397

In this study, we selected the top 100 principal components which provided a superior performance398

in our testing. Second, feature standardization was performed on each feature component, which399

ensured its values have zero mean and unit variance. Finally, SVM with radial basis function400

(RBF) and linear kernels were trained to predict patient-level TMB status.401

TILs Detection. We trained and tested 144 different deep learning models to detect TILs by mak-402

ing use of a public dataset [44], which included 43,440 annotated image tiles. Among 144 trained403

TIL detectors, the best Resnet18 model provided over the 80% accuracy in distinguishing TIL and404

Non-TIL tiles during independent testing (see Fig.s5(a) and Table s2), which was selected to per-405

form TIL detection. To identify TIL regions in pathology slides, the WSI was first divided into406

a set of non-overlapping image tiles (i.e., 112um×112um per image tile). The image tiles were407
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then predicted as TIL tiles or Non-TIL tiles by using the selected TIL detector. The WSI-level TIL408

detection (see the example shown in Fig.s5(b)) was then generated by stitching tile-level predic-409

tions, where tiles with prediction probabilities above 0.5 were considered as TIL regions. Based on410

tumor and TIL detection, we finally computed the ratio between the number of TIL pixels and the411

total number of tumor pixels in pathology slides, which was used as a feature variable to quantify412

TIL densities within tumor regions.413

Code Availability. Our codes for automatic TMB prediction and patient survival analysis are414

available at: https://github.com/hwanglab/tcga tmb prediction. Our codes for automatic TILs de-415

tection are available at: https://github.com/hwanglab/TILs Analysis.416

5 References417

418 1. Brown, S. D. et al. Neo-antigens predicted by tumor genome meta-analysis correlate with in-419

creased patient survival. Genome research 24.5, (2014): 743-750.420

2. Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder421

cancer. Cell, 171.3, (2017): 540-556.422

3. Zhang, Yaxiong, et al. ”The correlations of tumor mutational burden among single-region tissue,423

multi-region tissues and blood in non-small cell lung cancer.” Journal for immunotherapy of424

cancer 7.1 (2019): 1-5.425

4. Hu, Xin, et al. ”Multi-region exome sequencing reveals genomic evolution from preneoplasia426

to lung adenocarcinoma.” Nature communications 10.1 (2019): 2978.427

21

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2020. ; https://doi.org/10.1101/554527doi: bioRxiv preprint 

https://doi.org/10.1101/554527


5. Marusyk, Andriy, Michalina Janiszewska, and Kornelia Polyak. ”Intratumor heterogeneity: The428

rosetta stone of therapy resistance.” Cancer cell 37.4 (2020): 471-484.429

6. Jamal-Hanjani, Mariam, et al. ”Tracking the evolution of nonsmall-cell lung cancer.” New Eng-430

land Journal of Medicine 376.22 (2017): 2109-2121.431

7. Joshi, Kroopa, et al. ”Spatial heterogeneity of the T cell receptor repertoire reflects the muta-432

tional landscape in lung cancer.” Nature medicine 25.10 (2019): 1549-1559.433

8. Stanta, Giorgio, and Serena Bonin. ”Overview on clinical relevance of intra-tumor heterogene-434

ity.” Frontiers in medicine 5 (2018): 85.435

9. Orhan, Adile, et al. ”The prognostic value of tumour-infiltrating lymphocytes in pancreatic436

cancer: a systematic review and meta-analysis.” European Journal of Cancer 132 (2020): 71-437

84.438

10. AbdulJabbar, Khalid, et al. ”Geospatial immune variability illuminates differential evolution439

of lung adenocarcinoma.” Nature Medicine (2020): 1-9.440

11. Acs, Balazs, et al. ”An open source automated tumor infiltrating lymphocyte algorithm for441

prognosis in melanoma.” Nature communications 10.1 (2019): 1-7442

12. Schaumberg, A. J. et al. H&E-stained whole slide image deep learning predicts SPOP mutation443

state in prostate cancer. BioRxiv, (2018): 064279.444

13. He, K. et al. Deep residual learning for image recognition. In Proceedings of the IEEE confer-445

ence on computer vision and pattern recognition, (2016): 770-778.446

22

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2020. ; https://doi.org/10.1101/554527doi: bioRxiv preprint 

https://doi.org/10.1101/554527


14. Coudray, N. et al. Classification and mutation prediction from nonsmall cell lung cancer447

histopathology images using deep learning. Nature medicine, 24.10, (2018): 1559-1567..448

15. Szegedy, C. et al. Rethinking the inception architecture for computer vision. In Proceedings of449

the IEEE conference on computer vision and pattern recognition, (2016): 2818-2826.450

