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Abstract 

Point-prevalence surveys (PPSs) are often used to estimate the prevalence of healthcare-

associated infections (HAIs). Methods for estimating incidence of HAIs from prevalence 

have been developed, but application of these methods is often difficult because key 

quantities, like the average length of infection, cannot be derived directly from the data 

available in a PPS. We propose a new theory-based method to estimate incidence from 

prevalence data dealing with these limitations and compare it to other estimation methods 

in a simulation study. In contrast to previous methods, our method does not depend on any 

assumptions on the underlying distributions of length of infection and length of stay. As a 

basis for the simulation study we use data from the second study of nosocomial infections 

in Germany (Nosokomiale Infektionen in Deutschland, Erfassung und Prävention - NIDEP2) 

and the European surveillance of HAIs in intensive care units (HAI-Net ICU). The new 

method compares favourably with the other estimation methods and has the advantage of 

being consistent in its behaviour across the different setups. It is implemented in an R-

package prevtoinc which will be freely available on CRAN (http://cran.r-project.org/). 
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INTRODUCTION 

Epidemiological information on healthcare-associated infections (HAIs) is often acquired by 

means of point-prevalence surveys (PPSs). Large-scale PPSs are regularly performed by the 

European Centre for Disease Prevention and Control (ECDC) (1, 2), as well as the US 

Centers for Disease Prevention and Control (CDC) (3, 4). While the prevalence of HAIs is an 

important measure in itself, epidemiologists are usually more interested in the incidence of 

HAIs. For example, estimations of the burden of HAIs often rely on incidence rather than 

prevalence (5). Therefore, methods of estimating the incidence rates from the data of PPSs 

are needed. Under general conditions, the incidence and prevalence can be estimated from 

one another (6). The question of estimating incidence from prevalence in the context of 

HAIs has been addressed in the 1980s by two articles (7, 8). The method developed by 

Rhame and Sudderth (7) is the most commonly applied method for estimating incidence 

from prevalence (1-3, 5, 9-14). This method however has several limitations: 

The Rhame-Sudderth formula was developed using a definition of prevalence that included 

active and cured infections on the day of the PPS and that is different from the one usually 

applied in PPSs of HAIs. Another problem with the application of the formula is that it 

requires a method to estimate the average length of stay and the average length of infection 

based on data available on the day of the PPS. Without estimates of these quantities from 

other sources, the application of the estimation method is challenging, because usually only 

the data obtained on the day of the PPS are available. 

 In this article, we propose a novel approach dealing with these limitations of estimating 

incidence from prevalence of HAIs. The proposed approach uses state-of-the-art statistical 

techniques to estimate the average length of infection and average length of stay in the 

whole patient population from samples of lengths of infection and hospital stay up to the 

day of the PPS without relying on any assumption about the distributions of these 

quantities. We evaluated the new method by comparing it with existing procedures in the 

literature through simulation studies based on data from the second study of nosocomial 

infections in Germany (Nosokomiale Infektionen in Deutschland, Erfassung und Prävention 

- NIDEP2) (15) and from the European surveillance of HAIs in intensive care units (HAI-Net 

ICU) (16, 17), as well as theoretical distributions. 

METHODS 

Notation 

In general, we used the variable 𝑋 to indicate a randomly sampled duration from the whole 

population and 𝐿 for a randomly sampled duration from the PPS (the duration for a 

randomly selected patient included in the PPS). 𝐿 is expected to be on average larger than 𝑋, 

due to the phenomenon of length-biased sampling (8, 18). We used 𝐴 for the observed 

duration up to a fixed time for a randomly selected patient at that time point. This was 

applied to the length of stay and the length of infection.  

We used 𝑋, 𝐴 and 𝐿 when it was not important to distinguish between the length of stay and 

the length of infection from a theoretical perspective. 
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The different concepts for the durations are illustrated in Fig. 1. The notation used in this 

article is explained in Table 1. 

 

Fig. 1  Illustration of different samplings for a hypothetical hospital: Line segments represent 

patients admitted in a hypothetical hospital. Sampling from 𝑋 means selecting one of all the 

line segments at random, sampling from 𝐿 means only sampling among the segments which 

intersect with the survey and sampling 𝐴 means only sampling from the striped parts of these 

segments representing the part of stay up to and including the day of the PPS. 
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Table 1 Notation used in this article 

Type of measure Notation Definition 

Burden of disease 

Prevalence 𝑷 Expected proportion of patients with a healthcare-associated 

infection (HAI) on a fixed day 

Prevalence 

according to 

Rhame and 

Sudderth 

𝑷𝒓𝒉𝒂𝒎𝒆 Expected proportion of patients present on a fixed day who have 

or had a HAI during their hospital stay so far 

Incidence rate 𝑰 Probability of an uninfected patient acquiring a HAI on a specific 

day (hazard rate) 

Incidence 

proportion of 

HAIs per 

admission 

𝑰𝒑𝒑 Probability of a patient acquiring a HAI during one stay; similar 

to the concept introduced by Rhame and Sudderth (7) 

Duration 

Length of stay 𝑳𝒍𝒐𝒔 Length of stay in hospital for a random patient included in the 

PPS 

 𝑿𝒍𝒐𝒔 Length of stay in hospital for a random patient in the whole 

population 

 𝑨𝒍𝒐𝒔 Length of stay in hospital  up to day of PPS  for a random patient 

included in the PPS 

Length of 

infection 
𝑳𝒍𝒐𝒊 Length of HAI (during hospital stay) for a random  infected 

patient included in the PPS 

 𝑿𝒍𝒐𝒊 Length of HAI (during hospital stay) for a random  infected 

patient sampled from the whole population 

 𝑨𝒍𝒐𝒊 Length of HAI up to day of PPS  for a random  infected  patient 

included in the PPS 

Length of stay 

after onset of 

infection 

𝑳𝑳𝑵−𝑰𝑵𝑻 Length of stay after onset of first infection for a random patient 

who acquired a HAI included in the PPS 

 𝑿𝑳𝑵−𝑰𝑵𝑻 Length of stay after onset of first infection for a random patient 

who acquired a HAI 

 𝑨𝑳𝑵−𝑰𝑵𝑻 Length of stay after onset of first infection up to day of PPS for a 

random patient included in the PPS 

Estimators �̂� , �̂�𝒑𝒑 , … Estimators of theoretical measures are identified by a 
^

 

Population 

averages 
𝒙𝒍𝒐𝒔, 𝒂𝒍𝒐𝒔, 𝒙𝑳𝑵−𝑰𝑵𝑻, 𝒂𝑳𝑵−𝑰𝑵𝑻, … 

Population averages for the measures of length described above 

are denoted by the corresponding lowercase letter 
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Rhame and Sudderth formula 

In line with previous authors (7, 8), we assumed that the patient population is in steady 

state, i.e. the distribution of characteristics of our sample of patients does not depend on the 

specific day of the survey. 

