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Abstract 

Monocular deprivation (MD) during the critical period (CP) has enduring effects on visual 

acuity and the functioning of the visual cortex (V1). This experience-dependent plasticity has 

become a model for studying the mechanisms, especially glutamatergic and GABAergic 

receptors, that regulate amblyopia. Less is known, however, about treatment-induced changes to 

those receptors and if those changes differentiate among treatments that support good recovery 

of acuity versus persistent acuity deficits. Here we studied the effects of 3 treatments for MD 

started during the CP (n=24, 10 male and 14 female).  Two treatments (reverse occlusion -- RO, 

binocular deprivation -- BD) resulted in poor acuity, but one treatment (binocular vision --BV) 

promoted good acuity. We classified plasticity phenotypes using the expression of a collection of 

glutamatergic and GABAergic receptor subunits in V1.  Analyzing individual proteins showed 

an intricate pattern of changes, but principal component analysis identified features that we used 

to construct the plasticity phenotypes and classify treatments into clusters suggesting adaptive 

versus maladaptive plasticity.  The RO plasticity phenotype was similar to an adult pattern with 

high expression of GluA2, while the BD phenotypes were dominated by GABAAα1, highlighting 

that multiple plasticity phenotypes can underlie persistent acuity deficits.  In contrast, BV for 2-4 

days promoted recovery of a phenotype resembling CP plasticity, but only one feature, the 

GluN2A:GluA2 balance, returned to normal levels. This suggests  that balancing homeostatic 

and Hebbian mechanisms is needed for good visual recovery. These findings and the plasticity 

phenotyping approach may be useful for classifying different forms of persistent amblyopia and 

identifying new treatment targets.  

 

Keywords: amblyopia, neuroplasticity, GABA, NMDA, AMPA, phenotype, high-

dimensional, treatment, recovery, binocular vision, reverse occlusion, binocular deprivation 
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Introduction 

Since the earliest demonstrations that monocular deprivation (MD) during a critical period 

(CP) cause ocular dominance plasticity and acuity loss[1]-[3] this model has been used to deepen 

our understanding of the neural changes associated with amblyopia.  There have been fewer 

studies, however, about cortical changes associated with the acuity deficits that often persist after 

treatment for amblyopia[4]-[8].  Here we classified the expression patterns (phenotypes) of a 

collection of synaptic proteins that regulate experience-dependent plasticity and asked if 

treatments that promote good versus poor acuity reinstate CP-like plasticity phenotypes in visual 

cortex (V1). 

Many animal studies have highlighted the role of glutamatergic and GABAergic mechanisms 

for regulating plasticity during the CP[9]-[15]. For example, the subunit composition of AMPA, 

NMDA, and GABAA receptors regulate the bidirectional nature of ocular dominance 

plasticity[16]-[21]. Some of the changes caused by MD include delaying the maturational shift to 

more GluN2A-containing NMDARs[22], [23], and accelerating the expression of GABAAα1-

containing GABAARs[20], [23]. Together those changes likely decrease signal efficacy and 

dysregulate the spike-timing dependent plasticity that drives long-term depression (LTD) and 

weakens deprived eye response[24].  Furthermore, silencing activity engages homeostatic 

mechanisms that scale the responsiveness of V1 neurons by inserting GluA2-containing AMPAR 

into the synapse[25]. Importantly, many of the receptor changes have been linked with specific 

acuity deficits[26], [27] suggesting that visual outcomes may reflect changes to a collection of 

glutamatergic and GABAergic receptor subunits that together represent a plasticity phenotype 

for V1. 
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Animal studies of amblyopia have also identified treatments that promote good versus poor 

recovery of acuity after MD, and these can be used to compare adaptive versus maladaptive 

plasticity mechanisms. For example, a model of full-time patching therapy (reverse occlusion, 

RO) gives a competitive advantage to the deprived eye that promotes an ocular dominance shift. 

The acuity recovered by the deprived-eye, however, is transient, and can be lost within hours of 

introducing binocular vision[6]-[8]. Similarly, closing both eyes after MD to test a form of 

binocular deprivation therapy (BD) leads to poor acuity in both eyes even after months of 

binocular vision[28]. In contrast, using only binocular vision (BV) after MD to engage 

cooperative plasticity promotes both physiological recovery[29] and long-lasting visual recovery 

in both eyes[27].  

Here we quantified expression of glutamatergic and GABAergic receptor subunits in V1 of 

animals reared with MD and then treated to promote either good visual recovery (BV) or 

persistent bilateral amblyopia (RO, BD). We compared subunit expression among the treatment 

groups and with normally developing or MDed animals. Next, we applied a data-driven approach 

to identify plasticity features in the pattern of subunit expression and to construct plasticity 

phenotypes. Finally, we used cluster analysis to classify plasticity phenotypes associated with 

good versus poor acuity and analyzed those to determine which features suggest the recovery of 

adaptive versus maladaptive plasticity mechanisms.  
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Materials & Methods 

Animals & Rearing Conditions 

All experimental procedures were approved by the McMaster University Animal Research 

Ethics Board. We quantified the expression of 7 glutamatergic and GABAergic synaptic proteins 

in V1 of cats reared with MD from eye opening until 5 weeks of age and then given one of 3 

treatments: RO for 18d, BD for 4d, or BV for either 1hr, 6hrs, 1d, 2d or 4d (n=7, 4 male and 3 

female) (Figure 1). The length of RO and BD were selected to match previous studies that found 

poor acuity in both eyes[7], [8], [30]. The raw data collected previously[23] was also used. 

Those data were from animals reared with normal binocular vision until 2, 3, 4, 5, 6, 8, 12, 16, or 

32 wks of age (n=9 animals, 2 male and 7 female), or MD from eye opening (6-11d) to 4, 5, 6, 9, 

or 32 wks (n=8 animals, 4 male and 4 female) (Figure 1). 

MD was started at the time of eye-opening by suturing together the eyelid margins of one eye 

(5-0 Coated VICRYL Ethicon P-3) using surgical procedures described previously[8]. Sutures 

were inspected daily to ensure the eyelids remained closed. At 5 weeks of age, the period of MD 

was stopped and either BV was started by carefully parting the fused eyelid margins, RO was 

started by opening the closed eye and closing the open eye or BD was started by closing the open 

eye. All of these surgical procedures were done using gaseous anesthesia (isoflurane, 1.5-5%, in 

oxygen) and aseptic surgical techniques. 

At the end of the rearing condition animals were euthanized using sodium pentobarbital 

injection (165mg/kg, IV), and transcardially perfused with cold 0.1M phosphate buffered saline 

(PBS) (4˚C; 80-100 ml/min) until the circulating fluid ran clear. The brain was removed from the 
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skull and placed in cold PBS. A number of tissue samples (2 mm x 2 mm) were taken from the 

regions of V1 representing the central, peripheral and monocular visual fields (Figure 1c). Each 

tissue sample was placed in a cold microcentrifuge tube, flash frozen on dry ice, and stored in a -

80˚C freezer.  

Synaptoneurosome preparation  

Synaptoneurosomes were prepared according to a subcellular fractionation protocol[16], 

[31]. The tissue samples were suspended in 1 ml of cold homogenization buffer (10 mM HEPES, 

1 mM EDTA, 2 mM EGTA, 0.5 mM DTT, 10 mg/l leupeptin, 50 mg/l soybean trypsin inhibitor, 

100 nM microcystin and 0.1mM PMSF), and homogenized in a glass-glass Dounce tissue 

homogenizer (Kontes, Vineland, NJ, USA). Homogenized tissue was passed through a 5µm-pore 

hydrophobic mesh filter (Millipore, Billerica, MA), centrifuged at low-speed (1,000xg) for 20 

min, the supernatant was discarded, and the pellet was re-suspended in 1ml cold homogenization 

buffer. The sample was centrifuged for 10 min (1000xg), the supernatant was discarded, and the 

pellet was re-suspended in 100µl boiling 1% sodium-dodecyl-sulfate (SDS). Samples were 

heated for 10 min and then stored at -80˚C. 

Total protein concentrations were determined for each sample and a set of protein standards 

using the bicinchoninic acid (BCA) assay (Pierce, Rockford, IL, USA). A linear function was fit 

to the observed absorbance values of the protein standards relative to their expected protein 

concentrations. If the fit was less than R2=0.99, the assay was re-done. The slope and the offset 

of the linear function were used to determine the protein concentration of each sample and then 

the samples were diluted to 1 µg/µl with sample (M260 Next Gel Sample loading buffer 4x, 

Amresco) and Laemmli buffer (Cayman Chemical). A control sample was made by combining a 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/554576doi: bioRxiv preprint 

https://doi.org/10.1101/554576


 

7 

small amount from each sample to create an average sample that was run on every gel. Each 

sample was run twice in the experiment. 