16. Corredor, G. et al. ”Spatial architecture and arrangement of tumor-infiltrating lymphocytes for451

predicting likelihood of recurrence in early-stage nonsmall cell lung cancer.” Clinical cancer452

research 25.5 (2019): 1526-1534.453

17. Ojala, T. et al. Multiresolution gray-scale and rotation invariant texture classification with local454

binary patterns. IEEE Transactions on pattern analysis and machine intelligence, 24.7, (2002):455

971-987.456

18. Chan, Timothy A., et al. ”Development of tumor mutation burden as an immunotherapy457

biomarker: utility for the oncology clinic.” Annals of Oncology 30.1 (2019): 44-56.458

19. Frey, B. J., & Dueck, D. Clustering by passing messages between data points. Science,459

315.5814, (2007): 972-976.460

20. Macenko, M. et al. A method for normalizing histology slides for quantitative analysis. In461

IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), (2009):462

1107-1110.463

21. Bandini, Marco, et al. ”Predicting the pathologic complete response after neoadjuvant pem-464

brolizumab in muscle-invasive bladder cancer.” JNCI: Journal of the National Cancer Institute465

(2020).466

23

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2020. ; https://doi.org/10.1101/554527doi: bioRxiv preprint 

https://doi.org/10.1101/554527


22. Necchi, Andrea, et al. ”Updated results of PURE-01 with preliminary activity of neoadjuvant467

pembrolizumab in patients with muscle-invasive bladder carcinoma with variant histologies.”468

European urology 77.4 (2020): 439-446.469

23. Idos, Gregory E., et al. ”The Prognostic Implications of Tumor Infiltrating Lymphocytes in470

Colorectal Cancer: A Systematic Review and Meta-Analysis.” Scientific reports 10.1 (2020):471

1-14.472

24. Plesca, Ioana, et al. ”Characteristics of tumor-infiltrating lymphocytes prior to and during473

immune checkpoint inhibitor therapy.” Frontiers in Immunology 11 (2020): 364.474

25. Massi, Daniela, et al. ”The density and spatial tissue distribution of CD8+ and CD163+ im-475

mune cells predict response and outcome in melanoma patients receiving MAPK inhibitors.”476

Journal for immunotherapy of cancer 7.1 (2019): 1-13.477

26. Oh, David Y., et al. ”Intratumoral CD4+ T Cells Mediate Anti-tumor Cytotoxicity in Human478

Bladder Cancer.” Cell (2020).479

27. Chollet, F. Xception: Deep learning with depthwise separable convolutions. arXiv preprint,480

(2017): 1610-02357.481

28. Yuan, Yinyin. ”Spatial heterogeneity in the tumor microenvironment.” Cold Spring Harbor482

perspectives in medicine 6.8 (2016): a026583.483

29. Failmezger, Henrik, et al. ”Topological Tumor Graphs: a graph-based spatial model to infer484

stromal recruitment for immunosuppression in melanoma histology.” Cancer Research 80.5485

(2020): 1199-1209.486

24

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2020. ; https://doi.org/10.1101/554527doi: bioRxiv preprint 

https://doi.org/10.1101/554527


30. Heindl, Andreas, et al. ”Relevance of spatial heterogeneity of immune infiltration for pre-487

dicting risk of recurrence after endocrine therapy of ER+ breast cancer.” JNCI: Journal of the488

National Cancer Institute 110.2 (2018): 166-175.489

31. Marusyk, Andriy, Michalina Janiszewska, and Kornelia Polyak. ”Intratumor heterogeneity:490

The rosetta stone of therapy resistance.” Cancer cell 37.4 (2020): 471-484.491

32. Jimnez-Snchez, Alejandro, et al. ”Heterogeneous tumor-immune microenvironments among492

differentially growing metastases in an ovarian cancer patient.” Cell 170.5 (2017): 927-938.493

33. Binnewies, Mikhail, et al. ”Understanding the tumor immune microenvironment (TIME) for494

effective therapy.” Nature medicine 24.5 (2018): 541-550.495

34. Courtiol, Pierre, et al. Deep learning-based classification of mesothelioma improves prediction496

of patient outcome. Nature medicine, 25.10 (2019): 1519-1525..497

35. Corredor, Germn, et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes498

for predicting likelihood of recurrence in early-stage nonsmall cell lung cancer. Clinical Cancer499

