
 
 

Pancreas patch-seq links physiologic dysfunction in diabetes to 
single-cell transcriptomic phenotypes 

 
Joan Camunas-Soler1,2,8, Xiaoqing Dai3,4,8, Yan Hang5, Austin Bautista3,4, James Lyon4, Kunimasa 
Suzuki4, Seung K Kim5,6,*, Stephen R Quake1,2,6,7,8,*, Patrick E MacDonald3,4,8,* 

 

1 Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. 
2 Chan Zuckerberg Biohub, San Francisco, CA 94518, USA. 
3Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada 
4Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada 
5Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, 
USA 
6Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA 
7 Department of Applied Physics, Stanford University, Stanford, CA 94305, USA 
8 These authors contributed equally 
 

* To whom correspondence should be addressed: Seung K Kim, seungkim@stanford.edu; Stephen R Quake; 
quake@stanford.edu; Patrick E MacDonald; pmacdonald@ualberta.ca 
 
Key findings: 

• Pancreas patch-seq provides a single-cell survey of function-transcriptome pairing in 1,369 islet 
cells from donors with and without diabetes 

• Expression of a specific subset of genes predicts b-cell electrophysiology in transcriptome-
function networks. 

• Compromised b-cell function in T2D correlates with altered ETV1 expression and inflammatory 
pathways 

• Functional heterogeneity in a-cells maps to ER stress and islet lineage markers  

• Application of patch-seq to cells from rare cryopreserved islets from donors with T1D 

 
Summary 
 

Pancreatic islet cells regulate glucose homeostasis through insulin and glucagon secretion; dysfunction of 

these cells leads to severe diseases like diabetes. Prior single-cell transcriptome studies have shown 

heterogeneous gene expression in major islet cell-types; however it remains challenging to reconcile this 

transcriptomic heterogeneity with observed islet cell functional variation. Here we achieved 

electrophysiological profiling and single-cell RNA sequencing in the same islet cell (pancreas patch-seq) 

thereby linking transcriptomic phenotypes to physiologic properties. We collected 1,369 cells from the 

pancreas of donors with or without diabetes and assessed function-gene expression networks. We 

identified a set of genes and pathways that drive functional heterogeneity in b-cells and used these to 

predict b-cell electrophysiology. We also report specific transcriptional programs that correlate with 

dysfunction in type 2 diabetes (T2D) and extend this approach to cryopreserved cells from donors with 

type 1 diabetes (T1D), generating a valuable resource for understanding islet cell heterogeneity in health 
and disease.  
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Introduction 
Pancreatic islet cells control metabolism by releasing key hormones into the bloodstream via 

regulated exocytosis (Roscioni et al., 2016). For example, b-cells and a-cells respond to dynamic glucose 

levels by mounting electrical responses that culminate in regulated exocytosis of the two principal 

systemic glucoregulatory hormones, insulin and glucagon. These cells, especially insulin-producing b-

cells, are long-known to show functional heterogeneity (Pipeleers, 1992). For instance, variations in b-cell 

insulin release, intracellular Ca2+ flux and electrophysiological activity have been described (Heimberg et 

al., 1993; Johnston et al., 2016; Salomon and Meda, 1986; Stefan et al., 1987; Zhang et al., 2003). 

Impaired b-cell function is a hallmark of the initial stages of type 2 diabetes (T2D) (Alejandro et al., 2015; 

Ashcroft and Rorsman, 2012; Kahn et al., 2006). Moreover, evidence suggests that b-cell function is 

regulated by paracrine action of other islet cell-types like g- and d-cells, although the mechanisms 

underlying this intra-islet regulation remain largely unresolved. 

In parallel with known functional heterogeneity within islet cells, recent advances in single-cell 
technologies are uncovering molecular diversity across and within pancreatic cell-types at unprecedented 

molecular resolution (Tritschler et al., 2017). Single-cell RNA sequencing (scRNAseq) shows that the 

pancreas is transcriptionally diverse, revealing variable transcript enrichment across different islet cell-

types and subpopulations (Baron et al., 2016; Enge et al., 2017; Muraro et al., 2016; Segerstolpe et al., 

2016). This heterogeneity has been further refined through identification of surface markers and mass-

spectrometry signatures (Bader et al., 2016; van der Meulen et al., 2017; Wang et al., 2016a). However, 

the ability to directly attribute islet cell molecular heterogeneity to physiologic properties, and functional 

deficits in disease, remains limited (Wang and Kaestner, 2018). For instance, the contribution of genes 
with altered expression in T2D (Segerstolpe et al., 2016) to functional consequences in islets remains 

unclear, and major gaps persist in our mechanistic understanding of T2D ‘risk’ candidate genes identified 

by GWAS (Mahajan et al., 2018; Prasad and Groop, 2016; Tritschler et al., 2017).  

To address such limitations, we combined whole-cell patch-clamp measurements and scRNAseq 

(patch-seq) in dispersed islet cells, a method previously developed for neuronal studies (Cadwell et al., 

2016; Földy et al., 2016; Fuzik et al., 2016). We collected 1,021 patch-seq cells from donors with no 

diabetes (ND) or from subjects with T2D, most of short duration, and dissected functional-gene 

expression relationships across islet cell-types using single-cell transcriptomes. Our data identifies genes 

and pathways driving functional heterogeneity in b-cells. We discovered a gene subset that predicts 

multiple b-cell functional phenotypes, and uncovered pathways driving increased exocytosis and ion-

channel activity. Investigation of cells from T2D donors shows that key transcriptional regulators are 

enriched in T2D b-cells, in an apparent attempt to increase insulin secretion, but instead become drivers 

of b-cell dysfunction. Analysis of patch-seq alpha cells revealed heterogeneous expression of islet 

transcription factors and ER-stress genes that correlates to their electrophysiological profile. Finally, we 
extend this approach to 348 cells from rare islets of donors with T1D stored by cryopreservation, where 

we obtained profiles from a-, g-, d-, duct, and surviving b-cells. This work represents the first attempt to 
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create a map of islet cell function-transcriptome pairing at the single-cell level and provides a valuable 

resource for exploring islet physiological and genetic dysfunction in diabetes. 