The original formula of Rhame and Sudderth (7) for the incidence per admission 𝐼𝑝𝑝 

(slightly simplified and adapted to our notation) is: 𝐼𝑝𝑝 = 𝑃𝑟ℎ𝑎𝑚𝑒 𝑥𝑙𝑜𝑠𝑥𝐿𝑁−𝐼𝑁𝑇 , 
where 𝑥𝑙𝑜𝑠 denotes the average length of stay of a patient, 𝑥𝐿𝑁−𝐼𝑁𝑇 is the average length of 

stay for patients after they acquire their first HAI and 𝐼𝑝𝑝 is the estimate of the incidence 

per admission. In this original formulation, 𝑃𝑟ℎ𝑎𝑚𝑒 is calculated by counting all patients who 

had at least one HAI up to the time of the survey (and not just the patients that have an 

active HAI on the date of the survey) and dividing by the total number of patients. 

As pointed out above there are two points that complicate the application of this formula in 

this form: 

(1) often the PPSs only count patients with active infections on the day of the PPS. 

In these cases, theoretical considerations then require that the term 𝑥𝐿𝑁−𝐼𝑁𝑇 is replaced by 

a term 𝑥𝑙𝑜𝑖 which gives the average length of a HAI (see supplement S1). 

(2) samples of 𝑋𝑙𝑜𝑠, 𝑋𝑙𝑜𝑖 (or 𝑋𝐿𝑁−𝐼𝑁𝑇) are often not available and only the length of stay 𝐴𝑙𝑜𝑠 

and possible length of infection 𝐴𝑙𝑜𝑖 up to the day of the PPS are available.  

New approach 

To estimate the distributions of length of stay and length of infection from the observed 

lengths of stay up to the day of the PPS, we proceeded in two steps: • We estimated the distributions of length of stay and length of infection up to the day of 

the PPS (in our notation 𝐴𝑙𝑜𝑠 and 𝐴𝑙𝑜𝑖) from the available data, • We calculated from these distributions the expected lengths (𝑥𝑙𝑜𝑠 and 𝑥𝑙𝑜𝑖) for the 

whole population. 

For the first part, we used an estimator which ensures the monotonicity of the estimated 

distribution, because the distribution of 𝐴 is always monotonously decreasing. This can be 

demonstrated by the timeline of occupancy of a hypothetical bed: on average there will 

always be more patients for whom it is the first day of their stay than the second day, more 

patients for whom it is the second day of their stay than the third and so on. We use a 

Grenander estimator for discrete distributions described and studied by Jankowski and 

Wellner (19). This estimator is the maximum likelihood estimator for a discrete 

monotonously decreasing distribution and is therefore a canonical choice. It is well-studied 
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from a theoretical point and has good properties like consistency and √𝑛 - rate of 

convergence (19)  

Following Freeman and Hutchison (8), in the steady state the relation between prevalence 𝑃 and incidence rate 𝐼 can be written as: 𝐼 = 𝑃(1 − 𝑃)𝑥𝑙𝑜𝑖 , 
where 𝑥𝑙𝑜𝑖 is the average length of a HAI in the whole population. To get this equation into 

the form of Rhame and Sudderth (7), we multiply by the expected length of stay of random 

patients that are susceptible to an infection (1 − 𝑃)𝑥𝑙𝑜𝑠 and get 𝐼𝑝𝑝 = 𝑃 𝑥𝑙𝑜𝑠𝑥𝑙𝑜𝑖 . 
To express 𝑥𝑙𝑜𝑖 in terms of 𝐴𝑙𝑜𝑖 , we note the following formula with 𝑁𝑝𝑎𝑡 the total number of 

patients at the hospital on the survey day: 𝐼(1 − 𝑃)𝑁𝑝𝑎𝑡 = ℙ(𝐴𝑙𝑜𝑖 = 1) ⋅ 𝑃𝑁𝑝𝑎𝑡 , 

where (1 − 𝑃)𝑁𝑝𝑎𝑡 is the average number of patients at risk, ℙ(𝐴𝑙𝑜𝑖 = 1) is the average 

proportion of patients with HAI on the first day of infection and 𝑃𝑁𝑝𝑎𝑡 is the average 

number of patients with a HAI. 

Both sides of the equation represent the number of average new infections per day; the left 

hand side as the incidence rate 𝐼 per patient-day-at-risk times the number of patients at risk (1 − 𝑃)𝑁𝑝𝑎𝑡 and the right hand side as the average number of HAI cases on the first day of 

infection. Therefore 𝐼 = 𝑃1 − 𝑃 ℙ(𝐴𝑙𝑜𝑖 = 1), 
where ℙ(𝐴𝑙𝑜𝑖 = 1) is the probability of sampling 𝐴𝑙𝑜𝑖 = 1. By comparing with the original 

incidence rate formula, this gives us, the simple relation 𝑥𝑙𝑜𝑖 = 1ℙ(𝐴𝑙𝑜𝑖 = 1). 
An alternative, more formal route to the formula is based on renewal theory (8) and 

specifically Eqn. 2.16 from Haviv (20). 

This leads to the estimator: 𝑥𝑙𝑜𝑖 = 1ℙ̂ (𝐴𝑙𝑜𝑖 = 1). 
with ℙ̂ (𝐴𝑙𝑜𝑖 = 1) an estimator of ℙ(𝐴𝑙𝑜𝑖 = 1). We call 𝑥gren the estimator for 𝑥 based on this 

procedure with the Grenander estimator (19) for ℙ̂ (𝐴𝑙𝑜𝑖 = 1). 
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The general method is equally applicable for the estimation of 𝑥𝑙𝑜𝑠, 𝑥𝑙𝑜𝑖 , 𝑥𝐿𝑁−𝐼𝑁𝑇 and one can 

construct similar estimators. The derivation of the respective estimators is based on Eqn. 

2.16 from Haviv (20). 

Design of simulations 

To assess the performance of our new estimator, we compared it in a simulation study to a 

selection of other estimators from the literature. Simulations were performed using R 3.5.1 

(21) with the prevtoinc package which will be freely available on CRAN (http://cran.r-

project.org/). 

In a first step, we assessed the quality of the estimators for 𝑥𝑙𝑜𝑖 , 𝑥𝐿𝑁−𝐼𝑁𝑇, 𝑥𝑙𝑜𝑠. 

The setup was the following: a distribution for 𝑋𝑙𝑜𝑖 was chosen and the corresponding 

distributions for 𝐴𝑙𝑜𝑖 and 𝐿𝑙𝑜𝑖 were derived. A sample of 𝑛 values from 𝐴𝑙𝑜𝑖 and 𝐿𝑙𝑜𝑖 was 

drawn and, based on this sample, all considered estimators of 𝑥𝑙𝑜𝑖 were calculated. We 

repeated this procedure 𝑚 times and calculated the root-mean square deviation (RMSD) for 

each estimator. 