Immunoblotting 

Synaptoneurosome samples and a protein ladder were separated on 4-20% SDS-PAGE gels 

(Pierce, Rockford, IL) and transferred to polyvinyldenine fluoride (PVDF) membranes 

(Millipore, Billerica, MA). The blots were blocked in PBS containing 0.05% Triton-x (Sigma, 

St.  Louis, MO) (PBS-T) and 5% skim milk (wt/vol) for 1 hour. Blots were then incubated 

overnight at 4˚C with constant agitation in one of the 7 primary antibodies (Table 1), and washed 

with PBS-T (Sigma, St. Louis, MO) (3 x 10 min).  
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Table1: List of primary antibody concentrations 

Antibody Concentration Company Lot Number Location RRID 

anti-GluN1 1:2000 
BD Biosciences 

Pharmingen 
556308 San Diego, CA RRID:AB_396353 

anti-GluN2A 1:2000 Millipore Sigma 24826  Burlington, MA RRID: AB_95169 

anti-GluN2B 1:2000 Millipore Sigma 28629  Burlington, MA RRID: AB_2112925 

anti-GluA2 1:1000 Thermo Fisher  Waltham, MA RRID: AB_2533058 

anti-

GABAAα1 
1:500 

Santa Cruz 

Biotechnology 
L3102 Santa Cruz, CA  

anti-

GABAAα3 
1:2000 Millipore Sigma   Burlington, MA  

anti-Synapsin 1:2000 Thermo Fisher  Waltham, MA  

 

The appropriate secondary antibody conjugated to horseradish peroxidase (HRP) (1:2000; 

Cedarlane laboratories LTD, Hornby, ON) was applied to membranes for 1 hour at room 

temperature, then blots were washed in PBS (3 x 10 min). Bands were visualized using enhanced 

chemiluminescence (Amersham, Pharmacia Biotech, Piscataway, NJ) and exposed to 

autoradiographic film (X-Omat, Kodak, Rochester, NY). After each exposure blots were stripped 

(Blot Restore Membrane Rejuvenation kit (Chemicon International, Temecula, CA, USA)) and 

probed with the next antibody so each blot was probed for all 7 antibodies (Figure 1d). 
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Analysis of Protein Expression 

The autoradiographic film and an optical density wedge (Oriel Corporation, Baltimore, MD) 

were scanned (16 bit, AFGA Arcus II, Agfa, Germany), and the bands were identified based on 

molecular weight. The bands were quantified using densitometry and the integrated grey-level of 

the band was converted into optical density units (OD) using custom software (MATLAB, The 

Mathworks, Inc., Natick, Massachusetts). The background density between the lanes was 

subtracted from each band and the density of each sample was normalized relative to the control 

sample run on each gel (sample band density/control band density).  

The data were normalized relative to the average expression of the 5wk normal cases and 

plotted either as histograms to compare expression levels among the 5wk Normal, 5wk MD, RO, 

and BD animals or as scatterplots to follow expression changes over the 5 different lengths of 

BV. Table 2 summarizes the number of tissue samples and replication of runs for the 5wk 

Normal, 5wk MD and recovery conditions across the 3 regions of V1, and 7 proteins that were 

studied. The data analysis study design is summarized in Figure 2. 
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Table 2: The number of tissue samples and runs for each treatment condition, V1 

region and protein studied. Rows summarize the number of runs from the Central (C), 

Peripheral (P), and Monocular (M) regions of V1 within a rearing condition. The columns list 

each of the 7 proteins analyzed using Western blotting. Column sums detail the number of runs 

across rearing conditions and cortical areas. The number of replications is listed for Normal 

animals in Table 2-1, and MD animals in Table 2-2. 

Condition Region GluN1 GluN2A GluN2B GABAAα1 GABAAα3 GluA2 Synapsin 

5wk Normal 

C 4 4 4 4 4 4 4 

P 16 16 16 15 16 16 16 

M 4 4 4 4 4 4 4 

5wk MD 

C 6 6 6 6 6 6 4 

P 18 18 18 18 18 18 12 

M 5 5 5 5 5 5 4 

18d RO 

C 4 4 4 4 4 4 4 

P 19 19 19 19 19 14 14 

M 3 3 3 3 3 2 2 

4d BD 

C 6 6 5 6 5 6 5 

P 18 18 17 16 18 18 17 

M 4 4 3 4 4 4 3 

1hr BV 

C 4 4 4 4 4 4 4 

P 16 16 16 16 16 16 16 

M 4 4 4 4 4 4 3 

6hr BV 

C 4 4 4 4 4 4 4 

P 16 16 16 16 16 16 16 

M 4 4 4 4 4 4 4 

1d BV 

C 4 2 4 4 4 4 4 

P 16 13 16 16 16 16 16 

M 4 4 4 4 4 4 4 

2d BV C 4 4 4 3 4 4 2 
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P 15 15 15 15 14 15 12 

M 4 4 4 4 4 4 4 

4d BV 

C 4 4 4 4 4 4 4 

P 12 12 12 12 12 12 12 

M 4 4 4 4 4 4 4 

SUM  222 217 219 218 220 216 198 

 

We analyzed heterogeneity in protein expression within a group by calculating an index 

of dispersion, the variance-to-mean ratio (VMR), for each protein and rearing condition. Proteins 

with VMR <1 were classified as under-dispersed, VMR=1 randomly dispersed, and VMR >1 

were over-dispersed. We used this measure to compare among groups and assess if a rearing 

condition changed the variability of protein expression to make the group more or less 

heterogeneous. 

Protein Indices 

To examine the balance between developmentally and functionally related pairs of 

glutamatergic and GABAergic receptor subunits, we calculated a set of 3 indices (difference 

ratios). The indices included: GluA2:GluN1, GluN2B:GluN2A, GABAAα3:GABAAα1, which 

ranged from -1 to 1. The mean and SEM for each index was plotted as either a histogram (5wk 

Normal, 5wk MD, BD, RO) or scattergram (BV). 

Protein Network Analysis 

A network analysis of protein expression was done for each rearing condition by calculating 

the pairwise Pearson’s R correlations among the 7 proteins using the rcorr function in the Hmisc 

package in R[32]. The networks were visualized as correlation matrices (heatmap2 function in 
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gplots[33]) and the proteins were ordered (dendextend package[34]) using the seriation 

package[35] to place proteins with similar patterns of correlations nearby in the dendrogram. 

Significant correlations were identified using Bonferroni corrected p-values and indicated by 

asterisks on the cell in the correlation matrix. 

Modeling Population Receptor Decay Kinetics for NMDARs and GABAARs 

The subunit composition of NMDARs and GABAARs determines the decay kinetics of the 

receptor[36], [37] and so we used that information to build a model for the decay kinetics of a 

population of receptors for each of the rearing conditions. The decay kinetics of the most 

common NMDAR composition, triheteromeric receptors containing GluN2A and 2B is 

50ms±3ms, while diheteromers NMDARs containing only GluN2B are slower 

(2B=333ms±17ms) and those containing only GluN2A are faster (2A=36ms±1ms) [36]. The 

decay kinetics of GABAARs with both α1 and α3 subunits is 49ms±23ms while receptors with 

only the α3 subunit are slower (129.0ms±54.0ms) and only α1 are faster (42.2ms±20.5ms) [37]. 

We used the relative amounts of GluN2A and 2B, or GABAAα1 and α3, as inputs to the 

model. Receptors containing GluN2A and 2B or GABAAα1 and α3 are the most common in the 

cortex, so the model maximized the number of these pairs which was limited by the subunit with 

less expression. The remaining proportion of the highly expressed subunit was divided by 2 and 

used to model the number of pairs for those receptors (2A:2A or 2B:2B; α1:α1 or α3:α3) in the 

population. The population decay kinetics were then modeled by inserting the relative amounts 

of the subunits into these formulas: 

NMDAR kinetics (([2A:2B]×50ms)+([2A]×36ms)+([2B]×333ms)) / ([2A:2B]+[2A]+[2B]); 
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GABAAR kinetics (([α1:α3]×49ms)+([α1]×42.2ms)+([α3]×129ms)) / ([α1:α3]+[α1]+[α3]). 

For example, a sample where GluN2A was 35% and 2B was 65% of the total NMDAR 

subunit population and would have population kinetics of 135ms.  

(([(0.65-0.35)/2]×50ms)+([(0)/2]×36ms)+([0.35/2]×333ms)) / ([(0.65-0.35)]+[(0)/2]+[0.35])= 

135ms. 

First, we plotted scattergrams of the average NMDAR and GABAAR decay kinetics for 

normal animals and each treatment condition. The development of decay kinetics for normal 

animals was described using an exponential decay function, while changes in kinetics with 

increasing lengths of BV were fit by either exponential decay or sigmoidal curves. Next, we 

compared the relationship between NMDAR and GABAAR kinetics by plotting both on one 

graph.  

Principal component analysis 

 We used principal component analysis (PCA) to reduce the dimensionality of the data, 

identify potential biological features, and create plasticity phenotypes. We applied PCA 

following procedures we used previously[23], [38], [39] and included data from all of the normal 

animals and MDs as well as the 3 recovery conditions. We assembled protein expression for 

GluA2, GluN1, GluN2A, GluN2B, GABAAα1, GABAAα3, and Synapsin into an mxn matrix. 

The m columns represented the 7 proteins and the n rows were the average protein expression for 

each of the 12-14 samples from an animal. For a few of the rows data was missing from a single 

cell and so those samples were omitted for a total of n=279 rows in the matrix and 1,953 

observations.  
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The data were centered by subtracting the mean column vector and applying a singular value 

decomposition (SVD) to calculate the principal components (R Studio). SVD represents the 

expression of all 7 proteins within a single tissue sample as a vector in high dimensional space 

and the PCA identifies variance captured by each dimension in that "protein expression space". 

The first 3 dimensions accounted for 82% of the total variance and were used for the next 

analyses. 