Research 25.5 (2019): 1526-1534.500

36. Jackson, Hartland W., et al. ”The single-cell pathology landscape of breast cancer.” Nature501

578.7796 (2020): 615-620.502

37. Fu, Yu, et al. ”Pan-cancer computational histopathology reveals mutations, tumor composition503

and prognosis.” bioRxiv (2019): 813543.504

25

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2020. ; https://doi.org/10.1101/554527doi: bioRxiv preprint 

https://doi.org/10.1101/554527


38. Kather, Jakob Nikolas, et al. ”Pan-cancer image-based detection of clinically actionable ge-505

netic alterations.” bioRxiv (2019): 833756.506

39. Xu, H., et al. Computerized Classification of Prostate Cancer Gleason Scores from Whole507

Slide Images. IEEE/ACM transactions on computational biology and bioinformatics, (2019).508

40. Fabrizio, Federico Pio, et al. Gene code CD274/PD-L1: from molecular basis toward cancer509

immunotherapy. Therapeutic advances in medical oncology 10 (2018): 1758835918815598510

41. Kather, Jakob Nikolas, et al. ”Deep learning can predict microsatellite instability directly from511

histology in gastrointestinal cancer.” Nature medicine 25.7 (2019): 1054-1056.512

42. Campanella, Gabriele, et al. ”Clinical-grade computational pathology using weakly supervised513

deep learning on whole slide images.” Nature medicine 25.8 (2019): 1301-1309.514

43. Jia, Qingzhu, et al. ”Local mutational diversity drives intratumoral immune heterogeneity in515

non-small cell lung cancer.” Nature communications 9.1 (2018): 1-10.516

44. Saltz, Joel, et al. ”Spatial organization and molecular correlation of tumor-infiltrating lympho-517

cytes using deep learning on pathology images.” Cell reports 23.1 (2018): 181-193.518

45. Song, Bic-Na, et al. ”Identification of an immunotherapy-responsive molecular subtype of519

bladder cancer.” EBioMedicine 50 (2019): 238-245.520

46. Azizi, Elham, et al. ”Single-cell map of diverse immune phenotypes in the breast tumor mi-521

croenvironment.” Cell 174.5 (2018): 1293-1308.522

26

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2020. ; https://doi.org/10.1101/554527doi: bioRxiv preprint 

https://doi.org/10.1101/554527


47. Chen, Zhaohui, et al. ”Single-cell RNA sequencing highlights the role of inflammatory cancer-523

associated fibroblasts in bladder urothelial carcinoma.” Nature Communications 11.1 (2020):524

1-12.525

48. Lee, Hye Won, et al. ”Single-cell RNA sequencing reveals the tumor microenvironment and526

facilitates strategic choices to circumvent treatment failure in a chemorefractory bladder cancer527

patient.” Genome medicine 12 (2020): 1-21.528

49. Chuah, Samuel, and Valerie Chew. ”High-dimensional immune-profiling in cancer: implica-529

tions for immunotherapy.” Journal for Immunotherapy of Cancer 8.1 (2020).530

50. Smith, Eric A., and H. Courtney Hodges. ”The spatial and genomic hierarchy of tumor ecosys-531

tems revealed by single-cell technologies.” Trends in cancer 5.7 (2019): 411-425.532

51. Moncada, Reuben, et al. ”Integrating microarray-based spatial transcriptomics and single-cell533

RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas.” Nature Biotechnol-534

ogy 38.3 (2020): 333-342.535

Acknowledgements Put acknowledgements here.536

Competing Interests The authors declare that they have no competing financial interests.537

Correspondence Correspondence and requests for materials should be addressed to Dr.Hwang (email:538

hwangt@ccf.org).539

27

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 20, 2020. ; https://doi.org/10.1101/554527doi: bioRxiv preprint 

https://doi.org/10.1101/554527


List of Figures540

1 An overview of workflow for our proposed approaches to predict TMB status and541

TILs from WSIs (a) An Illustration of TMB and TILs pipelines. Given a WSI,542

we first divide the WSI into small tiles (i.e., regions) and perform preprocessing543

(e.g., color normalization) within the WSI. To predict patient and tile-level TMB544

status, we first detect tiles carrying tumors and perform AP clustering to select545

representative tiles. We use Xception model to extract features from the selected546

representative tiles, then use SVMs to classify patient and/or tile-level TMB sta-547

tus. In parallel, we use ResNet18 model to detect TILs regions within the WSI.548