An analogous procedure was used to benchmark estimators for 𝑥𝑙𝑜𝑠 and 𝑥𝐿𝑁−𝐼𝑁𝑇. 

We performed repeated simulations to assess the performance of estimators for 𝐼 based on 

simulated PPS data as follows: The number of patients 𝑛 in the PPS was fixed, as well as a 

distribution for 𝑋𝑙𝑜𝑖 and a value 𝑃 = 0.05 was fixed for the prevalence. For each patient, the 

presence of a HAI was determined by a sample from a Bernoulli distribution with as 

parameter 𝑃. In a next step, for patients with HAIs a joint sample of 𝐴𝑙𝑜𝑖 and 𝐿𝑙𝑜𝑖 was 

sampled from the chosen distribution. To assess the performance of the estimators for 𝐼𝑝𝑝 

we additionally sampled 𝐴𝑙𝑜𝑠 and 𝐿𝑙𝑜𝑠 jointly for all patients. For a simulation distribution of 𝑋𝐿𝑁−𝐼𝑁𝑇, assessment of estimators was performed in an analogous way replacing 𝑃 by 𝑃𝑟ℎ𝑎𝑚𝑒 = 0.2. For further parameters of the simulations see supplement S3. 

Estimators for comparison 

We used the following estimators to benchmark the performance of our new estimator. • pps.median - estimator based on the median duration up to PPS (1)  𝑥𝑝𝑝𝑠.𝑚𝑒𝑑𝑖𝑎𝑛 = median(𝐴), 

where median(𝐴) is the median of samples of the observed 𝐴, • pps.mean - alternative estimator used in (1) based on the mean instead of the median 𝑥𝑝𝑝𝑠.𝑚𝑒𝑎𝑛 = mean(𝐴). • L.full - estimator based on samples from the PPS with information on 𝐿 based on the 

transformation formula 𝑥 = 1mean(1/𝐿)  
 

The transformation formula uses the theoretical relationship between 𝑋  and  𝐿  derived 

in Eqn. 7 in (8). When comparing the performance of estimators, one has to keep in mind 
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that L.full uses the information on the whole durations 𝐿  instead of only information on 𝐴 . 

 

The estimators can be used to estimate 𝑥𝑙𝑜𝑖 , 𝑥𝐿𝑁−𝐼𝑁𝑇 or 𝑥𝑙𝑜𝑠 depending on which duration up 

to PPS 𝐴 we use. 

Mixed estimator 

We also experimented with the combination of different estimators by weighting. As will be 

seen in the results section, for small samples the estimator  gren  has high variance. While it 

is unbiased (inside the model), it could be advantageous to combine it with a biased 

estimator with lower variance for small sample sizes. As a specific case, we introduced the 

following estimator pps.mixed based on the estimators pps.mean and gren: 𝑥𝑝𝑝𝑠.𝑚𝑖𝑥𝑒𝑑 = 𝛼(𝑛) �̂�𝑝𝑝𝑠.𝑚𝑒𝑎𝑛 + (1 − 𝛼(𝑛)) �̂�𝑔𝑟𝑒𝑛. 
The function 𝛼 is chosen as a sigmoid function: 𝛼(𝑛): = exp(0.01⋅(𝑛−500))1+exp(0.01⋅(𝑛−500)). This gives a 

smooth transition between pps.mean and the new estimator gren with equal weighting 𝛼 = 0.5 on 𝑛 = 500. Again this type of estimator can be used for the estimation of 𝑥𝑙𝑜𝑖 , 𝑥𝐿𝑁−𝐼𝑁𝑇 or 𝑥𝑙𝑜𝑠. 

Constructing estimators for 𝑰 and 𝑰𝒑𝒑 

We estimated the theoretical prevalence 𝑃 by taking the observed prevalence �̂� on the day 

of the PPS as an estimate. We constructed the incidence rate estimator in the general form: 

�̂� = �̂�1 − �̂� ∗ 1𝑥𝑙𝑜𝑖  
and for the incidence proportion per admission: 

�̂� 𝑝𝑝 = �̂�𝑥𝑙𝑜𝑖 𝑥𝑙𝑜𝑠, 
where one uses any of the above estimators for 𝑥𝑙𝑜𝑖 and 𝑥𝑙𝑜𝑠. A similar estimator could be 

built by plugging in the corresponding estimators in the original Rhame-Sudderth formula 

using 𝑃𝑟ℎ𝑎𝑚𝑒 and 𝑥𝐿𝑁−𝐼𝑁𝑇. 

Simulation distributions for 𝑿𝒍𝒐𝒊, 𝑿𝑳𝑵−𝑰𝑵𝑻 and 𝑿𝒍𝒐𝒔 

We used three different distributions for 𝑋𝑙𝑜𝑖: a geometric distribution shifted to start on 1 

with mean 8, a Poisson distribution shifted to start on 1 with mean 8.  We selected the two 

theoretical distributions, Poisson and geometric, to assess the flexibility of the estimators. 

We also used an empirical distribution  of 𝑋𝑙𝑜𝑖 based  on data from  the NIDEP2 – study (15).  

In this study, incidence and prevalence of HAIs were measured on a daily basis in eight 
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German hospitals during two eight-week periods (see supplement S2 for a further 

description of the data). 

 For simulation of 𝑋𝐿𝑁−𝐼𝑁𝑇, we used an empirical distribution of  𝑋𝐿𝑁−𝐼𝑁𝑇 based on the HAI-

Net ICU data from 2015, which monitored date of onset of HAI and date of discharge of 

patients with an ICU-acquired HAI in 1 365 intensive care units (ICUs) from 11 European 

Union Member States (see supplement S2 for a further description of the data) (15, 16). No 

information on the end of the HAI was available, which is why  we used  𝑋𝐿𝑁−𝐼𝑁𝑇 and the 

original version of the Rhame-Sudderth formula for this simulation example. 

We show the resulting distributions of 𝑋𝑙𝑜𝑖 in Fig. 2 and the distribution for 𝑋𝐿𝑁−𝐼𝑁𝑇 in Fig. 

3. 

 

Fig. 2 Distributions of 𝑋𝑙𝑜𝑖 for simulations 

 

Based on these distributions for 𝑋𝑙𝑜𝑖 we calculated the distributions of 𝐴𝑙𝑜𝑖 and 𝐿𝑙𝑜𝑖 (see 

Eqn. 2.14 and 2.16 (20) for the exact relation between these distributions). 