We plotted the basis vectors for the first 3 dimensions (Dim) and used the weight, quality 

(cos2) and directionality of each protein, as well as known protein interactions to help identify 

potential biological features accounting for the variance. We identified 9 potential features (7 

new and 2 indices already analyzed), calculated those features for each sample and correlated 

each feature with Dim1, Dim2 and Dim3 to create a correlation matrix (see results). The p-values 

for the correlations were Bonferroni corrected and significant correlations were used to identify 

features that would be part of the plasticity phenotype. Eight of the features were significantly 

correlated with at least one of the first 3 dimensions. A measure associated with the E:I balance, 

was not significantly correlated with the dimensions and so it was not included in the tSNE or 

cluster analysis. The E:I measure, however, was used for analyzing the composition of the 

clusters and as a component of the plasticity phenotype because of the importance of the E:I 

balance for experience-dependent plasticity. 

tSNE dimension reduction and cluster analysis 

 The average expression for the 8 features (Table 3) was compiled into an mxn matrix, 

with m columns (m=8) representing the significant features and n rows representing each sample 

from the 3 V1 regions (central, peripheral, monocular) for 5wk Normal, 5wk MD, RO, BD and 
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BV animals (n=109). t-distributed stochastic neighbor embedding (t-SNE) was used to reduce 

this matrix to 2-dimensions (2D). tSNE was implemented in R[40] and the tSNE output was 

sorted using k-means to assign each sample to a cluster. To determine the optimal number of 

clusters (k) we calculated the within-groups sum of squares for increasing values of k, fit a 

single-exponential tau decay function to those data, found the "elbow point" at 4τ which was 6, 

and used that as the optimal number of clusters. The clusters were visualized by color-coding the 

dots in the tSNE plot and the composition of the clusters was analyzed. 
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Table 3: Formulas and Pearson’s R correlation between functional indices and 

principal components. The formulas for each identified feature (Fig 3a-c), kinetics calculation 

(Fig 3d-f) and PCA Identified feature (Fig 6j), along with corresponding correlation (R2) values 

on each of the first 3 principal components. The GluN1:GluA2 and GABAAR Sum:GlutR Sum 

were not significantly correlated on any of these 3 components.  

Feature Formula 
R2 Dim 1 R2 Dim 2 R2 Dim 3 

GluN1:GluA2 (GluA2-GluN1)÷(GluA2 + GluN1) 0.002 0.075 -0.002 

GluN2B: GluN2A (GluN2A - GluN2B)÷ (GluN2A + GluN2B) 0.044 -0.421 0.338 

GABAAα3:GABAAα1 (GABAAα1 - GABAAα3) ÷ (GABAAα1 + 
GABAAα3) -0.176 0.504 0.194 

Kinetics     

NDMAR Kinetics ([2A:2B]×50ms)+([2A]×36ms)+([2B]×333ms)) 
÷([2A:2B]+[2A]+[2B]) na na na 

GABAAR Kinetics (([α1:α3]×49ms)+([α1]×42.2ms)+([α3]×129ms))
÷([α1:α3]+[α1]+[α3]) na na na 

PCA identified 
Features 

    

All Protein Sum (GluA2+ GluN1+ GluN2A + GluN2B + 
GABAAα1 + GABAAα3 + Synapsin)÷7 0.983 0.134 0.039 

GlutR sum (GluA2+ GluN1+ GluN2A + GluN2B)÷4 0.746 -0.160 0.573 

GABAAR Sum (GABAAα1 + GABAAα3)÷ 2 0.478 0.819 -0.047 

GABAAR Sum:GlutR 
Sum (EI Index) 

(GlutR Sum-GABAAR Sum)÷(GlutR 
Sum+GABAAR Sum) 0.036 -0.064 0.012 

GABAAα1: GluN2A 
index 

(GluN2A-GABAAα1)÷(GluN2A+GABAAα1) 0.437 -0.743 -0.070 

Glun2B:GluA2 (GluN2B - GluA2)÷(GluN2B + GluA2) 0.058 0.209 -0.798 

GluN2A:GluA2 (GluN2A - GluA2) ÷ (GluN2A + GluA2) 0.113 -0.172 -0.643 

 

To facilitate analysis of the tSNE clusters we grouped the BV cases into short-term BV (1hr 

& 6hr) (ST-BV) or long-term BV (1d, 2d, and 4d) (LT-BV), color-coded the samples by rearing 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/554576doi: bioRxiv preprint 

https://doi.org/10.1101/554576


 

17 

condition and used different symbols to indicate the V1 region. For each cluster we annotated the 

composition based on the rearing condition of the samples to create ‘subclusters’ (e.g. LT-BV 1) 

that were used for the next analyses. 

We evaluated the similarity/dissimilarity among the subclusters by calculating the pairwise 

correlations (Pearson's R) between subclusters using the features identified by the PCA as input 

to the R package rcorr. The correlations were visualized in a matrix with the cells color-coded to 

indicate the strength of the correlation[33]. The order of the subcluster in the matrix was 

optimized using hierarchical clustering and a dendrogram was created based on the pattern of 

correlations (using R dendextend and seriation packages) so that subclusters with strong 

correlations were nearby in the dendrogram. 

Visualization and comparison of plasticity phenotype 

The features identified in the PCA analysis were used to indicate the plasticity phenotype for 

each of the subclusters. In addition to the 8 significant features, the E:I measure was included in 

the visualization of the plasticity phenotype. The features were color-coded using grey scale for 

the 3 protein sum features and a color gradient (red = -1, yellow = 0, green = +1) for the 6 

protein indices. The plasticity phenotypes were displayed as a stack of color-coded bars with one 

bar for each feature. For the subclusters, the plasticity phenotypes were ordered by the 

dendrogram to facilitate comparison among subclusters that were similar versus dissimilar. We 

also calculated the plasticity phenotypes for the full complement of normally reared and MD 

animals and displayed those in a developmental sequence to facilitate age-related comparisons 

with the recovery subclusters. Finally, we did a bootstrap analysis to determine which features of 

the plasticity phenotypes were different from 5wk normals and used Bonferroni correction to 
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adjust the significance for the multiple comparisons. This analysis was displayed 2 ways: first, 

each of the 9 feature bands for the dendrogram ordered subclusters was color-coded white if it 

was not different, red if it was greater, and blue if it was less than 5wk normals; second, boxplots 

were made to show the value for each of the 9 features and to identify the subclusters that were 

different from 5wk normals. 

Statistical analyses 

We used bootstrap resampling to estimate the confidence intervals (CI) for each of the 

recovery groups and Monte Carlo simulation to determine if the 5wk Normal or 5wk MD groups 

fell outside those CIs. These are modern statistical methods often used with small sample sizes 

when standard parametric or non-parametric statistical tests are not appropriate. The statistical 

software package R was used to simulate normal distributions with 1,000,000 points using the 

mean and standard deviation from the recovery groups (RO, BD, BV). Next, a Monte Carlo 

simulation randomly sampled with replacement from the simulated distribution n times, where n 

was the number of observations made from the normal or MD group (e.g., n = 4-19). The 

resampling procedure was repeated 100,000 times to determine the 95%, 99% and 99.9% CIs. 

The recovery group was considered significantly different (e.g., p<0.05, p<0.01 or p<0.001) 

from the normal and MD group if the mean of those groups fell outside the CI for the recovery 

group. 

Bootstrapping was also used to compare if the recovery subclusters identified by tSNE and k-

means clustering were different from normal. When a subcluster was significantly greater than 

normal (p<0.05) the boxplot was colored red, when it was less than normal (p<0.05) the boxplot 
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was colored blue, and if not it was not different from normal (p>0.05), the boxplot was colored 

grey.  

The p-values for the Pearson’s correlations were calculated using the rcorr package[32], and 

the significance levels were adjusted using the Bonferroni correction for multiple comparisons. 

We tested if recovery during BV followed either an exponential decay or sigmoidal pattern 

by fitting curves to the data using Kaleidagraph (Synergy Software, Reading PA). Significant 

curve fits were plotted on the graphs to describe the trajectory of recovery. 
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Results 

Analyzing recovery of synaptic proteins: Synapsin 

We began analyzing the effects of the 3 recovery treatment conditions by comparing 

expression of a pre-synaptic marker, synapsin, in the central, peripheral, and monocular regions 

of cat V1. As we reported previously[23], 5wks MD did not affect expression of synapsin 

relative to 5wk normals (central: 109%±12%, p=0.2361; peripheral: 106%±9%, p=0.2113; 

monocular: 100%±8%, p=0.4861, Figure 3a). In contrast, synapsin expression doubled after RO 

(central: 216%±25%, p<0.0001; peripheral: 197%±13%, p<0.0001; monocular: 241%±19%, 

p<0.0001), decreased after BD (central: 88%±10%, p=0.0123 vs MD; peripheral:96%±5%, 

p=0.053 vs MD; monocular: 82%±6%, p<0.0001 vs MD), or had a small decrease in the central 

region after BV (79%±7%, p<0.0001 vs MD) but normal levels in the rest of V1 (peripheral: 

92%±9%, p=0.1474; monocular: 96%±9%, p=0.3185). Interestingly, the loss of synapsin in the 

central region occurred within 1d of BV (89%±11%, p<0.0001). 

Analyzing recovery of synaptic proteins: Glutamatergic receptor subunits 

Next, we quantified changes in GluA2 and GluN1 expression in V1. RO promoted a small 

increase in GluA2 expression compared to normals (central: 112%±8%, p<0.0001; peripheral: 

118%±2%, p<0.0001; monocular: 172%±16%, p<0.0001). In contrast, after BD treatment GluA2 

was reduced in the binocular regions of V1 (central: 40%±10%, p<0.0001; peripheral: 

58%±11%, p<0.0001) but not in the monocular region (88%±17%, p=0.1042 vs MD). BV 

treatment had variable effects on GluA2. In the central region GluA2 was similar to normal 

(96%±5%, p=0.2257), but below normal in the peripheral region (75%±5%, p<0.0001) and 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/554576doi: bioRxiv preprint 

https://doi.org/10.1101/554576


 

21 

fluctuated in the monocular region from below (1hr) (56%±10%, p<0.0001) to above (6hrs) 

(131%±18%, p=0.0418) then back to below normal levels (2d BV: 71%±12%, p=0.0106; 4d BV: 

56%±14%, p=0.0006). This pattern of fluctuations was in the opposite direction to what we 

found previously when MD was started at 5 weeks of age[27]. 

After RO, GluN1 expression was below normal in all regions of V1 (central: 73%±10%, 

p=0.0041; peripheral:67%±3%, p<0.0001; monocular: 65%±14%, p=0.0019, Figure 3c) while 

after BD it recovered to normal levels (central: 85%±14%, p=0.1908; peripheral: 87%±13%, 

p=0.1753; monocular: 97%±17%, p=0.4286). BV treatment drove region-specific changes of 

GluN1 expression with a steady increase centrally (y = 297.43-239.58*exp(-x/11.61), df=25, 

R2=0.618, p<0.0001) reaching above normal levels after 4d of BV (128%±11%, p=0.00438), 

fluctuations in the periphery, and a decline in the monocular region to below normal levels 

(71%±14%, p=0.0214). 