 

Results 
 

Pancreas patch-seq to simultaneously assess islet cell electrophysiology and transcriptome 
 

To achieve patch-clamp followed by scRNAseq (patch-seq) in individual human islet cells, we initially 

isolated cells from 28 donors, including 18 with no diabetes (ND), 7 with type 2 diabetes (T2D), and 3 

additional donors (Supp Table S1). We established pancreas patch-seq as a two-step process: (i) we 

performed electrophysiological measurements using standard whole-cell patch-clamp, and (ii) within 5 

min from “break-in” we collected cellular content using a larger secondary pipette filled with lysis buffer 

(Fig 1A, Methods). This allowed intracellular access for whole-cell recording followed by recovery of full-
length transcriptomes using SmartSeq2 that were sequenced to an average depth of 1-2 million reads 

(Supp Fig 1, Methods). A total of 1,021 cells (80%) passed quality control for both electrophysiology and 

sequencing, and were classified into major cell types based on the expression of key marker genes in a 

tSNE projection (Fig 1B, Methods). We obtained representatives of all major islet cell types (a-, b-, d-, 

and g-cells), and non-islet types such as acinar cells (Fig 1C,D). For each cell we measured parameters 

representing cell size, exocytosis, Na+ channel currents, and Ca2+ channel currents (Fig 1E,F). In this 

way, we obtained a broad survey of electrophysiological activity of all major islet cell-types in both ND and 

T2D settings (Supp Fig 2). In addition to expected cell-type differences in size measured by whole-cell 

capacitance (Fig 1C,F), these data demonstrate substantial variation in exocytosis and channel activity in 

different pancreatic cell types (Supp Fig 2).  

To rigorously assess the robustness of our pancreas patch-seq pipeline, we also collected an 
additional 3,518 cells by FACS for scRNAseq without patch clamping from 14 of these donors (8 ND, 6 

T2D; Supp Fig 1 and Methods). The transcriptomes of cells after patch-seq or FACS-purification from the 

same donors led to comparable quality metrics (Supp Fig 3). While we observed a difference in the 

number of genes with detectable transcript, the values from cells after patch-seq or FACS were within the 

range of previous datasets (Supp Fig 3). Analysis of genes required to maintain fundamental cellular 

functions (hereafter, ‘housekeeping’), islet identity, and immediate early genes (IEG) showed that most 

differences are driven by (i) varying sensitivity to genes expressed at low levels, and (ii) varying 
expression of stress-response genes likely reflecting unavoidable steps like islet shipping and dispersion 

(Supp Fig 3). Moreover, we found that with longer islet culture, the initial increase in IEG transcripts 

decreased, while transcripts encoding islet-specific genes increased (Supp Fig 4). Overall, gene 

expression in patch-clamped cells was comparable to prior datasets (Segerstolpe et al., 2016), showing a 

high number of islet-specific transcripts and low IEG activation (Supp Fig 3). Finally, patch-seq itself did 

not appear to impact gene expression since tSNE data plots from cells collected without whole-cell patch-

clamp, overlapped with the patch-clamped cells (Supp Fig 4). 
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Pancreas patch-seq links transcriptional and functional heterogeneity of b-cells  
 

We applied the patch-seq approach to find genes associated with electrical and exocytotic function in 

b-cells, where the electrophysiological properties cluster by ‘functional group’ (exocytosis, Ca2+ and Na+ 

currents) and are uncorrelated with other parameters (Fig 2A; Supp Fig 5). We first correlated the 

transcriptome of b-cells to total exocytosis, which is representative of the total secretory capacity of a b-

cell under stimulatory glucose levels, and a key indicator of b-cell function and dysfunction in T2D 

(Ferdaoussi et al., 2015; Gembal et al., 1992). In this way, we found genes positively or negatively 

associated with b-cell secretory capacity (Fig 2B). Among top correlates, we found several genes linked 

to pathways thought to regulate insulin secretion, including b-cell transcription factors (MAFA, ETV1), 

molecules associated with insulin granules (SLC30A8, VAMP2, SCG2, INS), metabolic enzymes (PDK4, 

PDHA1, GYG1), and ion channels (ABCC9, KCNH2, KCNMB2, NALCN) including the L-type Ca2+ 

channel encoded by CACNA1C (Rorsman and Braun, 2013; Lu et al., 2002; Ait-Lounis et al., 2010; 

Zhang et al., 2005; Chimienti et al., 2004). Gene set enrichment analysis (GSEA) using correlation scores 
confirmed many of these pathways and revealed additional enriched categories, such as neuronal 

regulators, transcription factors, and regulators of cell-polarity or stress (Fig 2C; Supp Fig 5). Islet 

transcription factors with weaker but significant association to exocytosis included PAX6, FOXO1 and 

NKX6-1 (Supp Fig 5).  

The majority of genes whose expression correlated significantly with b-cell exocytosis are islet-

specific and also included candidate T2D risk genes like YWHAG (Fernandez-Tajes et al., 2018). Top 

gene correlates to exocytosis also included regulators of oxidation and detoxification that could mitigate 

T2D-associated stress (Otter and Lammert, 2016), like glutathione peroxidase and transferases (GPX3, 

GSTK1 and GSTA4: Supp. Table S2). We integrated these results into a map that combined correlations 

of transcript levels with four exocytosis measures (early, total, late, and normalized to Ca2+; Fig 2D), 
permitting visualization and analysis of gene expression significantly correlated with glucose-dependent 

insulin secretion in b-cells.  

This analysis nominated multiple genes - without known roles in b-cells - as candidate regulators of 

physiological function, including OGDHL, FAM159B, TSPAN1, RGS9 and GYG1. Prior studies have 

linked OGDHL to metabolism, while FAM159B and TSPAN1 encode membrane proteins, and RGS9 

specifies a regulator of G-protein signalling (Bunik et al., 2008; Danielsson et al., 2014; Uhlen et al., 

2015). To test our predictions, we performed siRNA knock-down followed by patch-clamp for this set of 

genes in islets from an additional 8 ND donors (Supp Table S3; Fig 2E). Knockdown of each gene, 

confirmed by qPCR (Supp Table S4), was followed by electrophysiological characterization at 10 mM 

glucose and insulin immunostaining to confirm cell-type. In 4/4 cases of genes positively correlated to 

exocytosis (OGDHL, FAM159B, TSPAN1 and RGS9), we observed significant reduction of the exocytotic 
responses after knock-down (Fig 2E). By contrast, knock-down of GYG1, whose transcript levels are 

anticorrelated with exocytosis, did not lead to significant changes of exocytosis, possibly reflecting that b-
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cell activity is already maximally-stimulated at these high-glucose conditions. Together, these data show 

that patch-seq analysis robustly identified unsuspected genetic regulators of human b-cell physiology. 