For each simulation we then sampled 𝑛 lengths of infection jointly from 𝐴𝑙𝑜𝑖 and 𝐿𝑙𝑜𝑖 . An 

analogous procedure was applied for sampling lengths of stay ( 𝐴𝑙𝑜𝑠 and 𝐿𝑙𝑜𝑠) and lengths of 

stay after infection ( 𝐴𝐿𝑁−𝐼𝑁𝑇 and 𝐿𝐿𝑁−𝐼𝑁𝑇). The distributions used for simulating the length 

of stay are shown in Fig. 3 and were based on data on lengths of stay from the NIDEP2-

study (14) and HAI-Net ICU (15, 16). 
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Fig. 3  Empirical distribution of 𝑋𝐿𝑁−𝐼𝑁𝑇 from HAI-Net ICU data (A) and empirical 

distributions for 𝑋𝑙𝑜𝑠 for NIDEP2 and HAI-Net ICU data (B and C) 

RESULTS 

To assess the quality of the estimators, we measured the RMSD for increasing numbers of 

HAIs using different distributions (Fig. 4-7). 

Simulations for 𝒙𝒍𝒐𝒊 and 𝒙𝑳𝑵−𝑰𝑵𝑻 

 

In Fig. 4, we present the RMSDs of the estimates of 𝑥𝑙𝑜𝑖 . We show the results for three 

examples of 𝐴𝑙𝑜𝑖 distributions. The simulations ranged from 𝑛 = 50 to 𝑛 = 1000. The 

estimators differed in the size of the RMSD, as well as in the convergence to zero along 

increasing sample sizes. In all three distributions, pps.median had the highest RMSD and 

generally did not converge to zero. The estimator  pps.mean behaved similarly to 

pps.median in the case of the Poisson distribution. For the NIDEP2 distribution, it did not 

converge to zero, but stabilized on a lower RMSD compared to the Poisson distribution. In 

the case of the geometric distribution, pps.mean converged to zero with a low RMSD as 

could be expected for mathematical reasons (22), because 𝑥𝑙𝑜𝑖 = 𝑎𝑙𝑜𝑖 for this specific 

distribution. L.full converged towards zero for all distributions and had among the lowest 

RMSD for all three settings. The RMSD of the new estimator gren converged towards zero in 

all three settings for large enough sample sizes and the magnitude of the RMSD was similar 

for all three distributions. The RMSD of pps.mixed for lower sample sizes was similar to the 

one of pps.mean and for larger sample sizes more like the new gren estimator as expected 

due to its construction. 
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Fig. 4  Root-mean squared deviation (RMSD) of estimators of 𝑥𝑙𝑜𝑖 for 1000 simulations each 

along increasing size of samples of 𝐴𝑙𝑜𝑖 (resp. 𝐿𝑙𝑜𝑖 for L.full) 

Similar plots for the bias (inside the model) and standard deviation can be found in the 

supplement S4 in Fig. S2 and S3. For boxplots of the estimators of 𝑥𝑙𝑜𝑖𝑥𝑙𝑛𝑖𝑛𝑡  and 𝑥𝑙𝑜𝑠 see Fig.  

S4-S6 in supplement S5. 

Results for the estimation of 𝑥𝐿𝑁−𝐼𝑁𝑇 for the HAI-Net ICU data are shown in Fig. 5. The 

simulations again ranged from 𝑛 = 50 to 𝑛 = 1000. 

As previously, pps.median did not converge to zero and had the highest RMSD among the 

estimators. The estimator pps.mean stabilized at a significantly lower RMSD than 

pps.median, but did not converge towards zero either. L.full was again the best performing 

estimator in terms of RMSD. gren and pps.mixed behaved similarly to the estimation of 𝑥𝑙𝑜𝑖 . 
gren exhibited a lower RMSD than pps.mean as the sample size increased, and the RMSD 

behaviour of pps.mixed with increasing sample size was between that of pps.mean and gren. 
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Fig. 5  Root-mean squared deviation (RMSD) of estimators of 𝑥𝐿𝑁−𝐼𝑁𝑇 for 1000 simulations 

each along increasing size of samples of 𝐴𝐿𝑁−𝐼𝑁𝑇 (resp. 𝐿𝐿𝑁−𝐼𝑁𝑇 for L.full) 

 

 

Simulations for 𝑰 

The results for the RMSDs of the estimators for 𝐼 are shown in Fig. 6. In this figure the RMSD 

was divided by the theoretical incidence rate 𝐼 to estimate the relative size of the error. The 

sample sizes ranged from 𝑛 = 500 to 𝑛 = 20000 patients in the simulated PPS. As expected, 

the RMSDs behave very similarly to the case of estimation of 𝑥𝑙𝑜𝑖 and 𝑥𝐿𝑁−𝐼𝑁𝑇 and the 

additional uncertainty in the estimation of 𝑃 did not change the general patterns for the 

RMSDs shown in Fig. 4 and Fig. 5 when compared to Fig. 6. 
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Fig. 6  Root-mean squared deviation (RMSD) of estimators of 𝐼 divided by theoretical 

incidence rate 𝐼 along increasing size of samples from a simulated PPS based on 1000 

simulations 

 

Simulations for 𝒙𝒍𝒐𝒔 

Results for the length of stay in days are shown in Fig. 7. Again we presented the RMSD of 

the estimators of 𝑥𝑙𝑜𝑠. We used the empirical distributions of the length of stay from the 

NIDEP2 and HAI-Net ICU datasets. 
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For the NIDEP2 distribution of lengths of stay, pps.median again had the highest RMSD and 

did not converge toward zero. pps.mean did not converge toward zero either but stabilized 

at a lower RMSD than pps.median. L.full again had the lowest RMSD and pps.mixed and gren 

also had comparably low RMSD for larger samples ( 𝑛 ≥ 5000). 

For the HAI-Net ICU distribution of length of stay, the previous picture with respect to 

pps.mean and pps.median was reversed. pps.mean had the highest RMSD and did not 

converge towards zero, and pps.median had a lower RMSD but also did not converge 

towards zero. For gren and L.full the simulation results were similar to those obtained with 

the NIDEP2 distribution of length of stay. The estimator pps.mixed had a high RMSD 

compared to the other estimators for small sample sizes where the pps.mean component 

was dominant. For larger sample sizes, it behaved similarly to L.full and gren. 

 

Fig. 7  Root-mean squared deviation (RMSD) of estimators of 𝑥𝑙𝑜𝑠 using 1000 simulations each 

along increasing size of samples of 𝐴𝑙𝑜𝑠 

 

Simulations for 𝑰𝒑𝒑 

For the incidence proportion of HAIs counted per admission, the RMSDs of the estimators 

are shown in Fig. 8 In this figure the RMSD was divided by the theoretical incidence 

proportion 𝐼𝑝𝑝to estimate the relative size of the error. Almost all the estimators behaved 

very similarly in terms of RMSD. pps.mean and pps.median were the only estimators with a 

significantly higher RMSD than the other estimators for the HAI-Net ICU distribution. In the 

case of the NIDEP2 distribution and pps.median, the errors in the estimation of 𝑥𝑙𝑜𝑖 and 𝑥𝑙𝑜𝑠 
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seemed to cancel out almost exactly, reducing the RMSD for 𝐼𝑝𝑝 to levels comparable to the 

other estimators. 