We analyzed expression of the NMDAR subunits, GluN2A and GluN2B (Figure 3d,e), 

because they regulate ocular dominance and bidirectional synaptic plasticity in V1[17], [21] as 

well as receptor kinetics[36]. As we reported previously[23], MD reduced GluN2A expression 

across all of V1 (central: 63%±4%, p<0.0001; peripheral: 58%±6%, p<0.0001; monocular: 

76%±11% p<0.0001) while RO promoted recovery of GluN2A to normal levels centrally 

(89%±10%, p=0.1367) but not in peripheral (65%±3%, p<0.0001) or monocular regions 

(80%±1%, p<0.0001). In contrast, GluN2A did not recover after BD treatment and declined to 

less than MDs in the peripheral (24%±2%, p<0.0001) and monocular regions (38%±8%, 

p<0.0001). BV promoted recovery to normal levels in the central region (4d BV: 129%±23%, 

p=0.1022), but no recovery in the peripheral region (4dBV: 69%±10%, p=0.0957), and a loss in 

the monocular region (4dBV: 55%±4%, p<0.0001). 
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GluN2B expression was less than normal and MD levels after both RO (central: 39%±1%, 

p<0.0001; peripheral: 41%±3%, p<0.0001; monocular: 43%±2%, p<0.0001) and BD (central: 

53%±20%, p=0.0085; peripheral: 52%±8%, p<0.0001; monocular: 72%±18%, p=0.0354). In 

contrast, BV had little effect on GluN2B expression centrally (4dBV: 103%±16%, p=0.4151), 

but reduced expression in peripheral (4dBV:77%±9%, p=0.0024) and monocular regions where 

it changed from above (1hrBV: 124%±14%, p<0.0374) to below normal levels (4dBV: 

53%±15%, p<0.0007). 

Analyzing recovery of synaptic proteins: GABAergic receptor subunits 

Previous studies have shown that GABAARs are necessary for starting the CP[41], that 

GABAAα1 regulates patterns of activity needed for ocular dominance plasticity[20] and that 

GABAAα3 and GABAAα1 regulate the kinetics of GABAARs[37], [42]. For these reasons, we 

examined how the treatments affected the expression of GABAAα1 and GABAα3. We found that 

changes in GABAAα1 expression were greatest after BD with large increases in V1 (central: 

180%±50%, p=0.0977 ; peripheral: 297%±31%, p<0.0001, monocular 372%±45%, p<0.0001). 

In contrast, RO (central: 83%±8%, p=0.0239; peripheral:85%±4%, p=0.0008; monocular: 

85%±14%, p=0.0026) and BV (4d BV central: 40%±9%, p<0.0001; peripheral:48%±8%, 

p<0.0001; monocular: 51%±4%, p<0.0001) reduced GABAAα1 in V1. There was, however, a 

transient increase in GABAAα1 after 6hrs of BV outside the central region 

(peripheral:181%±14%, p<0.0001; monocular:242%±19%, P<0.0001). RO had little impact on 

GABAAα3 expression (central, 76%±15%, p=0.0614) but BD reduced it in the binocular regions 

(central: 38%±6%, p<0.0001; peripheral: 59%±6%, p<0.0001). BV treatment also left 

GABAAα3 below normal (central: 48%±15%, p=0.0003, peripheral: 50%±3%, p<0.0001; 
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monocular: 64%±7%, p<0.0001). Thus, none of the recovery conditions returned expression of 

all 7 proteins to normal levels in all regions of V1. Instead, there was a complex pattern of 

changes that did not clearly distinguish which treatment condition best restored a normal pattern. 

Analyzing heterogeneity in protein expression and comparing among rearing conditions 

We were surprised by the complexity in the pattern of protein changes and wondered if there 

was an abnormally high degree of heterogeneity in the protein expression. To assess 

heterogeneity, we calculated an index of dispersion (variance-to-mean ratio, VMR) for each 

protein and condition and used it to determine if the distributions were under-dispersed (VMR < 

1), randomly-dispersed (VMR=1) or over-dispersed (VMR>1). For 5wk normal and RO 

conditions all proteins were under-dispersed with VMRs <0.3 (Figure 3-1). For the other 

conditions, the proteins were also under-dispersed except after MD. GluN2B was randomly-

dispersed in the monocular region (Figure S3-1), and GABAAα1 was over-dispersed centrally 

after BD and in the monocular region after 4d BV. This analysis did not find increased 

heterogeneity that explains the complexity, so we continued to analyze patterns of protein 

expression starting with pairs of proteins known to have functional interactions. 

Analyzing the balance between functionally related pairs of receptor subunits 

We calculated a set of indices to assess the effects of recovery treatments on the balance 

between functionally related pairs of receptor subunits: GluA2:GluN1, GluN2A:GluN2B, and 

GABAAα1:GABAAα3. In normally developing cat V1 the AMPAR:NMDAR balance still favors 

GluN1 expression at 5wk[23]. In contrast, MD advanced development of the balance to favor 

GluA2 in central (0.06±0.09, p=0.044) but not other regions (peripheral: -0.20±0.07, p=0.078; 

monocular: -0.18±0.05, p=0.16, Figure 4a). RO also advanced the balance to favour GluA2 
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across all of V1 (central: 0.12±0.06, p<0.0001; peripheral: 0.14±0.04, p<0.0001; 

monocular:0.29±0.06, p<0.0001) while BD had the opposite effect shifting to more GluN1 than 

normals (central: -0.49±0.08, p=0.0002; peripheral: -0.33±0.04, p<0.0001). Finally, after 4d of 

BV the AMPAR:NMDAR favored GluN1 across all of V1 (central: -0.26±0.04, p=0.0004; 

peripheral: -0.25±0.02, p<0.0001; monocular: -0.25±0.05, p=0.0078). 

The composition of the NMDAR affects experience-dependent plasticity and more GluN2B 

facilitates, while more GluN2A reduces, plasticity. MD changed the 2A:2B balance to more 

GluN2B and RO and BD changed it again to more GluN2A centrally (RO, 0.28±0.06, p<0.0001; 

BD, 0.14±0.13, p=0.0001) (Figure 4b) while in the rest of V1 RO also had more GluN2A 

(peripheral: 0.28±0.027, p<0.0001; monocular: 0.31±0.02, p<0.0001), but BD had more GluN2B 

(peripheral:-0.22±0.08, p=0.0008, monocular:-0.37±0.10). BV also shifted the 2A:2B balance in 

the direction of normals but after 4d of BV both the central (-0.01±0.05, p=0.0002) and 

peripheral regions (-0.02±0.04, p=0.0003) were different from normal. 

The subunit composition of the GABAAR also contributes to regulating experience-

dependent plasticity in V1 as the developmental addition of GABAAα1 is needed for ocular 

dominance plasticity[20]. In the central region, both RO and BV shifted the 

GABAAα1:GABAAα3 balance to normal levels (RO: 0.07±0.15, p=0.3087, 4d BV: -0.01±0.14, 

p=0.5005, Figure 4c). BV also had a normal balance in the peripheral region (-0.13±0.08, 

p=0.1163), but BD drove a large shift to favor more GABAAα1 in all regions of V1 

(central:0.50±0.13, p=0.0003; peripheral: 0.63±0.03, p<0.0001; monocular: 0.60±0.02, 

p<0.0001). 
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Together, the 3 balances highlight region- and treatment-specific changes suggesting that BV 

may recover closest to 5wk normal balances, however, BV did not simply reinstate normal 

balances for these pairs of receptor subunits. 

Modeling NMDAR and GABAAR population kinetics 

The subunit composition of NMDARs and GABAARs help to regulate the threshold for 

experience-dependent plasticity, in part by controlling the receptor kinetics[36], [37]. We used 

that information about receptor kinetics with different subunit compositions to make a model that 

predicts the average population kinetics for the rearing conditions studied here. First, we 

transformed the 2A:2B and α1:α3 balances into predicted population kinetics (see Methods) and 

compared among the groups (Figure 4d,e). The pattern of results is necessarily similar to the 

balances presented above, however, the predicted kinetics suggests a compression of differences 

between conditions when the balances shift to favor the mature subunits (2A or α1) versus an 

accentuation of differences to much slower kinetics when the immature subunits (2B or α3) 

dominated. 

To address how treatment induced changes to both NMDAR and GABAAR composition 

might change the relationship between glutamatergic and GABAergic transmission timing we 

made XY scatterplots of those predicted kinetics (Figure 4f, 4-2). In addition, we analyzed the 

normal development to identify the range of kinetics predicted for the peak of the CP (Figure 4-

1). During normal development (black line) there was balanced progression from slow kinetics at 

2wks to progressively faster kinetics through the peak of the CP (Figure 4f- yellow zone, 4-

6wks) to reach adult levels. The NMDAR:GABAAR kinetics for MD, RO and BD fell outside 

the window predicted by the CP, but in different directions. MD had slower NMDAR (central: 
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135ms±16ms, p=0.0031; peripheral: 121ms±12ms, p<0.0001; monocular: 146ms±27ms, 

p=0.0007) but faster GABAAR kinetics (central: 47ms±0ms, p<0.000l; peripheral:48ms±1ms, 

p=0.0004; monocular: 51ms±4ms, p=0.3795), RO had faster NMDAR (central:46ms±1ms, 

p<0.0001; peripheral:46ms±0ms, p<0.0001; monocular:46ms±0ms, p<0.0001) but normal CP 

range GABAAR (central:54ms±6ms, p=0.3015; peripheral:51ms±2ms, p=0.1586; 

monocular:48ms±0ms, p<0.0001), and BD had faster GABAAR (central:46ms±1ms, p<0.0001; 

peripheral:44ms±0ms, p<0.0001; monocular:45ms±0ms, p<0.0001) but normal CP range 

NMDAR kinetics in the central region only (central: 61ms±12ms, p=0.0836; peripheral: 

130ms±12ms, p<0.0001; monocular: 155ms±27ms, p<0.0001).  