 

Patch-seq gene expression networks that predict b-cell electrophysiological phenotypes  
 

To obtain further insight about genes linked by patch-seq to b-cell excitability, we extended our 

analysis to additional electrophysiological parameters (Ca2+ currents, Na+ currents), and selected 

transcripts showing consistent positive or negative correlations to multiple parameters as likely regulators 

of b-cell function (Fig 3A). This analysis identified several key genes, including genes previously 

associated with b-cell transcriptional heterogeneity (Avrahami et al., 2017; Dorrell et al., 2016; 

Segerstolpe et al., 2016; Tritschler et al., 2017). For instance, we observed transcripts encoding retinol 

binding protein (RBP4) correlated negatively with cell size, Na+ currents and total exocytosis, while 

transcripts encoding the b-cell surface protein FAM159B correlated positively to exocytosis, Ca2+ entry 

and Na+ currents. A tSNE projection using these highly correlated genes shows a gradient of functional 

measures across b-cells that overlaps with patterns of gene expression (Fig 3B). To understand further 

how genetic pathways drive each major group of physiological function (exocytosis, Ca2+ currents, and 

Na+ currents), we repeated GSEA on their averaged correlation scores (Supp. Fig 6). Results for overall 

exocytosis are consistent with those reported above (Fig. 2C); by contrast, GSEA further identified that 

Na+ and Ca2+ currents are linked to pathways related to increased excitability and circadian rhythms 
respectively, consistent with prior studies (Perelis et al., 2015). Several of the observed pathways 

identified by GSEA on averaged correlation scores also overlap with those recently implicated in islet 

dysfunction in T2D using genomic data (Fernandez-Tajes et al., 2018) 

 

We then asked whether genes that correlate to multiple groups of physiological function (“functional 

groups”) could be used to develop predictive algorithms that link transcriptional signatures to b-cell 

function. To do so, we generated a network of genes with significant correlation to more than one 

functional group (e.g. Ca2+ and exocytosis), and selected those with highest median expression (Fig 3C, 
Supp Table S5; Supp Material S1). This list of highly-connected genes, that we termed our Predictive 

Set (PS) contains genes: (i) previously linked to b-cell excitability, (ii) with heterogenous expression in b-

cell subpopulations and in T2D (FFAR4, FXYD2, ID4), and (iii) with unknown function in b-cells (Supp 
Table S5). We then attempted to predict the measured electrophysiology of each cell from the average 

values of its nearest neighbours (NN) in PS gene expression (N=484 genes, k-NN with 5 neighbors) (see 

Methods). We obtained significant correlations between the experimentally measured patch-clamp 

parameters and the predictions from the k-NN model (Fig 3D; Supp Fig 7, black). We compared the 

performance of PS genes to a list of randomly selected genes of equivalent expression in b-cells 

(N=10,000 permutations), and found that the PS genes performed significantly better for all parameters 

(Fig 3E). We also tested our model by comparing its predictive power to that obtained using the top 
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genes correlated to each functional group; finding that PS genes showed a consistent performance 

across all measured parameters, whereas group-specific gene sets only performed well for their subset of 

parameters (Fig 3E). Finally, we validated the predictive power of PS genes with a ‘test’ set of data 

including gene expression and functional parameters of cells withheld from the analysis that generated 
the PS gene set. This analysis demonstrated appropriate recovery of significant correlations for 5 of the 

measured functional parameters (Fig 3D; Supp Fig 7, red, and Fig 3E). Thus, patch-seq and network 

analysis combined with machine learning generated unprecedented algorithms that reliably link gene 

expression to global b-cell function. 

 

Markers of b-cell heterogeneity correlate to b-cell excitability 
 

Within the identified ‘PS gene set’ we found that transcripts encoding RBP4 are significantly 

correlated with b-cell functional heterogeneity. Prior studies have noted heterogeneous expression of 

RBP4 in b-cell subsets, but did not establish direct links to functional heterogeneity (Baron et al., 2016; 

Dorrell et al., 2016; Rui et al., 2017; Segerstolpe et al., 2016). Other studies suggest that RBP4 is an 

adipokine with roles in homeostatic regulation of metabolism (Broch et al., 2007; Tritschler et al., 2017). 

We observe that RBP4 transcript levels have significant correlation with multiple b-cell functional 

phenotypes; for example, it is the ‘PS gene’ with strongest anti-correlation to b-cell Na+ channel activity. 

RBP4+ b-cells have decreased exocytosis and Na+ currents despite having normal Ca2+ current activity 

(Supp Fig 8). Consistent with this, we observed that RBP4+ b-cells also had significantly reduced 

expression of key regulators of b-cell stimulus-secretion coupling like KCNJ8, ABCC9 and SCN3A (Supp 

Fig 8); this latter gene encodes the principal physiologically-relevant Na+ channel in rodent b-cells (Zhang 

et al., 2014). Together, these results provide evidence that RBP4 expression is a marker of b-cells with 

reduced function, and show that some previously-identified markers of b-cell transcriptomic heterogeneity 

identify subpopulations with heterogeneous function (Dorrell et al., 2016; Johnston et al., 2016). 

  

Impaired function and gene expression in b-cells from donors with T2D 

 

Pancreas patch-seq in islets from the 7 donors with T2D (Supp Table 1) showed reduced b-cell 

insulin content and secretion (Fig 4A), and exocytosis (Fig 4B, Supp Fig 9). Except for one donor (R241, 

who did not contribute b-cells for analysis: see Methods), all b-cells were obtained from donors with 

recent T2D onset (<9 years), and who were not receiving insulin treatment. To identify genetic drivers of 

T2D b-cell dysfunction, we assessed transcripts correlated to exocytosis in ND controls (Fig 2B, Supp 

Table 2). We observed that genes that positively correlate with exocytosis in ND b-cells are up-regulated 

in T2D, while genes that negatively correlate with exocytosis in ND b-cells had reduced expression in T2D 

(Fig 4C). These data suggest that b-cells attempt to alter transcript levels in T2D, likely in response to 
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increased insulin demand, but ultimately fail to compensate, since their exocytotic response is impaired 

compared to ND controls (Fig 4B).  
 
To find genes that could underlie this effect, we performed correlation analysis in T2D cells, and 

integrated the ND and T2D results in a correlation map of exocytosis with the overall changes in gene 

expression (Fig 4D, Supp Table 2). Next, we performed a pathway analysis for each of the 4 gene 

subsets (ND/T2D and correlated/anticorrelated to exocytosis) (Fig 4E, Supp Fig 10). Whereas low 

exocytosis in ND b-cells is linked mostly to metabolic pathways, dysfunction in T2D is related to immune 

response, cell cycle pathways and altered transcription factor expression. In particular, we observe 

induction of pathways like NFkB signalling, and auto-degradation of the ubiquitin ligase COP1. Genes in 

T2D that show increased expression associated with reduced b-cell exocytosis included NFKBIA, IL6R 

and IRAK1, known to encode regulators of immune and inflammatory pathway, and the transcription 
factors ETV1 and STAT3 (Fig 4E-F, Supp Fig 10). The ETV transcription factors impair insulin secretion 

in hyperglycaemic mouse models, and are negatively regulated through COP1–dependent targeted 

degradation (Fig. 4G) (Suriben et al., 2015). ETV1 shows negative correlation to several measured 

exocytosis parameters in T2D (Supp Fig 10). We tested genes previously reported to show ETV-

dependent expression in mouse islets (Suriben et al., 2015), and found several human orthologs in our b-

cell single-cell correlations, including STAT3, MAFA, SLC30A8. Analysis of these ETV-dependent genes 

showed an enrichment of (i) pathways that we found to be important for b-cell exocytosis in our 

correlation analysis, and (ii) genes related to immune cytokine signaling, like STAT3 which encodes a 

critical cytokine signaling factor, that also has postulated roles in insulin secretion, b-cell regeneration and 

neonatal diabetes (O’Shea and Plenge, 2012; Saarimäki-Vire et al., 2017). Finally, we analyzed full-

length transcriptomes to investigate ETV1 splicing in b-cells and detected no signs of differential splicing 

between ND and T2D (Supp Fig 10). These results indicate that expression of transcriptional regulators 

and their downstream targets requires balance for optimal insulin secretion, and that an imbalance may 

lead to dysregulated secretion during early T2D (Fig 4G).  
 