 

 

Fig. 8  Root-mean squared deviation (RMSD) of estimators of 𝐼𝑝𝑝 divided by theoretical 

incidence proportion 𝐼𝑝𝑝 per admission along growing number of samples from a simulated 

PPS based on 1000 simulations   

 

DISCUSSION 

We presented a method to estimate incidence from prevalence data available in a typical 

PPS setup. We used nonparametric estimators for length of stay and length of infection 

which exploit the monotonicity of 𝐴𝑙𝑜𝑠 and 𝐴𝑙𝑜𝑖 . By means of a simulation study, we 

compared these estimators to other estimators that have been applied in previous studies. 

The new gren estimator behaved consistently for different distributions, i.e. was more 

accurate with larger samples and in most cases was comparable to or better than the other 

estimators based on 𝐴. This was in contrast to pps.median, which generally did not converge 

to the true value. The estimator pps.mean did not perform overall as well as the gren 

estimator, but its variance for small sample sizes was lower. As expected, L.full performed 

better than or as well as all other estimators across all settings, but at the price of requiring 

knowledge of the full durations 𝐿 which are typically not available in a PPS. We finally 

proposed the mixed estimator pps.mixed as a good compromise between the low variability 
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of the pps.mean for smaller samples and the consistent behaviour of the new estimator gren 

for larger samples. Altogether, the incidence estimate based on a PPS can be improved by 

more than 40% of the theoretical value (in terms of RMSD), compared to other estimators 

from the literature for a large enough PPS (see Fig. 8). 

The new method presented in this article is a modification and update of the Rhame-

Sudderth formula and is applicable in the setup of modern PPSs. The Rhame-Sudderth 

formula was published in the 1980s and, to our knowledge there have only been few 

methodological contribution addressing the questions of validity of the formula on a 

theoretical level since its publication. Mandel and Fluss (23) have  proposed and studied 

incidence estimators, which generalize the Rhame-Sudderth,estimator but they depend on 

the use of the original Rhame-Sudderth prevalence definition and information about the 

total length of stay 𝐿𝑙𝑜𝑠 for all patients in the survey. There have been attempts to evaluate 

the Rhame-Sudderth formula (14, 24), but these shared the limitation of using 𝑃 instead of 𝑃𝑟ℎ𝑎𝑚𝑒 , as intended in the original Rhame-Sudderth formula. Few studies  distinguish 

between  𝑃 and 𝑃𝑟ℎ𝑎𝑚𝑒 and use the originally intended combination of prevalence and 

length of duration definitions. This often leads to the use of 𝑥𝐿𝑁−𝐼𝑁𝑇 as a proxy for length of 

infection 𝑥𝑙𝑜𝑖 (14, 24).  It was suggested that 𝑥𝐿𝑁−𝐼𝑁𝑇 was not a good proxy for average 

length of infection (13)  and instead some ad-hoc measure or external information could be 

used to estimate  average length of infection (9, 11-13). Most of the articles remained 

critical of their own results. The ECDC-coordinated PPS of healthcare-associated infections 

and antimicrobial use in European acute care hospitals included data from over 200 000 

patients across Europe and used the estimators pps.mean and pps.median (or more 

precisely a combination of these two) to estimate 𝑥𝐿𝑁−𝐼𝑁𝑇 stratified by participating country 

(1). Information on 𝑥𝑙𝑜𝑠 was often obtained from external data sources. In the analysis of 

the latest ECDC-coordinated PPSs in acute care hospitals and long-term care facilities ( 

2016-2017) (14) our proposed method has already been used for sensitivity analysis to 

compare with the estimator described above. European-level estimates were similar for the 

different estimators with few exceptions at individual country level. 

 The United States PPS coordinated by CDC (3) used stratification along factors thought to 

be predictive of the prevalence of HAIs. The estimators in (2) were based on medians of the 

durations-up-to-PPS similar to pps.median or external information and in (4) the original 

Rhame-Sudderth formula was used with the definition of prevalence 𝑃 instead of 𝑃𝑟ℎ𝑎𝑚𝑒 

and with a length-biased version of 𝑥𝐿𝑁−𝐼𝑁𝑇  ( i. e. 𝑙𝐿𝑁−𝐼𝑁𝑇), and a length-biased version of 𝑥𝑙𝑜𝑠  ( i. e. 𝑙𝑙𝑜𝑠).  

A main strength of our method is that we do not make any assumptions on the distributions 

of 𝑋𝑙𝑜𝑖 and 𝑋𝑙𝑜𝑠. Usually in a PPS we do not know the distribution of 𝑋𝑙𝑜𝑖 and 𝑋𝑙𝑜𝑠. This 

means that one criterion for selecting an estimator of 𝐼 or 𝐼𝑝𝑝 is that it should behave well 

irrespective of the form of the unknown distribution. This is a criterion which, among the 

estimators using only duration-up-to-PPS information, was only fulfilled be the proposed 

estimator gren and the mixed estimator pps.mixed for larger samples ( 𝑛 ≥ 500 ). This is 

supported not only by simulations, but also by theoretical considerations. Using only 

simulation studies to assess an estimator can be a source of error if the distributions on 

which the estimators are assessed differ significantly from the underlying distributions 

encountered in PPSs.  
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Our method has limitations. One is the requirement of a sufficiently large sample size to get 

an acceptable estimate. We took the sample size of 500 HAIs as a rule-of-thumb lower limit. 

It may be applied to smaller samples, but with a risk of lower precision. For a single 

medium-size hospital, repeated PPSs with aggregation of the results would need to be 

performed to reliably estimate the incidence of HAIs. Another limitation of our setup is that 

we counted multiple simultaneous or partially overlapping HAIs as one HAI. However, these 

in reality only comprise a small fraction of HAIs (1, 15)  and therefore can be neglected. In 

addition, many of the limitations mentioned in the original article by Rhame and Sudderth 

also apply in this updated version, in particular  the lack of explicit representation of 

outbreaks and the assumption that the risk that a patient acquires a HAI is independent of other patients’ status. The new estimators gren and pps.mixed applied to the length of stay 

are sensitive to week day patterns in admissions and discharges (data not shown). 

Typically, for larger PPSs, data collection takes place on different weekdays for different 

hospitals or even different wards in the same hospital (1), thus mitigating the influence of 

these patterns on the estimates. Another issue is that patients on their first day of 

admission are sometimes underrepresented due to the PPS protocol, when e. g. only 

patients admitted before a fixed time are included in the PPS. The new estimators are based 

on the monotonicity assumption for the distribution of 𝐴𝑙𝑜𝑠, which is violated in this 

situation. One solution can be to let A denote full days of hospital stay and ignore the 

patients admitted on the date of the survey for the estimates of average length of stay, but 

include them in the estimate of the prevalence. Similar problems appear to a lesser extent 

for the first day of HAI. Other factors that need to be taken into account include the 

consistency of the application of case definitions for HAIs , and the representativeness of 

the hospital sample. 