We integrate and perform spatial TMB and TILs analysis to identify patient sub-549

groups with distinct overall survival outcome. (b) Tumor detection result (over-550

lapped greencontours). (c) Example of AP clustering on tumor tiles, where tumor551

tiles belonging to different clusters are indicated by different color of blocks in the552

image. Several representative tumor tiles indicated by arrows are zoomed-in for553

better viewing. (d) 56 representative tumor tiles selected by AP clustering for the554

slide shown in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30555

2 Evaluations on TMB prediction. Ablation study of our method on TCGA BLCA556

TMB prediction: (a) using SVM with Linear kernel, (b) using SVM with RBF557

kernel. (c) Baseline comparisons of TCGA BLCA patient-level TMB predictions.558

(d) Baseline comparisons of TCGA LUAD patient-level TMB predictions. Note559

that in (c)(d) Proposed-LIN and Proposed-RBF represent the proposed technique560

using Linear SVM and RBF SVM, respectively. . . . . . . . . . . . . . . . . . . . 31561

3 Tile-level TMB prediction visualization. (a) Tissue-based TMB-H patient (TCGA-562

XF-AAN2) was predicted as patient-level TMB-H based on our WSI-based method.563

A heatmap of tile-level TMB prediction across tiles (i.e., tumor regions) and en-564

tropy measurement showed that most of tumor regions have TMB-H status (i.g.,565

low SH-TMB). (b) Tissue-based TMB low patient (TCGA-XF-A9SH) was pre-566

dicted as patient-level TMB low and low SH-TMB based on our WSI-based method.567

(c) Tissue-based TMB-H patient (TCGA-DK-A3IT) was predicted as patient-level568

TMB-H, while tile-level TMB prediction indicated the high SH-TMB. (d) Tissue-569

based TMB low patient (TCGA-FD-A3B7) was predicted as patient-level TMB570

low with high SH-TMB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32571
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4 WSI-based patient subtypes. (a) A Kaplan-Meier (KM) plot of overall survival572

according to WSI-based patient-level TMB-H & low spatial TMB heterogeneity573

(High-Low) vs other subtypes. (b) A KM plot of overall survival for 126 WES-574

based TMB-H patients according to WSI-based patient-level TMB-H & low spatial575

TMB heterogeneity (HHL) vs other WES-based TMB-H subtypes. (c) A KM plot576

of overall survival according to WSI-based TILs High & patient-level TMB-H577

& low spatial TMB heterogeneity (HHL) vs WSI-based TILs Low & patient-level578

TMB-H & low spatial TMB heterogeneity (LHL) vs other subtypes. (d) A KM plot579

of overall survival for 126 WES-based TMB-H patients according to WSI-based580

TILs high & TMB-H & low spatial TMB heterogeneity (HHHL) vs WSI-based581

TILs Low & patient-level TMB-H & low spatial TMB heterogeneity (LHHL) vs582

other subtypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33583

5 Visualization of spatial heterogeneity and organization of TMB-H and TILs within584

tumors. Blue color represents identified tissue regions in WSIs. Light blue (e.g.,585

Cyan) color represents predicted TMB-H region. Red color represents predicted586

TILs. (a)-(c) Patients with high TILs & patient level TMB-H with low spatial587

TMB-H heterogeneity (e.g., low TMB entropy) patient slides (HHL subtype). Most588

of tumor regions have been predicted as TMB-H status with high level TILs pres-589

ence. (d)-(f) Patients with low TILs & patient level TMB-H with low spatial TMB-590

H heterogeneity patient slides (LHL subtype). Most of tumor regions have been591

predicted as TMB-H status but with low level TILs presence. (g)-(i) Patients with592