Transcriptional and physiological heterogeneity observed in a-cells 
 

Cell size and Na+ channel properties are often used to identify a- and b-cells in rodents (Briant et al., 

2017; Zhang et al., 2014); however this is not generally applicable to humans, making it difficult to 

distinguish islet cell types at the time of patch-clamping. For example, a-cells (definitively identified post 

hoc from scRNAseq) were frequently mis-classified as possible b-cells during initial patch-clamp 

measures of capacitance that indicated cell size (>4 pF; Fig 1F). To improve cell-type identification prior 

to scRNAseq, we implemented a machine learning algorithm based in ‘random forests’ (Breiman, 2001) 

to classify cell types from their electrophysiological fingerprint. We trained and validated the model in cells 

from ND donors using 10-fold cross-validation, obtaining an AUC of 0.95 in the validation dataset (Fig 
5A,B). Features from every functional group contributed to the classifier (Fig 5C), and the model also 
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performed well in cells from T2D donors (AUC=0.93) (Fig 5A). Compared with a capacitance-based cell 

size cut-off at the time of patch-clamping, our model significantly improved the a priori identification of a-

cells, and reduced mis-classification as b-cells (Fig 5D). This advance improved investigation of a-cell 

transcriptomes and revealed significant transcriptional heterogeneity in islets from multiple human donors, 

with a subset of cells showing an enrichment in genes related to a-cell maturation (LOXL4, MAFB, ARX), 

evidence of reduced ER stress (DDIT3, XBP1, PPP1R15A), transcription factors governing endocrine fate 

(FEV, ISL1), receptors involved in glucose homeostasis (FFAR1, GPAR119), and ion channels (KCNK16) 

(Fig 5D; Supp Fig 11). This transcriptional heterogeneity correlated to electrophysiological features 

including Na+ currents and cell size (Fig 5D). Thus, in addition to improving prospective identification of 

patch-clamped human a-cells, our studies provide evidence for molecular heterogeneity underlying 

functional heterogeneity in a-cells. 

 
Application of patch-seq to rare cryo-preserved samples: Islet cells in T1D 

 

Given that human islets retain electrophysiological and transcriptomic integrity following 

cryopreservation (Manning Fox et al., 2015), we investigated whether the patch-seq approach could be 
extended to rare tissue types that may only be accessible via tissue banking programs. Single-cell 

transcriptomes from cryo-banked islets had comparable quality metrics to those of fresh tissue (Supp Fig 
12), allowing us to investigate cells from three T1D donors and three controls matched for BMI, age, sex 

and storage-time (Supp Table S6). We performed patch-seq in 348 cells from these samples (Fig 6A; 
Supp Table S6) and used a logistical regression model to identify marker genes for each population (Fig 
6B). Samples from T1D donors contained an unanticipated variety of cell types (Fig 6B), including an 

enrichment for pancreatic polypeptide-secreting g-cells and ductal cells (Supp Fig 12). 

We obtained 11 b-cells from two T1D donors, consistent with prior observations of b-cell survival 

years after T1D onset  (Keenan et al., 2010; Morgan and Richardson, 2018) (Supp Fig 12). These b-cells 

had similar electrophysiological profiles as cryopreserved control ND b-cells (Supp Fig 12), and appeared 

to maintain equivalent expression of hallmark b-cell genes (INS, PDX1, MAFB) (Fig 6C). Differential 

expression analysis showed decreased expression of RBP4 and FFAR4 and transcript enrichment of 

genes related to immune activation and allograft rejection (HLA-DMA, FAP) (Fig. 6D, 6E). In T1D a-cells 

we found increased NKX6.1 and decreased NKX2.2 mRNA (Fig 6C; Supp Fig 12) along with decreased 

Ca2+ channel activity (Fig 6F; Supp Fig 12), in general agreement with recent reports using bulk RNA-

seq and immunohistochemistry (Brissova et al., 2018; Chakravarthy et al., 2017), although we did not 

detect a consistent decrease in Ca2+ channel gene expression as previously reported (Supp. Fig. 12). 

Our analysis of T1D a-cells also showed transcript enrichment of mucin (MUC) and other genes typically 

associated with ductal cells, and FEV1, a reported endocrine progenitor cell marker in mice (Fig. 7D; 

Supp Table S7) (Byrnes et al., 2018; Liu et al., 2018). Together, our data demonstrates the use of patch-

seq with rare cryo-stored tissue types, and support the view that the transcriptomic and functional 
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signatures of surviving b-cells may be preserved in T1D, while a-cells may have loss of characteristic 

functional and transcriptomic phenotypes, consistent with the observation of impaired glucagon regulation 
in T1D.  

 

Discussion 

Success in identifying the genetic basis of islet function and dysfunction in diseases like diabetes has 

been limited by an inability to connect islet cell physiologic function with transcriptome regulation. 

Elucidating mechanisms underlying diabetes, whether common forms like T2D, or rarer forms like T1D, 

also suffers from limited human cell and tissue availability that hinders single cell-based investigations. 

Multi-modal single-cell technologies will help address these issues by increasing the depth of available 
data and by making it possible to directly link transcriptomes to additional read-outs in individual cells 

(Macaulay et al., 2017; Stuart and Satija, 2019). One integrated approach previously used in studies of 

rodent brain slices is dual patch-clamp electrophysiology and single-cell sequencing (patch-seq) (Cadwell 

et al., 2016; Földy et al., 2016; Fuzik et al., 2016). Like neurons, pancreatic islet cell secretion is coupled 

to dynamic electrophysiological mechanisms, making patch-clamp a versatile tool for islet cell functional 

assessment. Here, we describe development of pancreas patch-seq, and report paired functional-

transcriptomic data for more than 1,300 human islet-cells. This depth of data allowed us to link 
transcriptional heterogeneity to functional heterogeneity at single-cell resolution, and to identify genes and 

pathways regulating exocytosis of nondiabetic human islet β and α cells. With a patch seq-derived 

minimal Predictive Set of genes and machine-based learning tools, we developed algorithms that 

correctly predicted hallmark physiological functions like exocytosis from gene expression, and accurately 

classified live isolated islet cell types. For studies of islets from T1D and T2D donors, we used patch-seq 

for unprecedented analyses that identified molecular mechanisms likely to underlie β-cell and α-cell 

dysfunction in these diseases. Thus, our study provides a powerful heuristic resource and toolset for 

simultaneous multiplex phenotyping of human islet cells, in health or disease. 
Patch-seq analysis of electrophysiological and transcriptomic measurements in single cells identified 

key genes and pathways regulating b-cell exocytosis. These included both known and previously 

uncharacterized regulators and mechanisms controlling insulin secretion, such as cell adhesion 

molecules and neuroactive ligand receptors (Fig 2C, Supp. Fig 5, Supp. Table 2). Adhesion molecules 

have previously-demonstrated roles in b-cell attachment and motility (Dahl et al., 1996; Kaido et al., 