In conclusion, the proposed gren estimator and the combined estimator pps.mixed provide 

better estimates of the length of infection across a range of simulation settings when 

compared to previously used estimators and, in contrast to these, are grounded in theory. 

The simulations also serve as a guide of the sample size to include in a PPS required to 

estimate incidence. The method is shared and easily applicable with the help of the R 

package prevtoinc. 
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Abbreviations 

CDC – Centers for Disease Control and Prevention 

ECDC – European for Disease Control and Prevention 

HAI – healthcare-associated infection 

HAI-Net ICU – European surveillance of HAIs in intensive care units 

NIDEP2  –  second study of nosocomial infections in Germany (Nosokomiale Infektionen in  

        Deutschland, Erfassung und Prävention) 

PPS –  point-prevalence survey 

RMSD – root mean squared deviation 

 

 

References 
1. European Centre for Disease Prevention and Control. Point prevalence survey of 

healthcare-associated infections and antimicrobial use in European acute care hospitals. 

ECDC, Stockholm. 2013. http://ecdc.europa.eu/en/publications/Publications/healthcare-

associated-infections-antimicrobial-use-PPS.pdf. 

2. Suetens C, Latour K, Karki T, et al. Prevalence of healthcare-associated infections, 

estimated incidence and composite antimicrobial resistance index in acute care hospitals 

and long-term care facilities: results from two European point prevalence surveys, 2016 to 

2017. Euro Surveill. 2018;23(46). doi:10.2807/1560-7917.ES.2018.23.46.1800516 

3. Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of 

health care-associated infections. N Engl J Med. 2014;370(13):1198-208. 

doi:10.1056/NEJMoa1306801 

4. Magill SS, O'Leary E, Janelle SJ, et al. Changes in Prevalence of Health Care-Associated 

Infections in U.S. Hospitals. N Engl J Med. 2018;379(18):1732-44. 

doi:10.1056/NEJMoa1801550 

5. Cassini A, Plachouras D, Eckmanns T, et al. Burden of Six Healthcare-Associated 

Infections on European Population Health: Estimating Incidence-Based Disability-Adjusted 

Life Years through a Population Prevalence-Based Modelling Study. PLoS Med. 

2016;13(10):e1002150. doi:10.1371/journal.pmed.1002150 

6. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. ed. Philadelphia, 

Pa.: Lippincott Williams & Wilkins; 2008. 

7. Rhame FS, Sudderth WD. Incidence and prevalence as used in the analysis of the 

occurrence of nosocomial infections. Am J Epidemiol. 1981;113(1):1-11.  

8. Freeman J, Hutchison GB. Prevalence, incidence and duration. Am J Epidemiol. 

1980;112(5):707-23.  

9. Berthelot P, Garnier M, Fascia P, et al. Conversion of prevalence survey data on 

nosocomial infections to incidence estimates: a simplified tool for surveillance? Infect 

Control Hosp Epidemiol. 2007;28(5):633-6. doi:10.1086/513536 

10. Gastmeier P, Brauer H, Sohr D, et al. Converting incidence and prevalence data of 

nosocomial infections: results from eight hospitals. Infect Control Hosp Epidemiol. 

2001;22(1):31-4. doi:10.1086/501821 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/554725doi: bioRxiv preprint 

https://doi.org/10.1101/554725


19 

 

11. Graves N, Nicholls TM, Wong CG, Morris AJ. The prevalence and estimates of the 

cumulative incidence of hospital-acquired infections among patients admitted to Auckland 

District Health Board Hospitals in New Zealand. Infect Control Hosp Epidemiol. 

2003;24(1):56-61. doi:10.1086/502116 

12. Kanerva M, Ollgren J, Virtanen MJ, Lyytikainen O, Prevalence Survey Study G. 

Estimating the annual burden of health care-associated infections in Finnish adult acute 

care hospitals. Am J Infect Control. 2009;37(3):227-30. doi:10.1016/j.ajic.2008.07.004 

13. King C, Aylin P, Holmes A. Converting incidence and prevalence data: an update to 

the rule. Infect Control Hosp Epidemiol. 2014;35(11):1432-3. doi:10.1086/678435 

14. Meijs AP, Ferreira JA, SC DEG, Vos MC, Koek MB. Incidence of surgical site infections 

cannot be derived reliably from point prevalence survey data in Dutch hospitals. Epidemiol 

Infect. 2017;145(5):970-80. doi:10.1017/S0950268816003162 

15. Gastmeier P, Brauer H, Forster D, Dietz E, Daschner F, Ruden H. A quality 

management project in 8 selected hospitals to reduce nosocomial infections: a prospective, 

controlled study. Infect Control Hosp Epidemiol. 2002;23(2):91-7. doi:10.1086/502013 

16. European Centre for Disease Prevention and Control. European surveillance of 

healthcare-associated infections in intensive care units – HAI-Net ICU protocol, version 

1.02. Stockholm. 2015. http://ecdc.europa.eu/en/publications/Publications/healthcare-

associated-infections-HAI-ICU-protocol.pdf  

17. European Centre for Disease Prevention and Control. Healthcare-associated 

infections acquired in intensive care units. In: ECDC. Annual epidemiological report for 

2015. ECDC, Stockholm. 2017. 

https://ecdc.europa.eu/sites/portal/files/documents/AER_for_2015-healthcare-

associated-infections_0.pdf. 

18. Arratia R, Goldstein L, Kochman F. Size bias for one and all. In: ArXiv E-Prints. 2013. 

https://arxiv.org/abs/1308.2729. 

19. Jankowski HK, Wellner JA. Estimation of a discrete monotone distribution. Electron J 

Stat. 2009;3:1567-605. doi:10.1214/09-EJS526 

20. Haviv M. Queues - a course in queuing theory. New York: Springer; 2013. 

21. R Development Core Team. R: A language and environment for statistical computing. 

R  Foundation for Statistical Computing, Vienna, Austria; 2018. 

22. Freeman J, McGowan JE, Jr. Day-specific incidence of nosocomial infection estimated 

from a prevalence survey. Am J Epidemiol. 1981;114(6):888-901.  