 The introduction of BV caused a progressive change in the predicted NMDAR:GABAAR 

kinetics suggesting an initial speeding up of the NMDAR kinetics over the first 1d to 2d 

followed by a slowing of the GABAAR kinetics, especially in the central region. 

Taken together, the predicted NMDAR:GABAAR kinetics suggest differences among the 

conditions and BV promoting a normal CP balance but none of the treatments reinstate normal 

kinetics. Furthermore, the univariate analyses have not identified individual proteins or balances 

that differentiate BV treatment from RO and BD. To address this problem, we implemented a set 

of unbiased, multivariate analyses to assess network relationships among the proteins, identify 

plasticity features, and construct plasticity phenotypes. 

Analyzing the pairwise similarity between protein expression profiles 

First, we wanted to identify pairs of proteins with similar or opposing expression profiles and 

compare them among the rearing conditions. For each condition, we collapsed the data from the 

3 regions of V1, calculated the matrix of pairwise correlations between the 7 proteins, ordered 
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the protein correlations using a hierarchical dendrogram, and used 2D heatmaps to visualize the 

correlations (Figure 5). The order of proteins in the dendrogram indicated which ones had similar 

(e.g. on the same branch of the dendrogram) or different patterns of expression and the color of 

the cell illustrated the strength of the correlation. For 5wk normal animals (Figure 5a), there were 

strong positive correlations (red cells) among all proteins except GluN2A, which was weakly 

correlated and not clustered with the other proteins. A very different pattern of correlations was 

found after MD (Figure 5b); here glutamatergic proteins were weakly, or even negatively 

correlated (blue cells) with GABAAα1, GABAAα3, and synapsin. These results suggest that MD 

drives a decoupling of these excitatory and inhibitory mechanisms. RO also separated 

glutamatergic and GABAergic proteins into different clusters at the first branch (Figure 5c); 

however, the correlations were weaker, suggesting that RO reduced the MD-driven decoupling 

of these mechanisms.  After BD the correlation matrix had mostly positive correlations (Figure 

5d) except for synapsin which was negatively correlated and not clustered with the other 

proteins. BV treatment highlighted the dynamic nature of this recovery (Figure 5e-i). Just 1hr of 

BV was enough to change the correlation matrix from the MD pattern, but even after 4d of BV 

the correlation matrix still appeared different from the normal 5wk pattern of correlations. 

These matrices revealed different patterns of correlations depending on the condition, but this 

analysis treats each comparison with the same weighting and it is likely that some proteins 

contribute more than others to the variance in the data. To assess this, we used PCA to identify 

individual proteins and combinations of proteins that capture the variance in the data and may 

represent plasticity features that identify difference among the treatment conditions.  
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Using principal component analysis to reduce dimensionality and identify plasticity 

features 

We used PCA to reduce the dimensionality, transform the data and find features that define 

the covariance among the proteins. An mxn matrix was made using protein expression, where the 

m columns were the 7 proteins and the n rows (109) were the tissue samples from all the animals 

and regions of V1 used in this study. This matrix was analyzed using singular value 

decomposition (SVD), and the first 3 dimensions explained most of the variance (82%) in the 

data (Dim1: 54%, Dim2: 18%, Dim3: 10%) (Figure 6a). 

To understand which proteins contributed to each dimension we addressed the quality of the 

representation for each protein using the cos2 metric and found that the glutamatergic proteins 

were well represented by Dim1, GABAAα1 by Dim2, and GluA2 and GluN2B by Dim3 but 

synapsin and GABAAα3 were weakly represented in the first 3 dimensions (Figure 6 b,c). Next, 

we compared the vectors for each protein (Figure 6 d,f) and the PCA space occupied by the 

rearing conditions (Figure 6 e,g). The protein vectors show that GluN1, GluN2A, GluN2B, and 

GluA2 extended along Dim1, GABAAα1 along Dim2, and GluA2 and GluN2B were in different 

directions along Dim3. The PCA space occupied by the conditions identified some differences: 

BD was separated on Dim 2 in the same direction as GABAAα1, but the center of gravity for the 

other conditions overlapped the space occupied by normal samples. 

The overlap among conditions raised the possibility that higher dimensions may separate the 

conditions. To begin to assess higher dimensional contributions we examined the basis vectors 

(Figure 6h) and the correlations between individual proteins and PCA dimensions (Figure 6i) to 

identify combinations of proteins that might reflect higher dimension features. For example, all 
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proteins had positive amplitudes for the Dim1 basis vector (Figure 6h) and positive correlations 

with Dim1 (Figure 6i) suggested that protein sums may be higher dimensional features. In 

addition, weights for GluN2A and GABAAα1 on Dim2 were opposite, suggesting that when one 

protein increased the other decreased and this could be a novel feature of these data. Continuing 

with this approach we identified 9 putative plasticity features; protein sums (all protein sum, 

GlutR sum, GABAAR sum) or indices (GlutR:GABAAR, GluN2A:GluN2B, 

GABAAα1:GABAAα3, GluN2A:GABAAα1, GluA2:GluN2B, GluN2A:GluA2). All of the 

protein sums and 4 of the indices were features not analyzed with the univariate statistics; 

however, each had a strong biological basis in previous research. For example, the new indices 

paired the mature GluN2A with the mature GABAAα1 or GluA2 subunit, and GluN2B with 

GluA2 which is known to regulate the development of AMPARs[43]. Finally, we calculated the 

9 features and determined if at least one of the first 3 dimensions was correlated with the features 

(Figure 6j). Only the GlutR:GABAAR balance was not correlated with any of the first 3 

dimensions, but because these mechanisms are related to the E:I balance[44] we included this 

measure in the next analysis. 

We plotted the plasticity features and saw that the GlutR and GABAAR sums identified 

differences among the treatment conditions. For example, in the central region RO (77%±5%, 

p<0.0001) and BD (66%±14%, p=0.0078) had less GlutR but it returned to normal with BV 

(4dBV= 114%±10%, p=0.0671) (Figure 7b). In contrast, GABAAR decreased for both BV 

(44%± 12, p<0.0001) and RO (80%±7%, p=0.0029) but after BD it either did not change 

(central: 129%±33%, p=0.1868) or increased substantially (peripheral: 175%±19, p<0.0001 & 

monocular: 240%±40, p<0.0001) (Figure 7c). BV caused a shift of the GlutR:GABAAR to favor 

GlutR in central (0.51±0.12, p=0.0002) and peripheral V1 (0.33±0.04, p<0.0001) while BD 
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shifted in the other direction to more GABAAR (central: -0.22±0.12, p=0.0072; peripheral: -

0.45±0.05, p<0.0001; Figure 7d). That pattern was mirrored by the GluN2A:GABAAα1 index, 

with BV shifting to more GluN2A (4dBV central:0.51±0.14, p=0.0004; peripheral: 0.28±0.10, 

p=0.0484; monocular:-0.22±0.18, p=0.0319) and BD to more GABAAα1 than normal (central: -

0.41±0.13, p=0.0038; peripheral: -0.77±0.03, p<0.0001; monocular: -0.78±0.03, p<0.0001) 

(Figure 7e). The GluN2B:GluA2 index identified RO as different with substantially more GluA2 

(central: 0.40±0.02, p<0.0001; peripheral: 0.43±0.04, p<0.0001; monocular: 0.55±0.01, 

p<0.0001; Figure 7f). Together, these features helped to begin to identify glutamatergic versus 

GABAergic differences among the treatment conditions. 

Using t-SNE to transform and visualize clustering in the pattern of plasticity features 

We used t-SNE to transform the plasticity features and visualize them in 2D (Figure 8a), then 

k-means and the “elbow method” (Figure 8-1) to identify the number of clusters. For these 

analyses, the BV samples were collapsed into short-term (1-6hr ST-BV) and long-term (1-4d LT-

BV) groups, and the plasticity features were calculated for all samples from the 3 V1 regions 

(central, peripheral, monocular).  

Six clusters were visualized with t-SNE (Figure 8) and the composition of the clusters was 

analyzed to determine the V1 regions and rearing conditions in each cluster. Cluster 1 was the 

largest with 39 samples (26% central, 54% peripheral, 21% monocular) and had the greatest 

number of samples from the central region (Figure 8b,d). Cluster 3 also had samples from 

central, peripheral and monocular regions while clusters 4, 5, and 6 were dominated by 

peripheral samples with few or no central region samples. Thus, there was some clustering by V1 

region, but more apparent clustering emerged when the samples were color-coded by rearing 
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condition (Figure 8c, d). All but one of the normal samples were in cluster 1, all of the RO 

samples were in cluster 2, most of the BD samples were in cluster 3 with a few in cluster 6, and 

most of the MD samples were in clusters 1 or 3. The BV samples, however, were found in 5 of 

the clusters with the greatest number of BV central samples (83%) grouped with normals in 

cluster 1. 

Further analysis of cluster 1 showed that the majority of central region samples from LT-BV 

and ST-BV clustered with the normals (Figure 8d). Interestingly, some of the MD samples were 

also in cluster 1; however, those samples were from the peripheral and monocular regions which 

are known to be less affected by MD than the central region[45]. Together, these results show 

that the data are clustered and that the clustering was driven by both rearing condition and region 

of V1.  