2004), and are thought to govern b-cell polarity and function through control of directed insulin exocytosis 

into the vascular axis (Geron et al., 2015; Parnaud et al., 2015; Gan et al., 2018). Among neuronal 

regulators, we identified pairs of factors such as neurexin 1 (NRXN1) and neuroligin 1 (NLGN1), which 
are known to bind in a heteromeric complex (Suckow et al., 2008). The identification of binding partners in 

our gene-function correlation analysis confirms the robustness of patch-seq as a tool to identify 

unanticipated candidate regulators of islet-cell function. Similarly, examination of tissue-specificity reveals 

that several of the encoded proteins correlating to b-cell exocytosis are also enriched in other excitable 
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cell-types (GPRASP1, RGS9 and MRAP2 in retinal tissue, GPRIN1 in brain, KCNH2 in cardiomyocytes) 

(Uhlen et al., 2015), indicating shared mechanisms of signal transduction in multiple excitable cell types, 

and showing that the analytical tools developed here could be applicable to patch-seq studies in other 

excitable cells and tissues.  
Regulation of islet exocytosis by metabolism is complex (Newgard, 2017). We observed multiple 

expected metabolic pathways to positively correlate to b-cell functional measurements (e.g., glucose flux 

and metabolism, circadian rhythm; Fig 2C, Supp. Fig 6), but also observed unexpected negative 

correlations of b-cell exocytosis to pathways like glycolysis and pyruvate metabolism (Fig 2C, Fig 5E, 

Supp Fig 9). We integrated several of the observed metabolic correlations to b-cell exocytosis in a 

functional map (Fig 2D), providing support for the hypothesis that glucose is preferentially used for TCA 

anaplerosis through pyruvate carboxylase (PC) to facilitate insulin secretion (Alves et al., 2015). These 

findings are also sustained by measures of CPT1A and SLC16A9 expression (Supp Table S2), which 

mediate the rate-limiting step of fatty-acid oxidation and carnitine efflux, respectively (Aichler et al., 2017; 
Newgard, 2017). Overall, the observation of glucose homeostasis pathways across our analysis also 

resonates with the importance of metabolites in shifting transcriptional states of b-cells, recently dubbed 

“metabolic memory” (Rosen et al., 2018; Sharma and Rando, 2017).  

Another useful outcome here is our development of a network analysis tool that links a predictive set 

(PS) of 484 genes with applied machine-learning techniques. We used this tool to predict b-cell function 

solely from RNA transcript abundance. Genetic regulators of b-cell activity, including many 

uncharacterized in islet biology, were identified in the predictive set, and included antioxidant molecules 

(GPX3, GSTK1), surface proteins (TSPAN1, TSPAN2), and b-cell enriched molecules (NPTX2, 

FAM159B; Fig 2E; Supp Materials S1; Supp Table S2). To validate predictions from patch-seq 

correlations and this network analysis, we used genetic loss-of-function approaches, which provided 

evidence confirming that genes like OGDHL, RGS9, TSPAN1 and FAM159B are positive regulators of b-

cell exocytosis (Fig 2E). Prior studies have shown that FAM159B may be regulated by the b-cell 

transcription factor SIX3 (Arda et al., 2016), and is a marker of b-cell subsets (Dorrell et al., 2016). Like 

FAM159B, other genes linked by our analysis to differential b-cell function were also found to be 

expressed in b-cell sub-populations (ID2, ID4, RBP4) (Baron et al., 2016; Dorrell et al., 2016; Rui et al., 

2017; Segerstolpe et al., 2016). For RBP4, we provide evidence that ND RBP4- b-cells, compared to ND 

RBP4+ b-cells, have relatively superior electrophysiological function (also see discussion of T1D below). 

Understanding the basis of islet adaptation or dysfunction in diabetes is another important application 

of patch-seq described here. With increased metabolic demand in physiological or pathological settings, 

b-cells can compensate by enhancing their excitability, Ca2+ signalling, and exocytosis (Chen et al., 

2016). Our observation that transcripts positively-correlated with exocytosis in ND b-cells are induced in 

b-cells of subjects with recent onset T2D, and that transcripts negatively-correlated to ND b-cell 

exocytosis are reduced in T2D (Fig 4C), suggests molecular mechanisms for functional compensation by 
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b-cells in early-stage T2D. However, our analysis also reveals as-yet unexplained complexity in b-cell 

responses; for example, ETV1 and STAT3 mRNA are positively-correlated with ND b-cell functional 

phenotypes, and also with T2D b-cell dysfunction. Recent studies suggest that b-cell ETV1 and STAT3 

protein degradation are regulated by the ubiquitin ligase complex (Dallavalle et al., 2016; Suriben et al., 

2015). Our work suggests that ubiquitination and proteosomal degradation pathways in b-cells, including 

a pathway stimulating COP1 auto-degradation, are associated with dysfunction in T2D (Fig 4; Supp Fig 
10). Thus, in addition to transcript-based mechanisms, our results suggest that post-translational 

mechanisms involving factors like COP1, ETV1 and STAT3 may govern b-cell dysfunction or responses 

in T2D (O’Shea and Plenge, 2012; Saarimäki-Vire et al., 2017; Suriben et al., 2015). 

Patch-seq also advances our understanding and ability to study human a-cells. Cell size and Na+ 

channel properties are key identifiers used to distinguish rodent a- and b-cells (Briant et al., 2017; Zhang 

et al., 2014), but human a-cell heterogeneity results in overlap of these electrophysiological properties 

(Fig 1F). Using patch-seq data, we developed additional models for improved cell-type identification of 

live human islet a-cells and b-cells (Fig 5A-D). We also show that specific phenotypes like Na+ current 

activities and cell size (Fig 5E) can vary significantly in a-cells, and that this functional heterogeneity 

corresponds well with expression of transcripts specifying islet cell lineage (ARX, MAFB, FEV) or 

governing cellular stress (DDIT3, PPP1R15A). Prior studies have reported the impact of the ER-stress 

response in b-cells subpopulations (Baron et al., 2016; Muraro et al., 2016), and in a-cells (Akiyama et 

al., 2013; Burcelin et al., 2008; Korsunsky et al., 2018), suggesting that varying levels of ER-stress could 

drive altered or dysfunctional states in both islet cells types. We noted a-cell subpopulations expressing 

markers indicating either low- or high ER-stress, both in ND and T2D donors. Thus, patch-seq merged 

electrophysiological and transcriptomic data to document, and suggest a basis for, heterogeneous 

function and transcriptome regulation in human a-cells.  