23. Mandel M, Fluss R. Nonparametric estimation of the probability of illness in the 

illness-death model under cross-sectional sampling. Biometrika. 2009;96(4):861-72. 

doi:10.1093/biomet/asp046 

24. Rossello-Urgell J, Rodriguez-Pla A. Behavior of cross-sectional surveys in the hospital 

setting: a simulation model. Infect Control Hosp Epidemiol. 2005;26(4):362-8. 

doi:10.1086/502553 

 

 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/554725doi: bioRxiv preprint 

https://doi.org/10.1101/554725


 

1 

 

Supplement: From prevalence to incidence - a new approach 

in the hospital setting 

S1: Mathematical model and technical details 

Derivation of the conversion formula 

The theoretical model used is that of a discrete renewal process (see Chapter 2, [1] for an 

introduction to renewal theory). Similar to Rhame and Sudderth [2] we see a single bed as 

the basic unit to be simulated. Beds are assumed to be occupied sequentially by patients, 

which can develop HAIs on each day of stay. The evolution of patients/infections per bed 

are assumed to be statistically independent. We assume that time 𝑡 is progressing in 

patient-days. 

We use the framework of an alternating renewal process between HAI / non-HAI. Theorem 

4.8 from [3] gives us the relation 𝑃 = 𝔼(𝑋𝑙𝑜𝑖)𝔼(𝑋no infection) + 𝔼(𝑋𝑙𝑜𝑖), 
where 𝑋no infection is the length of occupation of a bed without any infection ( the time in 

between two infections) and 𝔼 will denote the expected value in the following . In our 

model we assume that the probability of acquiring a HAI on a given day is 𝐼 and therefore 

one can see that in our model 𝑋no infection follows a geometric distribution with parameter 𝐼. 

This means 𝔼(𝑋no infection) = 1/𝐼. It follows: 𝑃 = 𝔼(𝑋𝑙𝑜𝑖)1𝐼 + 𝔼(𝑋𝑙𝑜𝑖) 

After rearrangement this gives: 𝐼 = 𝑃1 − 𝑃 1𝔼(𝑋𝑙𝑜𝑖) = 𝑃1 − 𝑃 1𝑥𝑙𝑜𝑖 . 
To get the version per patient we first introduce the notation 𝑋los w/o HAI for the length of 

stay of a patient only counting days without a HAI. We can then write: 𝐼𝑝𝑝 = 𝔼(1 − (1 − 𝐼)𝑋los w/o HAI) ≈ 𝐼𝔼(𝑋los w/o HAI), 
where the approximation is valid if 𝐼𝔼(𝑋los w/o HAI) is small. 

Finally, we note under the assumption that 𝑋𝑙𝑜𝑠 is independent of whether or not an 

infection occured: 𝔼(𝑋los w/o HAI) = 𝔼(𝑋𝑙𝑜𝑠(1 − 𝑃)), 
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as (1 − 𝑃) represents the average proportion of time of stay without a HAI present. 

A proof of this is based on the following equalities, where for the distribution of limits Slutsky’s theorem is used: 𝔼(𝑋los w/o HAI) = lim𝑡→∞ 𝑁days w/o HAI(𝑡)𝑁𝑝𝑎𝑡(𝑡) = lim𝑡→∞ 𝑁days w/o HAI(𝑡)𝑡 lim𝑡→∞ 𝑡𝑁𝑝𝑎𝑡(𝑡) = (1 − 𝑃) ⋅ 𝔼(𝑋𝑙𝑜𝑠), 
where 𝑁𝑝𝑎𝑡(𝑡) is the number of patients in the bed up to time 𝑡 and 𝑁days w/o HAI(𝑡) denotes 

the number of patients days without HAI in the bed up to time 𝑡. 

Putting together the above results gives the final conversion formula: 𝐼𝑝𝑝 = 𝑃𝔼(𝑋𝑙𝑜𝑖) 𝔼(𝑋𝑙𝑜𝑠) = 𝑃𝑥𝑙𝑜𝑖 𝑥𝑙𝑜𝑠. 
All the theoretical arguments can be repeated by replacing 𝑋𝑙𝑜𝑖 by 𝑋𝐿𝑁−𝐼𝑁𝑇 and this would 

lead to the original Rhame-Sudderth formula. We note that 𝑃 is then defined as the 

proportion of time a bed is occupied by a person who had or has a HAI, which is the 

definition of 𝑃𝑟ℎ𝑎𝑚𝑒  from the main text. 

Asymptotics of gren estimators 

In our setting the gren estimators of the average durations will exhibit asymptotic 

normality. The proofs are based on the delta method and Prop. 3.4 and Prop. 3.6 from [4]. 

One gets √𝑛(𝑥𝑔𝑟𝑒𝑛 − 𝑥𝑙𝑜𝑖) ⇒𝑛→∞ 𝒩(0, 𝛴𝑔𝑟𝑒𝑛) 

with 𝛴𝑔𝑟𝑒𝑛 = 𝑥𝑙𝑜𝑖31−1/𝑥𝑙𝑜𝑖 where ⇒ denotes convergence in distribution, 𝑛 the sample size and 𝒩(𝜇, 𝛴) denotes a normal distribution with mean 𝜇 and covariance 𝛴. 

As pointed out in [4] the asymptotics of the Grenander estimator for a discrete distribution 

are the same as for one based on the empirical estimator, i. e. taking just the empirically 

observed proportions as an estimate for the distribution of 𝐴. To visualize the relation 

between asymptotic results and simulations, we take 𝑥𝑙𝑜𝑖 as an example. We call the 

estimator based on the empirical proportions 𝑥𝑙𝑜𝑖,𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙. In Fig. S1 we compare the 

simulated standard deviations for 𝑥𝑙𝑜𝑖,𝑔𝑟𝑒𝑛, 𝑥𝑙𝑜𝑖,𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙  and the asymptotical 

approximation of the standard deviation √𝛴𝑔𝑟𝑒𝑛. As predicted by theory, the standard 

deviations of the estimators approach the asymptotic value and also �̂�𝑙𝑜𝑖,𝑔𝑟𝑒𝑛 systematically 

has the lowest standard deviation. 
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Fig. S1 Standard deviation of estimators of for 𝑥𝑙𝑜𝑖,𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 and 𝑥𝑙𝑜𝑖,𝑔𝑟𝑒𝑛 based on 1000 

simulations each along growing number of samples of 𝐴𝑙𝑜𝑖 compared to approximation of 

standard deviation based on asymptotics ( in green ) 

S2: Description and characteristics of data sources 

NIDEP2 

As a data source for our simulations we used the NIDEP2 study [5]. We used data from eight 

German hospitals, where incidence and prevalence of HAIs were measured on a daily basis 

during two eight-week periods. The second monitoring period began after a randomly 

assigned intervention to four of the hospitals in which a range of additional infection 

prevention and control measures was introduced. A total of 7568 patients participated in 

the NIDEP2 study, among whom 487 had at least one HAI. We counted multiple 

simultaneous or partially overlapping periods of HAI as one HAI. For the generation of the 
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empirical NIDEP2-distribution of 𝑋𝑙𝑜𝑖, we used the incidence data up to day 30 (𝑛ℎ𝑎𝑖 = 245) 

for each period (as this corresponded to the point where the influence of the cutoff of the 

measurement after each incidence period was not discernible anymore). Infections already 

present on the first day of each period were excluded because there was no information on 

their duration before the start of the surveillance period. 