Correlating plasticity features among subclusters 

We annotated the samples in each cluster using the rearing condition and V1 region and used 

that information to identify 13 subclusters where at least one region per condition had n ≥ 2 and 

>20% of the samples in that cluster (Figure 8d, black font). A correlation matrix was calculated 

to assess the similarity between subclusters (see Table 9-1 for R values and 9-2 for Bonferroni 

adjusted p values) and the order of the subclusters in the correlation matrix was optimized by 

hierarchical clustering so subclusters with similar patterns of features were nearby in the 

dendrogram. Bonferroni adjusted p value was used to determine the significant correlations 

(0.05/78=0.0006) (Figure 9). This analysis showed that 3 of the 4 LT-BV subclusters (LT-BV 1: 

R=0.98; LT-BV 5: R=0.98; LT-BV 4: R=0.96) and the MD 1PM subcluster (R=0.98) were 

strongly correlated with normals. The other MD subcluster with central samples (MD 3CP) was 
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on a separate branch of the dendrogram and was strongly correlated with the 3 ST-BV 

subclusters (ST-BV 1: R=0.98; ST-BV 3: R=0.99; ST-BV 5: R=0.98). The ST-BV subclusters 

were also correlated with normals (ST-BV 1: R=0.96; ST-BV 3: R=0.94; ST-BV 5: R=0.97), 

LT-BV 1 (ST-BV 1: R=0.98; ST-BV 3: R=0.94; ST-BV 5: R=0.98), and MD1 (ST-BV 1: 

R=0.98; ST-BV 3: R=0.94; ST-BV 5: R=0.99) but weaker correlations with LT-BV 4 (ST-BV 1: 

R=0.94; ST-BV 5: R=0.95) and no significant correlations with LT-BV 5. RO was correlated 

with normal (R=0.96) but only one of the LT-BV subclusters (LT-BV 5: R=0.96) and none of 

the ST-BV subclusters. The two BD subclusters were correlated (R=0.94) but none of the other 

correlations were significant. The pattern of strong correlations in this matrix and the resulting 

dendrogram suggested that the subclusters might form 4 groups that have similar plasticity 

features (1: normal, LT-BV, MDP or M; 2: RO; 3: ST-BV, MDC; 4: BD). 

Constructing plasticity phenotypes and comparing among the conditions 

To compare the pattern of plasticity features among the subclusters we visualized the average 

for each feature as a color-coded horizontal band, stacked the bands to illustrate the pattern that 

we called the plasticity phenotype (Figure 10a) and ordered the phenotypes using the same 

dendrogram as the correlation matrix (Figure 10b). In addition, we visualized the plasticity 

phenotypes for normal development and MD to compare the treatment subclusters with a broad 

range of ages that had developed with either normal or abnormal visual experience (Figure 10 

c,d). 

Inspection of the plasticity phenotypes identified some obvious and other subtler differences 

among the subclusters (Figure 10b). Indeed, the pattern of red and green bands in the BD 

phenotypes was different from 5wk normals (Figure 10) and identified the shift to more 
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GABAAα1 and less GluN2A. For the RO subcluster, the light grey bands and number of green 

bands identified loss of protein expression and a shift to more GluN2A than 2B and more GluA2 

than 5wk normals. The RO pattern, however, appeared similar to an older (e.g. 12wk) normally 

reared animal suggesting that RO may accelerate maturation of these proteins. Thus, BD and RO 

treatments promote distinct plasticity phenotypes. 

The pattern of red and green bands in the plasticity phenotype for LT-BV and some of the 

ST-BV subclusters (ST-BV1, ST-BV5) appeared similar to the 5wk normals (Figure 10b) but 

many of the features were still significantly different from the age-matched normals (Figure 11a, 

11-1). Nonetheless, these subclusters had some consistent differences with less GABAARs and 

more GluN2B than 5wk normals. Interestingly, one of the novel features found by PCA, the 

GluN2A:GluA2 balance, was the only measure where all of the LT-BV subclusters were not 

different from 5wk normals but both RO and BD were different. Thus, this visualization of the 

plasticity phenotypes illustrated that the pattern promoted by BV, and LT-BV in particular, was 

most similar to the normal CP phenotype, when compared to the adult-like appearance of the RO 

or unique appearance of the BD phenotype. 
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Discussion 

Here we studied a set of glutamatergic and GABAergic receptor subunits that regulate 

plasticity and classified their expression patterns when MD was followed by a treatment that 

causes either persistent bilateral amblyopia (RO or BD) or good acuity in both eyes (BV). We 

found a complex pattern of changes that varied by treatment and region within V1.  Analyzing 

the balances between receptor subunits and modeling kinetics for NMDAR and GABAAR, 

however, suggested that BV returns CP-like balances, especially in the central region of V1. 

Furthermore, PCA and cluster analysis identified higher dimensional features and subclusters 

with different plasticity phenotypes for the treatments that promote good versus poor recovery of 

acuity.  The LT-BV plasticity phenotypes were closest to the normal CP pattern while the RO 

phenotype appeared more similar to an adult-like pattern dominated by GluA2.  In contrast, the 

BD phenotypes were dominated by GABAAα1 making it distinct from RO and illustrating that 

multiple plasticity phenotypes can underlie persistent bilateral amblyopia. Finally, the PCA 

analysis identified an understudied feature, the balance between mature glutamate receptor 

subunits (GluN2A:GluA2 balance), as a marker that differentiated treatments supporting good 

acuity (BV), from those that lead to persistent bilateral amblyopia (RO, BD). 

Study design and limitations 

The main advantages of the study design include (i) the animal model has excellent spatial 

vision, including a central visual field, so we could compare changes in regions of V1 that 

represent different parts of the visual field[27], (ii) the treatments were initiated and completed 

within the CP[46], (iii) there is detailed information about the recovery of physiology for RO and 

BV[7], [29], [47], [48] and acuity for all 3 treatments[7], [8], [27], [29], [49], (iv) both RO and 
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BD cause persistent bilateral amblyopia[8], [49], and (v) the treatments engage different forms of 

experience-dependent plasticity (RO: competitive; BD: cooperative with degraded visual input; 

BV: cooperative with normal visual input). 

The design used here, however, was limited because unlike the mouse model, it is 

challenging to apply molecular tools to manipulate specific plasticity mechanisms in cat V1. For 

example, we observed that one feature (GluN2A:GluA2 balance) identified the LT-BV treatment 

as similar to normals, but we were not able to manipulate that balance to test its necessity for 

recovery.  In addition, a large number of other treatments have been tested to improve recovery 

after MD, including a brief period of dark-rearing[49], [50], fluoxetine administration[51], 

perceptual learning[27], [52], or targeting specific molecular mechanisms (e.g., perineuronal 

nets[53]) and those were not examined. Undoubtedly, the timing, length, and type of treatment 

influences recovery but the conditions used here were necessarily limited because of the labor-

intensive nature of this study. Notwithstanding these limitations, the plasticity phenotypes 

identified RO and BD as different from each other and from normals, but the LT-BV subclusters 

were remarkably similar to the 5wk normal pattern. 

The approach took advantage of the reliability and multiplexing capabilities of Western 

blotting to obtain a large dataset of plasticity proteins from multiple V1 regions and rearing 

conditions. Western blotting, however, does not provide information about the cell types, layers, 

cortical columns, or subcellular localization of these proteins that would reveal which circuits are 

involved in recovery or persistent amblyopia. Even without that information, the application of 

higher dimensional analyses led to the characterization of features and treatment-based clusters 

with unique plasticity phenotypes. This phenotyping approach is scalable for studying more 

proteins or genes, cortical areas, and treatment conditions.  Taken together, we think that this 
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approach can be used in other animal models where molecular tools can be combined with visual 

testing to identify the features and phenotypes necessary for optimal visual recovery. 

BV promoted recovery of CP-like plasticity phenotype and identified GluA2:GluN2A as a 

balance that differentiated BV treatment 

We studied BV treatment because it promotes long-lasting recovery of good acuity in both 

eyes[27] and those findings are similar to promising results of binocular therapies for treating 

amblyopia in children[54].  Furthermore, there is good physiological recovery with BV[29], [48].  

Thus, it was not surprising to find that LT-BV subclusters had the strongest correlations with 

normals, or that those subclusters had CP-like phenotypes. However, only one of the features, the 

GluA2:GluN2A balance, returned to normal levels. These findings suggest that it may not be 

necessary to recapitulate every detail of the normal phenotype to support good visual recovery 

and that the GluA2:GluN2A balance may be a characteristic feature for tracking functional 

recovery. Although that balance is not commonly quantified, both proteins are critical 

components of mechanisms regulating experience-dependent plasticity in BV animals that 

balance might signify the adaptive engagement of multiple plasticity mechanisms. For example, 

the delayed increase in visual responses during ocular dominance plasticity is part of a 

homeostatic plasticity mechanism regulated by trafficking GluA2-containing AMPARs into the 

synapse[55], [56]. Meanwhile, the initiation of ocular dominance plasticity requires GluN2A 

expression[22], and when GluN2A is deleted or reduced MD does not depress deprived eye 

responses but instead causes enhancement of activity driven by the open eye[21]. Our finding 

that LT-BV returned a CP-like GluA2:GluN2A balance suggests that BV may prime GluN2A-

dependent Hebbian plasticity to consolidate deprived-eye connections while GluA2-dependent 

homeostatic plasticity enhances deprived-eye responsiveness without triggering runaway 
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excitation[57]-[61]. Thus, the GluA2:GluN2A balance may reflect the idea that during BV 

treatment the non-deprived eye acts as a teacher guiding both cooperative and competitive 

plasticity mechanisms[29]. 

RO promoted an adult-like plasticity phenotype in V1 with more GluA2 and GluN2A 

Because RO and BD treatments cause persistent bilateral amblyopia[7], [8], [49] we expected 

these conditions to have abnormal phenotypes. We were surprised, however, to find very 

different phenotypes for these conditions, showing that more than one plasticity phenotype can 

account for persistent acuity deficits.  