Phenotyping live islet cells from donors with T1D and other forms of diabetes is a significant  

challenge, stemming from the rarity of available tissue, and low islet cell recovery in those settings; this 

has retarded understanding of islet and diabetes biology (Brissova et al., 2018; Wang et al., 2016b). 

Likewise, procuring and studying appropriate control tissue for studies of T1D islets, matched in key 

properties like donor age, is an enduring challenge. Electrophysiological studies of islets from only one 

T1D donor have been reported, suggesting that surviving b-cells have normal function and a-cells are 

dysfunctional (Walker et al., 2011). Similarly, to date only islets from one donor have been studied using 

single-cell RNAseq (Wang et al., 2016b).  Thus, our extension of patch-seq to studies of cryo-stored islets 

from ND and T1D donors (Manning Fox et al., 2015) represents a significant innovation. Here we show 

that library quality from cryo-preserved islets is comparable to that of control fresh islet cells (Supp Fig 
12). Moreover, our detection of a-cell dysfunction and normal function of surviving b-cells using patch-seq 

with T1D islets correlates well with findings from a recent study using different methods (Brissova et al., 

2018). Patch-seq revealed greater a-cell heterogeneity in T1D compared to ND islets, including evidence 
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of impaired maintenance of a-cell fate; that might contribute to the well-recognized impairment of 

glucagon secretion observed in T1D (Unger and Cherrington, 2012). Moreover, transcriptomic profiling 

here reveals that functional preservation in T1D b-cells corresponds to undetectable expression of RBP4 

(Fig 6), consistent with work here and by others (Brissova et al., 2018; Rui et al., 2017). By contrast, we 

show that T1D ductal cells, which some suggest represent a potential source of new b-cells (Corritore et 

al., 2016), lack detectable endocrine physiological phenotypes (Supp Fig 12). Whether from pancreatic 

cell reprogramming or other sources (Chakravarthy et al., 2017; Thorel et al., 2010), rigorous evaluation 

of “replacement” b-cells with patch-seq should emerge as a new benchmark to assess functional and 

transcriptional resemblance to bona fide b-cells. 

In conclusion, the patch-seq approach for pancreas integrates multiple assays of islet-cells in health 

and diabetes. Thus, our work represents an important step in the development of multimodal scRNAseq 

technologies, by increasing cell throughput and extending analyses of simultaneously-measured 

transcriptomic data and physiological features. The approaches and data presented here help clarify 

observed inherent islet cellular heterogeneity, and provide valuable tools for understanding the molecular 

mechanisms underlying normal islet function and dysfunction in diabetes at single-cell resolution. 

 
Methods 
 

Islet isolation, cryopreservation, and insulin secretion 
 

Donor organs were obtained with written consent and research ethics approval at the University of 

Alberta (Pro00013094, Pro00001754), perfused via the pancreatic ductal system with buffer containing 

Collagenase Gold 800 (VitaCyte, Indianapolis, IN) and Thermolysin (Roche Diagnostics, Mannheim, 

Germany), then digested with a Ricordi Islet Isolator (Biorep Diabetes, Miami, FL) and purified by density 
centrifugation. Donor characteristics are described in Supp Tables S1,S3,S6. Full details of our human 

islet isolation protocol, equipment setup, quality control, cryopreservation, and static glucose-stimulated 

insulin secretion assays have been deposited in the protocols.io repository (Lyon et al.). 

 

Electrophysiological phenotyping 
 

Hand-picked human pancreatic islets were dissociated to single cells using enzyme-free Hanks’-based 

Cell Dissociation Buffer (Thermo Fisher Scientific, Cat#13150-016, for donors R229~R242) or Hanks’ 
Balanced Salt Solution and StemPro accutase (Thermo Fisher Scientific, Cat#A11105-01, for donors 

R243~R269, cryo-T1D donors and matched controls) and cultured in low glucose (5.5 mmol/L) DMEM 

with L-glutamine, 110 mg/L sodium pyruvate, 10% FBS, and 100 U/mL penicillin/ streptomycin for 1-3 

days. Media were then changed to bath solution containing (in mM): 118 NaCl, 20 TEA, 5.6 KCl, 1.2 

MgCl2•6H2O, 2.6 CaCl2, 5 HEPES, and either 1, 5 or 10 glucose (pH 7.4 with NaOH) in a heated chamber 

(32–35°C). For whole-cell patch-clamping, fire polished thin wall borosilicate pipettes coated with Sylgard 

(3-5 MOhm) contained intracellular solution with (in mM): 125 Cs-glutamate, 10 CsCl, 10 NaCl, 1 
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MgCl2•6H2O, 0.05 EGTA, 5 HEPES, 0.1 cAMP, and 3 MgATP (pH 7.15 with CsOH). Electrophysiological 

measures were collected using a HEKA EPC10 amplifier and PatchMaster Software (HEKA Instruments 

Inc, Lambrecht/Pfalz, Germany) and protocols shown in Fig 1E within 5 minutes of break-in. Quality 

control was assessed by the stability of seal (>10 GOhm) and access resistance (<15 MOhm) over the 
course of the experiment. Data were analysed using FitMaster (HEKA Instruments Inc) and Prism 6.0h 

(GraphPad Software Inc., San Diego, CA). Immediately following recordings, the patch pipette was 

withdrawn and replaced with a wide-bore (0.2-0.5 MOhm) collecting pipette containing lysis buffer without 

ERCC mix. Cells were then collected by gentle suction and visual confirmation, and then transferred into 

8-strip PCR tubes containing 4 µl lysis buffer (with ERRC spike-in) on ice and stored at -80oC until cDNA 

and library preparation (see below).  
 

siRNA transfection.  
 

Dissociated human islets cells were transfected with scramble siRNA (Cat# 1027284, Qiagen, Toronto, 

Canada) or siRNA from ThermoFisher Scientific against OGDHL (ID# s31422), TSPAN1 (ID# s19659), 

FAM159B (ID# 264018), RGS9 (ID# s16736), and GYG1 (ID# s6360) together with a fluorescent marker 

(Allstars Neg.siRNA AF488, Qiagen, Cat# 1027292) using DharmaFECT 1 (GE Healthcare) according to 

manufacturer’s protocol. In patch-clamp studies, the visible fluorescence was checked to identify 
positively transfected cells. Total RNA was prepared by TRIzol (Invitrogen) according to manufacturer’s 

protocol. The cDNA was prepared from 100-200 ng of total RNA using 5xAll-In-One RT Master mix 

(Applied Biological Materials Inc). Real-time PCR was performed using Fast SYBR Green Master Mix, 

7900HT Fast Real-Time PCR systems (Applied Biosystems) and primers designed to flank an intron of 

each gene to confirm knockdown (Supp Table S4). 