HAI-Net ICU 

As a second data source we used data from the European surveillance of HAIs in intensive 

care units (HAI-Net ICU) [6,7]. In 2015, a total of 141 955 patients from 1 365 intensive care 

units (ICUs) from 11 European Union Member States were included. Among these patients, 

11 788 developed at least one HAI during their stay [7]. In the HAI-Net ICU dataset, the 

onset of the HAI and the date of discharge were available, but not any information on the 

end of the HAI, so we calculated 𝑋𝐿𝑁−𝐼𝑁𝑇 and used the original version of the Rhame-

Sudderth formula to calculate estimates of 𝑥𝐿𝑁−𝐼𝑁𝑇. This meant that we also used 𝑃𝑟ℎ𝑎𝑚𝑒 

as the measure of prevalence as we could not estimate 𝑃 without the information at the end 

of the HAI. Based on the ICU data, 𝑃𝑟ℎ𝑎𝑚𝑒  was around 22% for most of the year with a dip 

around the beginning/end of the year, which could be due to reporting practices. A further 

modification was to discount the first two days of stay in the ICU. According to the HAI-Net 

ICU protocol, infections are only considered ICU-acquired if they develop at least 48 hours 

after admission to the ICU [6]. All the estimators were modified accordingly. 

S3: Specification of simulation parameters 

We measured the performance of the methods by repeating the simulation 1000 times for 

different values of the sample size n. With this we estimated the bias (inside the model), 

standard deviation and RMSD of the estimators for 𝑥𝑙𝑜𝑖 and for the case of the HAI-Net ICU 

distribution 𝑥𝐿𝑁−𝐼𝑁𝑇. The theoretical values for 𝑥𝑙𝑜𝑖 were the following: 𝑥𝑙𝑜𝑖,𝑔𝑒𝑜𝑚 = 8 for the 

geometric distribution, 𝑥𝑙𝑜𝑖,𝑛𝑖𝑑𝑒𝑝2 = 9.28 and 𝑥𝑙𝑜𝑖,𝑝𝑜𝑖𝑠 = 8. In a next step, we assessed the 

performance of the methods for estimating I. We used a setup with a theoretical 𝑃 = 0.05. 

This meant that each simulated patient had a probability of 0.05 having an active HAI on the 

day of the PPS. Taking this theoretical prevalence as given, we generated simulated PPS 

data with associated 𝐿𝑙𝑜𝑖 and 𝐴𝑙𝑜𝑖 for each patient with a HAI. For the HAI-Net ICU data, the 

same simulations were performed with 𝑋𝐿𝑁−𝐼𝑁𝑇 and 𝑃𝑟ℎ𝑎𝑚𝑒 = 0.20 in place of 𝑋𝑙𝑜𝑖 and 𝑃. 

The average number of days from first HAI to discharge in the distribution was 𝑥𝐿𝑁−𝐼𝑁𝑇,𝑖𝑐𝑢 = 18.38. The theoretical incidence rate in the simulated models was 𝐼 = 0.0066 

(6.6 HAIs per 1000 patient-days at risk) for the Poisson and geometric distribution, 𝐼 = 0.0066 (6.6 HAIs per 1000 patient-days at risk), 𝐼 = 0.0057 (5.7 HAIs per 1000 patient-

days at risk) for the NIDEP2 distribution and 𝐼 = 0.0136 (13.6 HAIs per 1000 patient-days 

at risk) for the HAI-Net ICU distribution. These incidence figures should not be confused 

with the incidence that could be calculated from the original data sets. The results that we 

used were based on a fictitious fixed prevalence used for the simulations. We repeated 

these simulations along increasing sample sizes (numbers of patients) 𝑛 with 500 

simulations for each 𝑛 to estimate the RMSD. To assess the quality of estimation of the 

length of stays, we also performed a simulation based on the empirical distribution of 
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lengths of stay in the NIDEP2 and HAI-Net ICU datasets. The procedure was analogous to 

the case of the length of infection. The mean values of the length of stay for the two 

distributions were: 𝑥𝑙𝑜𝑠,𝑖𝑐𝑢 = 8.44 (discounting the first two days) and 𝑥𝑙𝑜𝑠,𝑛𝑖𝑑𝑒𝑝2 = 11.01. 

Finally, we assessed the estimators for 𝐼𝑝𝑝 by combining the distributions of length of stay 

and length of infection (or length of stay after infection) based on the NIDEP2 and HAI-Net 

ICU data under the assumption that the product of the marginal distributions of these 

quantities is a good approximation of the joint distribution. We used the same parameters 

and simulation sizes as for the estimation of I; the theoretical 𝐼𝑝𝑝 = 0.062 for the 

simulations from NIDEP2 data and 𝐼𝑝𝑝 = 0.027 from HAI-Net ICU data. 

S4: Bias and standard deviation of the estimators for 𝑥𝑙𝑜𝑖 

 

Fig. S2 Bias of estimators (inside the model) of 𝑥𝑙𝑜𝑖 for 1000 simulations each along growing 

number of samples of 𝐴𝑙𝑜𝑖 
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Fig. S3 Standard deviation of estimators of 𝑥𝑙𝑜𝑖 for 1000 simulations each along growing 

number of samples of 𝐴𝑙𝑜𝑖 
  

 

S5: Boxplots for simulations of estimates for 𝑥𝑙𝑜𝑖, 𝑥𝐿𝑁−𝐼𝑁𝑇 and 𝑥𝑙𝑜𝑠 

In this section, we present boxplots of the estimates for 𝑥𝑙𝑜𝑖 , 𝑥𝐿𝑁−𝐼𝑁𝑇 and 𝑥𝑙𝑜𝑠. The boxplots 

are specified in the following way: The lower and upper hinges correspond to the first and 

third quartiles. The upper whisker extends from the hinge to the largest value no further 

than 1.5 ⋅ IQR away from the hinge (IQR being the inter-quartile range). The lower whisker 

extends from the hinge to the smallest value at most 1.5 ⋅ IQR away from the hinge. Data 

points beyond the end of the whiskers are plotted individually. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/554725doi: bioRxiv preprint 

https://doi.org/10.1101/554725


 

7 

 

 

Fig. S4 Boxplots of estimates of 𝑥𝑙𝑜𝑖 for 1000 simulations each along growing number of 

samples of 𝐴𝑙𝑜𝑖 
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Fig. S5 Boxplots of estimates of 𝑥𝐿𝑁−𝐼𝑁𝑇 for 1000 simulations each along growing number of 

samples of 𝐴𝐿𝑁−𝐼𝑁𝑇 
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Fig. S6 Boxplot of estimates of 𝑥𝑙𝑜𝑠 for 1000 simulations each along growing number of 

samples of 𝐴𝑙𝑜𝑠 
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