RO samples were in a single cluster dominated by an overabundance of GluA2 and more 

GluN2A than 2B.  Together those changes made the RO phenotype appear more similar to an 

adult than the CP pattern. The increase in GluA2 was in sharp contrast to the loss after BV 

treatment, and suggests that RO may scale up AMPAR-dependent homeostatic mechanisms to 

drive recovery[25] without engaging NMDAR-dependent mechanisms to consolidate those 

changes[62]. Since AMPAR-mediated homeostasis promotes rapid but transient gains in 

responsiveness [25], [55], [63]-[66] this might explain the labile acuity recovered with RO[7], 

[8].  Interestingly, the increase in GluA2 promoted by RO implicates the dense expression of 

GluA2-containing synapses at feedback connections onto parvalbumin-positive (PV+) 

neurons[67].  The feedforward connections onto PV+ neurons may also be involved in RO 

circuit abnormalities because the labile acuity and early shift to GluN2A after RO are similar to 

changes found in MeCP2 KOs where an abnormally early shift to GluN2A at synapses onto PV+ 

neurons that halts acuity development[68], [69]. Taken together, RO may leave behind 
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feedforward (GluN2A subunits) and feedback abnormalities (GluA2) in PV+ neuron circuits in 

V1. 

BD promoted a plasticity phenotype with an over-expression of GABAAα1 and a shift to 

more GluN2A 

Although various models of neural plasticity predict that decreasing firing rates will enhance 

plasticity that idea has not translated to using BD treatment to improve recovery from MD[49]. 

BD during the CP has a range of effects on V1 including enhancing the appearance of 

cytochrome oxidase blobs[70] and weakening stimulus evoked activity of PV+ neurons[71].  

Here we found that BD treatment caused an abnormal increase in the expression of GABAAα1 

throughout V1 and a shift to more GluN2A in the central region.  GABAAα1 receptors are found 

on pyramidal cell bodies where PV+ neurons synapse and they serve as regulators of ocular 

dominance plasticity[20] and the window for coincident spike-time dependent plasticity[24].  A 

recent study has shown that the loss of PV+ activity caused by BD depends on GABAAα1 

mechanisms and that blocking this subunit increases BD-evoked activity allowing for LTP of 

PV+ neurons[72]. Our observation of increased GABAAα1 expression suggests that BD 

treatment may further reduce visually evoked activity in V1 that is compounded by the shift to 

more GluN2A reducing the availability of NMDA-dependent mechanism needed to consolidate 

visual recovery.   

Modeling recovery of NMDAR and GABAAR kinetics 

Our modeling of population kinetics suggests that different physiological changes accompany 

the 3 treatments. During normal development the increases in NMDAR and GABAAR kinetics 

progress in concert. Physiological studies [73] and our modeling show that this fine balance is 
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decoupled by MD because the delayed shift to GluN2A has slower NMDAR kinetics but the 

premature increase of GABAAα1 has faster GABAAR kinetics. Neither RO or BD treatment 

corrected that decoupling and the modeling suggests that those treatments accelerate the shift to 

faster adult-like kinetics for NMDARs after RO or GABAARs after BD.  Modeling the kinetics 

for BV treatment identified 2 phases of recovery especially in the binocular regions of V1.  First, 

between 0-2 days of BV there was a rapid increase in the predicted NMDAR kinetics and a 

similar change during normal development takes 2 weeks.  Second, between 2-4 days of BV 

there was a slowing of the predicted GABAAR kinetics and that was opposite to the normal 

developmental increase in kinetics.  These sequential phases of BV treatment do not recapitulate 

normal development.  Perhaps the BV-driven increase in NMDAR kinetics needs to reach a 

certain level before triggering the slowing of GABAAR kinetics to rebalance these mechanisms.  

This modeling, however, was based on population data about the expression of the receptor 

subunits and cannot be extrapolated to individual receptors.  Nonetheless, the rapid changes with 

BV treatment suggest that some aspects of normal development may be missed and it will be 

important to determine what those are. 

How might these plasticity phenotypes be used for developing and testing treatments for 

persistent amblyopia? 

The distinct plasticity phenotypes classified for RO and BD treatments show that multiple 

neural changes can account for persistent amblyopia and highlight the need to know which 

mechanisms to target when trying to engage neuroplasticity mechanisms to improve acuity.  

Whether the treatment should focus on AMPARs, NMDARs, GABAARs or some combination of 

those receptors will depend on the underlying plasticity phenotype.  Insights into those questions 

can be addressed in animal models using modern molecular tools and vision testing but 
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translating those findings into treatments for humans will depend on non-invasive ways to 

determine an individual’s plasticity phenotype.  For example, magnetic resonance spectroscopy 

has been used to measure changes in glutamate or GABA concentrations after different types of 

visual experience (e.g. MD[74]) and receptor expression can be quantified by radioligands 

labeled for SPECT and PET [75].  New molecular imaging techniques hold the promise of 

greater detail with the ability to measure the concentration of receptor subunits[76]-[78].  That 

information may be comparable to protein analysis in animals models and suitable for 

constructing plasticity phenotypes for human V1 to facilitate the translation of new treatments.  

Furthermore, behavioral paradigms linked with specific plasticity mechanisms (e.g. stimulus-

selective response plasticity[79] may further aid in characterizing human plasticity phenotypes.  

Thus, selecting a treatment to prevent or correct persistent amblyopia may benefit from in vivo 

steps to classify an individual’s plasticity phenotype. 

Conclusions 

Of the treatments for MD studied here, only BV promoted recovery of a CP-like plasticity 

phenotype in V1. However, the phenotype analysis identified that only one feature, the 

GluA2:GluN2A balance, returned to normal levels after BV and that balance is noteworthy 

because the proteins are regulators of homeostatic and Hebbian plasticity, respectively.  The 

modeling of NMDAR and GABAAR kinetics revealed two stages for BV recovery: a rapid 

increase in NMDAR kinetics, followed by slowing of the predicted GABAAR kinetics which 

together brought that balance into the CP range. Finally, we identified features in the plasticity 

phenotypes that may help to explain persistent amblyopia, the high levels of GluA2 and GluN2A 

following RO, and the high level of GABAAα1 after BD treatment. This plasticity phenotyping 
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approach may be useful for designing and testing  treatments to improve recovery from or 

prevent the development of persistent amblyopia. 
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Figure Legends 

Figure 1. Study design diagram 

Timelines for the rearing conditions used in this studied. a. Normal visual experience and 

monocular deprivation (MD), b. treatment conditions (RO, BD, BV) after MD to 5wks. Filled 

bars indicate that an eye was closed. Black arrows indicate the age of animals used in the study. 

A timeline for the critical period (CP) in cat visual cortex[46] highlights the peak of the CP 

between 4-6 weeks of age. c. Map of the regions in V1 where tissue samples were taken from 

representing central (C, n=2), peripheral (P, n=8), and monocular (M, n=2) visual fields. d. 

Representative bands from the Western blots for the 7 proteins quantified in the study and the 

molecular weights (kDa). 

Figure 2. Analysis workflow 

The analysis workflow for data in the study. a. Immunoblots were quantified using 

densitometry, b. Statistical comparisons were made using Monte Carlo simulation and bootstrap 

resampling. c. Pairwise correlations were calculated for the 7 proteins for each rearing condition. 

d. Next, a series of steps were done beginning with dimension reduction (PCA), e. Feature 

selection, f. Cluster visualization based on the features (tSNE), g. Correlation between features 

or the clusters and subclusters, h. Construction and visualization of the plasticity phenotypes for 

each subcluster. 

Figure 3. Expression of synaptic proteins in the different regions of visual cortex. 

Histograms showing the average expression relative to 5 wk normal animals for the 7 proteins 

(rows) and 3 regions of V1 (columns), normal 5 wk animals (black bars), animals reared with 
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MD to 5wks (grey bars), and animals treated with either RO (blue bars) or BD (green bars).  

Scatter plots showing the average protein expression (red dots) after 1hr to 4d of BV treatment.  

When the trajectory of protein changes during BV treatment was well-defined by a function, 

curve fits were applied (red line). Error bars represent standard error of the mean (SEM).  Black 

asterisks represent significant differences relative to 5wk normal, and grey asterisks represent 

significant differences relative to 5wk MD (*p<0.05,**p<0.01, ***p<0.001). The dotted black 

line on each graph represents 5wk normal expression. For exact p-values, Pearson’s R, and 

equations for the curve-fits see Table 3-2. 

Figure 4. Indices for pairs of receptor subunits and modeling of predicted decay 

kinetics for a population of NMDARs and GABAARs.  Histograms and scatter plots showing 

the average expression of the 3 receptor subunit indices (a:GluN1:GluA2, b:GluN2B:GluN2A, 

c:GABAAα1:GABAAα3) and predicted population kinetics (d:NMDAR, e:GABAAR) for the 

regions of V1 (columns). f. The predicted population kinetics are plotted for both GABAARs (x-

values) and NMDARs (y-values) for normally reared animals age range 2wks-adult with the 

curve representing the trajectory of the relationship between these features (black dots & line, 

see Figure 4-1 for normal data).  Also, the data are plotted for 5wk MD (grey dot), RO (blue 

dot), and BD (green dot). The relationship between NMDAR and GABAAR kinetics during BV 

treatment for 1hr (orange) to 4d (red) is plotted, and the line uses the functions fit to the data in d 

and e.  The conventions are the same as in Figure 3.  For exact p-values, Pearson’s R, and 

equations for the curve-fits see Table 4-2. 

Figure 5. Visualizing pairwise correlations between proteins. Correlation matrices are 

plotted showing the strength (saturation) and direction (blue:negative; red:positive) of the 

pairwise Pearson's R correlations between proteins for each condition a. 5wk Normal, b. 5wk 
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MD, c. RO, d. BD, and e-i. BV.  The order of proteins was determined using hierarchical 

clustering so proteins with stronger correlations were nearby in the matrix. Significant 

correlations are denoted by an asterisk (*p<0.05, **p<0.01, ***p<0.001). For table of Pearson’s 

R values and Bonferroni corrected p-values see Table 5-1. 