 

Islet dispersion for FACS and single-cell library preparation 
 

Human islets were washed once in cold PBS and dissociated into single cells by enzymatic digestion with 

Accumax (Invitrogen), followed by digestion using freshly prepared Dispase (Fisher Scientific). Cells were 

filtered using a 70 µm cell strainer, quantified, and stained with LIVE/DEAD Fixable near-IR dead cell dye 

(Life Technologies, L10119) as a viability marker. Cells were then blocked with mouse IgG in FACS buffer 

(2% FBS, 10mM EGTA, in PBS), followed by staining with appropriate antibodies at 1:100 (v/v) final 
concentration. The following combination of antibodies was used to select endocrine cells: HPi2-Alexa-

405 (Novus, NBP1-18946AF405), HPx1-Alexa-647 (Novus, NBP1-18951AF647), CD133/1-APC (Miltenyl 

Biotec, 130-113-668), CD133/2-APC (Miltenyl Biotec, 130-098-129), CD31-APC-Cy7 (BioLegend, 

303119). Cells were then sorted using a Sony SH800 cell-sorter and a 100 µm nozzle following doublet 

removal. Single cells were sorted directly into 384-well plates (Bio-Rad HSP3841) containing 0.4 µL of 

lysis buffer with dNTPs (Invitrogen) and ERCC spike-in control (ThermoFisher). Plates were centrifuged 

and placed on dry ice immediately before storage at -80°C.  
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 For both patch-seq cells and FACS-collected cells, we generated cDNA and sequencing libraries 

using the SmartSeq-2 protocol as previously described (Picelli et al., 2014). For patch-seq cells, we first 

assembled the 8-strip tubes into 96-well plates for increased throughput (Bio-Rad, RC9601 and 

MSA5001). For FACS-collected cells we proceeded directly with the obtained 96-well or 384-well plates. 
Briefly, mRNAs were primed with an anchored oligo-dT and reverse transcribed using an LNA-containing 

template switching oligo, followed by PCR amplification (21 cycles). Libraries were then generated from 

the amplified cDNA by tagmentation with Tn5. Libraries were sequenced either in a NextSeq 500 or 

NovaSeq platform (Illumina) using paired-end reads (75 bp) to an average depth of 1 million reads per 

cell. 

 

Processing, quality control and filtering of single-cell RNA-seq data 
 

Sequencing reads were aligned to the human genome (GRCh38 genome with supplementary ERCC 

sequences) using STAR (Dobin et al., 2013), and gene counts determined using htseq-count 

(intersection-nonempty) using a GTF annotation with Ensembl 89 release genes (Anders et al., 2015). 

Analysis of splicing was performed based on the splice junctions called by STAR. Gene expression was 

normalized to counts per million (cpm) after removal of counts corresponding to ERCC spike-ins, and 

transformed to log2 values after addition of a pseudocount.  

 We filtered patch-clamped cells based on stringent QC criteria: >1,500 genes, >100,000 human 

mapped reads, >40% uniquely mapped reads (STAR), <40% unmapped reads (STAR), and more than 
25% of total reads mapped to exons (ht-seq). This filtering retained 89% of all patch-clamped cells 

(1126/1275). We also filtered cells with low expression of ACTB and GAPDH (<3SD below mean) (29 

cells), and potential doublets determined from high levels of hormone coexpression (log2CPM>13 for 

more than one marker gene: INS, GCG, PPY, SST, PRSS1) (76 cells). In this way, we obtained 1,021 

high-quality patch-seq transcriptomes for further analysis. For cryopreserved cells, we applied the same 

QC filtering and obtained equivalent percentages in each step. This provided an additional set of 348 

cryopreserved patch-seq cells (411 initial cells). 

 
Clustering and cell type determination 
 

Initial clustering of cell types was performed by selection of over-dispersed genes (top 2000 genes based 

on coefficient of variation), followed by dimensionality reduction by PCA (10 PCs), and tSNE projection 

(perplexity=30, learning rate=200). Clusters were selected based on the Louvain algorithm for community 

detection or hdbscan, and cell types assigned based on the expression of key marker genes. Selection of 

marker genes for the T1D clusters was performed using a logistic regression model (python package 

scanpy) (Wolf et al., 2018). Downstream analysis was performed using custom python and R scripts. 
 

Correlation between electrophysiological parameters and gene expression  
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The relationship between electrophysiological parameters and gene expression was measured using rank 

correlation statistics. Spearman’s correlations were computed in different groups of cells according to cell 

type, disease condition and experimental protocol (e.g. b, ND, high-glucose condition). We first removed 

low expressed genes by selecting genes with mean expression log2(CPM)>1, corresponding to a total of 

3000-8000 genes for dataset. Outliers in electrophysiology were removed by quantile filtering of the 

highest and lowest 3% of cells for each parameter. We observed outlier cells to be consistent across sets 

of co-measured parameters (exocytosis, Ca2+, Na+ currents) suggesting that they might reflect technical 

noise. Measurements of exocytosis and ionic currents were normalized to initial cell capacitance to 

account for effects of cell size. For exocytosis measurements, we also collapsed negative values to zero 

to reduce their effect on the measured correlations, as variations around zero are unlikely to be driving 
functional responses (i.e. exocytosis). Finally, all current measurements (Ca2+, Na+) were transformed to 

positive defined values -regardless of their flow direction across the cell membrane, so positive 

correlations are representative of genes driving larger responses in electrophysiology.  

 Spearman tie-corrected correlations were computed for each gene and significance was tested 

by bootstrapping (1,000 iterations). Reported values are mean, standard deviation, and equivalent z-

score from the bootstrapped values. To verify that correlations determined on this way report genes that 

show significant variation across each electrophysiological parameter, we recomputed correlations after 
performing a median smoothing of the data. In this case, we sorted all cells according to each 

electrophysiological parameter and performed a median average with a rolling-window corresponding to 

10% of the cells. We then computed correlations and confidence intervals using the same bootstrap 

approach, finding overlapping gene lists and significance values. We also verified that a bootstrap of 

donors (instead of cells), provided an overlapping list of genes for total exocytosis in ND b-cells. To 

further refine the final list of genes for knock-down validation we focused on genes observed in >30% of 
cells. Analysis was implemented in python scripts. 

 

Electrophysiological predictions using PS gene set  

 

For patch-seq electrophysiological prediction, we split ND b-cells into a training set (80%) and 

test set (20%). We used the training set to perform the bootstrapped correlation analysis between 

electrophysiological parameters and gene expression as detailed above. We selected genes showing 

significant correlations (|z-score|>2) with at least two electrophysiological parameters belonging to 

different functional groups, and retained genes with highest median expression (observed in >50% of 

cells). In this way, we obtained our final PS gene set (484 genes, Supp Table S5). We then built a k-

nearest neighbors (k-NN) model (Pedregosa et al., 2011), to determine the k closest cells in PS gene 

expression to each cell (k=5, metric spearman correlation) using the training set. We used the k-NN 

model to infer the electrophysiological parameters of each cell from the averaged values of the identified 
neighbors (after masking cells for which an electrophysiological parameter could not be measured). The 
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test set was used for final validation by predicting their electrophysiological parameters using the k-NN 

model build with the training dataset. 