high TILs & TMB-Low (e.g., others subtype). High TILs present within tumors593

with predicted TMB-L status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34594
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Figure 1: An overview of workflow for our proposed approaches to predict TMB status and TILs
from WSIs (a) An Illustration of TMB and TILs pipelines. Given a WSI, we first divide the WSI
into small tiles (i.e., regions) and perform preprocessing (e.g., color normalization) within the WSI.
To predict patient and tile-level TMB status, we first detect tiles carrying tumors and perform AP
clustering to select representative tiles. We use Xception model to extract features from the selected
representative tiles, then use SVMs to classify patient and/or tile-level TMB status. In parallel, we
use ResNet18 model to detect TILs regions within the WSI. We integrate and perform spatial TMB
and TILs analysis to identify patient subgroups with distinct overall survival outcome. (b) Tumor
detection result (overlapped greencontours). (c) Example of AP clustering on tumor tiles, where
tumor tiles belonging to different clusters are indicated by different color of blocks in the image.
Several representative tumor tiles indicated by arrows are zoomed-in for better viewing. (d) 56
representative tumor tiles selected by AP clustering for the slide shown in (c).
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Figure 2: Evaluations on TMB prediction. Ablation study of our method on TCGA BLCA TMB
prediction: (a) using SVM with Linear kernel, (b) using SVM with RBF kernel. (c) Baseline
comparisons of TCGA BLCA patient-level TMB predictions. (d) Baseline comparisons of TCGA
LUAD patient-level TMB predictions. Note that in (c)(d) Proposed-LIN and Proposed-RBF rep-
resent the proposed technique using Linear SVM and RBF SVM, respectively.
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Figure 3: Tile-level TMB prediction visualization. (a) Tissue-based TMB-H patient (TCGA-XF-
AAN2) was predicted as patient-level TMB-H based on our WSI-based method. A heatmap of
tile-level TMB prediction across tiles (i.e., tumor regions) and entropy measurement showed that
most of tumor regions have TMB-H status (i.g., low SH-TMB). (b) Tissue-based TMB low patient
(TCGA-XF-A9SH) was predicted as patient-level TMB low and low SH-TMB based on our WSI-
based method. (c) Tissue-based TMB-H patient (TCGA-DK-A3IT) was predicted as patient-level
TMB-H, while tile-level TMB prediction indicated the high SH-TMB. (d) Tissue-based TMB low
patient (TCGA-FD-A3B7) was predicted as patient-level TMB low with high SH-TMB.
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Figure 4: WSI-based patient subtypes. (a) A Kaplan-Meier (KM) plot of overall survival accord-
ing to WSI-based patient-level TMB-H & low spatial TMB heterogeneity (High-Low) vs other
subtypes. (b) A KM plot of overall survival for 126 WES-based TMB-H patients according to
WSI-based patient-level TMB-H & low spatial TMB heterogeneity (HHL) vs other WES-based
TMB-H subtypes. (c) A KM plot of overall survival according to WSI-based TILs High & patient-
level TMB-H & low spatial TMB heterogeneity (HHL) vs WSI-based TILs Low & patient-level
TMB-H & low spatial TMB heterogeneity (LHL) vs other subtypes. (d) A KM plot of overall
survival for 126 WES-based TMB-H patients according to WSI-based TILs high & TMB-H &
low spatial TMB heterogeneity (HHHL) vs WSI-based TILs Low & patient-level TMB-H & low
spatial TMB heterogeneity (LHHL) vs other subtypes.
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(e) (f)(d)

(h) (i)(g)

Figure 5: Visualization of spatial heterogeneity and organization of TMB-H and TILs within tu-
mors. Blue color represents identified tissue regions in WSIs. Light blue (e.g., Cyan) color rep-
resents predicted TMB-H region. Red color represents predicted TILs. (a)-(c) Patients with high
TILs & patient level TMB-H with low spatial TMB-H heterogeneity (e.g., low TMB entropy) pa-
tient slides (HHL subtype). Most of tumor regions have been predicted as TMB-H status with
high level TILs presence. (d)-(f) Patients with low TILs & patient level TMB-H with low spatial
TMB-H heterogeneity patient slides (LHL subtype). Most of tumor regions have been predicted
as TMB-H status but with low level TILs presence. (g)-(i) Patients with high TILs & TMB-Low
(e.g., others subtype). High TILs present within tumors with predicted TMB-L status.
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Table 1: Comparison of patient-level TMB prediction using different methods. In this table,
Proposed-LIN uses SVM classifier with linear kernel, while Proposed-RBF uses SVM classifier
with RBF kernel.

Cohorts Methods ACC (%) SPE (%) SEN (%) AUROC (95% CI)

TCGA-BLCA

LBP+SVM 60.47 64.52 56.59 0.623 (0.550-0.689)
Designed CNN 61.66 62.10 61.24 0.651 (0.581-0.741)

VGG16-TL2 [39] 65.22 66.94 63.57 0.707 (0.639-0.766)
MIL [42] 58.89 58.87 58.91 0.647 (0.577-0.710)

Resnet18 [41] 66.80 65.32 68.22 0.701 (0.638-0.765)
Proposed-LIN 69.57 68.55 70.54 0.748 (0.683-0.802)
Proposed-RBF 73.12 75.81 70.54 0.752 (0.694-0.810)

TCGA-LUAD

LBP+SVM 66.67 70.00 63.69 0.706 (0.645-0.763)
Designed CNN 63.82 67.02 60.95 0.667 (0.583-0.741)

VGG16-TL2 [39] 69.85 62.77 76.19 0.703 (0.621-0.766)
MIL [42] 60.27 60.00 60.51 0.643 (0.578-0.698)

Resnet18 [41] 67.00 65.00 68.79 0.727 (0.666-0.779)
Proposed-LIN 69.02 62.14 75.16 0.737 (0.671-0.796)
Proposed-RBF 70.37 67.86 72.61 0.742 (0.682-0.794)
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