Figure 6. Identifying plasticity features using principal component analysis  a.The 

percentage of variance captured by each principal component by singular value decomposition 

(SVD) applied using all of the protein expression data. The first 3 principal components capture 

54%, 18% and 10% of the variance, respectively, totalling >80% and thus representing the 

significant dimensions. b. The quality of the representation, cos2, for the proteins is plotted for 

each dimension (small/white: low cos2; large/blue: high cos2) c. The sum of cos2 values for the 

first 3 dimensions for each protein. d,e. Biplots of PCA dimensions 1&2 and f,g. 1&3.  These 

plots show the vector for each protein (d,f) and the data (small dots) plus the average (large dots) 

for each condition with the best-fitting ellipse (e,g). h. The basis vectors for dimensions 1-3 

showing the amplitude of each protein in the vector. i. The strength (circle size) and direction 

(blue-positive, red-negative) of the correlation (R2) between each protein and the PCA 

dimensions. j. Correlation between the plasticity features (columns) identified using the basis 

vectors (see Results) and then PCA dimensions 1-3. Filled cells are significant, bonferroni 

corrected correlations (green = positive, red = negative). For table of Pearson’s R values and 

significant p-values for these associations see Table 6-1. 

 Figure 7. Expression of plasticity features identified using principal component 

analysis.  Histograms and scatter plots showing the plasticity features (rows)(except 

GluN2B:GluN2A shown in Fig. 4) that were identified using the PCA basis vectors (Fig. 6j) and 
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plotted for each region of V1 (columns). The conventions are the same as in Figure 3. For exact 

p-values, Pearson’s R, and equations for the curve-fits see Table 7-1. 

Figure 8. Clustering of samples with similar plasticity features identified using t-

Distributed Stochastic Neighbor Embedding (t-SNE) and k-means clustering. a.         Using 

tSNE to visualize clustering of samples (109 tissue samples from animals reared to 5wk normal, 

5wk MD, RO, BD and BV) calculated from k-means analysis of the 8 plasticity features 

identified by PCA.  The optimal number of clusters (k=6) was identified by measuring the within 

groups sum of squares at intervals between 2 and 9 clusters (Figure 8-1) b. The content of each 

cluster was visualized for the region (central, peripheral, monocular) c. or treatment condition. d. 

The table summarizes the percentage of samples for each region and condition in Cluster 1-6. 

For example, 100% of the samples from the central region of V1 in Normal animals were in 

Cluster 1 while 100% of the samples from all regions of RO were in Cluster 2.  This information 

was used to annotate subclusters based on the cluster membership (1-6), rearing condition, and 

region of V1. 

Figure 9. Visualizing pairwise correlations between treatment subclusters. The matrix is 

showing the strength (0.6=blue; 1=red) of correlation between the subclusters identified in Fig. 

7d and annotated here using the rearing condition, cluster (1-6), and region of V1. Hierarchical 

clustering was used to order the data so that subclusters with strong correlations were nearby in 

the matrix.  The subclusters formed 5 groups using the height of the dendrogram that is denoted 

by a change in the color of the dendrogram.  The dotted black line in the dendrogram highlights 

the path to the normal subcluster.  The black lines in the matrix identify the 5 groupings of the 

subclusters. For exact Bonferroni corrected p-values see Table 9-1 and for Pearson’s R values 

see Table 9-2. 
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Figure 10. Visualizing the plasticity features and phenotypes for each subclusters a. We 

visualized of the plasticity features as a stack of color-coded horizontal bars that together 

comprise the plasticity phenotype. The 3 grey scale bars represent the protein sums and the 6 

red-green color-coded bars represent the protein indices identified by the PCA. b. The plasticity 

phenotypes were calculated for each subcluster and ordered using the same dendrogram as 

described in Fig. 9. c. For comparison the plasticity phenotypes were calculated using previously 

published data[23] for normal development (2 - 32 wks) d. and animals MDed from eye open 

until either 4, 5, 6, 9 or 32 wks.µµ 

Figure 11. Significant plasticity features. a. We used bootstrap analysis to identify 

plasticity features that were significantly different from 5wk normal animals and color-coded the 

horizontal bars red if the feature was >normal and blue if it was <normal (p<0.05). b-j. The 

boxplots show the average protein sum (b-d) and an average index value (e-j) for each of the 

subclusters. Boxes were colored red if significantly greater than 5wk normals, blue if 

significantly less than 5wk normals and grey if not significantly different from 5wk normals. For 

exact Bonferroni corrected p-values see Table 11-1.  
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Extended Data Figure Legends 

Figure 3-1. Glutamatergic protein variance to mean ratios. Histograms depict the 

variance-to-mean ratio in each condition for individual proteins (rows) in each cortical area 

(columns). VMR >1 represent proteins that are highly-dispersed, VMR=1 are normally dispersed 

and VMR<1 are under-dispersed. 

Figure 4-1. Predicted decay kinetics of NMDAR and GABAAR across normal cat V1 

development Scatterplots of predicted population decay kinetics of each receptor type. Black 

circles represent the average predicted decay kinetics at each age. Top row of scatterplots show 

the average kinetics of NMDA receptors across V1 areas. Solid line represents the kinetics of a 

population of diheteromeric 2A:2B containing NMDARs (50ms). Bottom row shows predicted 

decay kinetics of GABA receptors across V1 areas. Solid line represents the kinetics of a 

population of diheteromeric α1:α3 containing GABAARs (49ms). All scatterplots were well 

defined by an exponential decay curve fit (all p<0.0001). 

Figure 8-1 Within group sum of squares with variable cluster sizes. Scatterplot of the 

within groups sum of squares was measured across a range of clusters between 2 and 15. An 

exponential decay fit was applied to the data, and 4τ was taken as the point at which changes in 

cluster number had little effect on the within groups sum of squares. The optimal number of 

clusters was identified as 6 (k=6). This value was used to assign the k-means clusters on tSNE 

reduced data (Figure 8a). 
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Extended Tables Legends 

Table 2-1: The number of tissue samples and runs for Normal animals across V1 region 

and protein. Rows summarize the number of runs from the Central (C), Peripheral (P), and 

Monocular (M) regions of V1 within each age of animal studied. The columns list each of the 7 

proteins analyzed using Western blotting. Column sums detail the number of runs across ages 

and cortical areas. 

Table 2-2: The number of tissue samples and runs for MD animals across V1 region 

and protein. Rows summarize the number of runs from the Central (C), Peripheral (P), and 

Monocular (M) regions of V1 within each age of animal studied. The columns list each of the 7 

proteins analyzed using Western blotting. Column sums detail the number of runs across ages 

and cortical areas. 

Table 3-2. Table of p-values comparing protein expression in each treatment condition 

against 5wk Normal animals and 5wk MD animals. P-values are presented for each cortical 

area (columns) and protein (rows). Cortical areas are broken up into comparisons against normal 

(left) and MD (right). Asterisk color coding matches Figure 3. When a curve fit was applied, the 

equation, degrees of freedom (df), R2 value and exact p-value are listed. 

Table 4-2. Table of p-values comparing the values for each plasticity feature in 

treatment conditions against 5wk Normal animals or 5wk MD animals. p-values are 

presented for each cortical area (columns) and plasticity feature (rows). Cortical areas are broken 

up into comparisons against normal (left) and MD (right). Asterisk color coding matches Figure 
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4. When a curve fit was applied, the equation, degrees of freedom (df), R2 value and exact p-

value are listed. 

Table 5-1. Pearson’s R values in each treatment condition comparing the strength of 

association between each protein. The correlation between each protein within a treatment 

condition was measured (left), and the observed R values are presented in a matrix. This matrix 

was reordered in Figure 5 to position high R values nearest one another. The Bonferroni 

corrected p-values (right) were used to identify the most significant correlations between 

proteins. P-values <0.05 are colored red to simplify identification of significant correlations. 

Table 6-1. Pearson’s R correlations between newly identified plasticity features and 

PCA dimensions. The correlation between the PCA scores across all animals, and the first 3 

PCA dimensions are presented. P-values of correlations that were significantly correlated after 

Bonferroni correction are colored red.  

Table 7-1 p-values comparing the each newly identified plasticity feature in treatment 

conditions against 5wk Normal animals and 5wk MD animals. p-values are presented for 

each cortical area (columns) and plasticity feature (rows). Cortical areas are broken up into 

comparisons against normal (left) and MD (right). Asterisk color coding matches Figure 4. When 

a curve fit was applied, the equation, degrees of freedom (df), R2 value and exact p-value are 

listed. 

Table 9-1 Pearson’s R values comparing the strength of association between each 

treatment subcluster. The correlation between each sub-cluster was measured and the observed 

R values are presented in a matrix. This matrix was reordered in Figure 9 to position high R 

values nearest one another. 
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Table 9-2 Bonferroni corrected p-values between each treatment subcluster. The 

Bonferroni corrected p-values were used to identify the most significant correlations between 

proteins. P-values less than the Bonferroni corrected level (0.0006) are colored red to simplify 

identification of significant correlations. 

Table 11-1. p-values for each identified plasticity feature within subclusters compared 

against the Normal animals from cluster 1. 

p-values are presented for the Pearson’s R correlations between each plasticity phenotype 

and the Normal subcluster. The corresponding significance level is indicated by the text color red 

if the value was significantly above the normal subcluster, and blue if the value was significantly 

below, and white if not significantly different.  

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/554576doi: bioRxiv preprint 

https://doi.org/10.1101/554576


 

57 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/554576doi: bioRxiv preprint 

https://doi.org/10.1101/554576


 

61 

Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/554576doi: bioRxiv preprint 

https://doi.org/10.1101/554576