 

Statistical analysis 
 

Differential expression was performed using a non-parametric Mann-Whitney U test. For comparisons 

involving few donors or showing bias in sex representation (e.g. T1D a-cells), we repeated the analysis 

with VOOM-LIMMA using sex as a covariate. All p-values were corrected for multiple hypothesis testing 

using Benjami-Hochberg (BH) and significance was determined from a permutation test by shuffling the 

labels and using an FDR<0.05. Statistical differences between electrophysiological parameters was 
determined using a non-parametric Mann-Whitney U and corrected for multiple hypothesis testing using 

BH across all measured parameters unless otherwise stated. 
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Figure Captions 
 
Figure 1. Pancreas patch-seq pipeline. (A) Schematic of pancreas patch-seq protocol. (B) tSNE 

projection of measured patch-seq cells clustered by gene expression of over-dispersed genes. Cells are 
colored by cell type according to cluster identification by marker genes. (C) Cell size measured as 

membrane capacitance for each cell compared to expression of key marker genes. Color indicates cell 

type according to color code in panel B. Dashed line shows average capacitance/gene expression for 

each cell type. (D) Distribution of total number of patch-seq cells based on cell-type and diabetes status. 

(E) In each cell we measured: a- early exocytosis; b- late exocytosis; c- Ca2+ integral, d- total exocytosis, 

e- Na+ current half-inactivation; f- peak Na+ current; g- early Ca2+ current; h- late Ca2+ current (not shown, 

we also measured cell size, reversal potential, and Na+ and Ca2+ conductance). (F) Distribution of 

selected parameters demonstrating heterogeneity in functional responses of a- (red) and b- (black) cells. 

Inset letters (a-h) correspond to measured parameters in panel E. Distribution of exocytotic responses in 

a and c are shown for 1 mM glucose (a-cells) or 5-10 mM glucose (b-cells). 

 
Figure 2. Correlation of b-cell exocytosis to single-cell gene expression and pathway analysis. (A) 

Spearman correlation of measured electrophysiological parameters shows clustering of each functional 

group (Exocytosis, Ca2+ currents, Na+ currents, Cell size) and low cross-correlation across clusters. All 

parameters are normalized to cell size. (B) Heatmap of top correlated and anticorrelated genes to 

measured total exocytosis in ND b-cells at 5-10 mM glucose. Cells are sorted by exocytotic response 

from highest (left, dark green) to lowest (right, yellow). Gene expression is shown as a z-score after 

smoothing (n=20 cells). Metadata associated to each cell (BMI, Donor, Sex) is shown at bottom. (C) Top 

enriched pathways in GSEA using genes correlated (red) and anticorrelated (blue) to total exocytosis 

(pathways in KEGG and Reactome databases, FDR<0.1). (D) Summarized map of cellular location and 

key pathways with genes correlated (green) and anticorrelated (red) to exocytosis. (E) Exocytosis in b-

cells measured at 10 mM glucose following target gene knockdown compared to control cells from same 

donors (348 cells, N�3 donors per knockdown experiment). ** FDR<0.01, **** FDR<0.0001 (Mann-

Whitney-U test and BH correction). 
 

Figure 3. Gene networks driving b-cell functional heterogeneity. (A) Genes showing significant 

correlations to several electrophysiological parameters (z-score>2 for N>5 parameters, see Methods). 

Significant positive/negative correlations are indicated in red/blue. (B) tSNE projection of ND b-cells using 

genes discovered in panel A. Color indicates normalized expression of each gene (MAFA, SLC30A8, 

RBP4, ID2) or functional parameter (Total exocytosis, Peak Na+ current). (C) Network of genes 

connecting different functional groups (‘PS genes’). Genes (small dots) connecting different functional 

groups (large dots) are selected if they show significant correlations (z-score>2) to at least one functional 
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parameter in each group. Edge color indicates positive/negative correlations (red/blue), and gene color 

identifies clusters connected to the same functional groups. (E) Prediction of b-cell electrophysiology from 

gene expression. Representative plots of measured patch-clamp values versus predicted values from 

nearest neighbours in gene expression using ‘PS genes’ (k-NN model, n=5) for a training (black) and 

validation (red) dataset. Spearman correlation and p-value for each parameter are indicated as inset. (F) 

Spider plot showing performance of the model using the ‘PS genes’  (dark gray), measured as Spearman 

correlation between experimental and predicted values. Comparison to mean values using 484 random 

genes of equivalent expression in b-cells (10,000 permutations, 95% CI interval shown in light gray). 

Asterisk indicates parameters for which we also obtained significance (p<0.05) in a validation set of data 

withheld from the correlation analysis. Smaller spider plots show performance of the ‘PS gene set’ (gray) 

versus top correlated genes for each functional group: exocytosis (pink), Ca2+  (green), Na+ (orange), cell 

size (blue).  

 

Figure 4. Functional and transcriptomic changes in b-cells early in T2D. (A) Insulin content and 

secretion (as % content) for donors used in this study. *p<0.05, ***p<0.001 (Student’s t-test; Two-way 

ANOVA and Tukey post-test) (B) Distribution of measured exocytosis parameters for ND and T2D b-cells. 

** FDR<0.01 (Mann-Whitney-U test and BH correction). (C) Variation in T2D of genes found to be 

correlated (red) or anticorrelated (blue) to exocytosis in nondiabetic cells. Data is shown as median log 
fold-change in expression between T2D and ND. Error is SEM. (D) Gene correlation map of exocytosis. 

Scatter plot shows correlation to exocytosis in ND (x-axis) and T2D (y-axis) for each gene. Genes with 

significant correlations (z-score>2) are colored according to their fold-enrichment in T2D cells (red 

enriched in T2D, blue enriched in ND), and size is proportional to change in % expression (larger dots 

have different % of cells expressing the gene in T2D and ND). Regions of interest are highlighted with 

dotted boxes. Genes with non-significant correlations in gray. (E) Enriched pathways for genes correlated 

to exocytosis in ND (i), T2D (ii) and genes anticorrelated to exocytosis in ND (iii), T2D (iv). Enrichment is 

shown as log10(FDR) and blue indicates that the pathway is not enriched for a given set. Left bar indicates 
top category of each enriched pathway. (F) Distribution of ETV1 expression (left) and log enrichment of a 

subset of genes between ND and T2D in the patch-seq dataset. (G) Model showing the hypothesized role 

of ETV1, STAT3 and immune pathways in b-cell dysfunction in early T2D. Based on (Suriben et al., 

2015). 
 
 

Figure 5. Transcriptomic and electrophysiological heterogeneity in a-cells. (A) ROC curve of cell 

type prediction using random forests for the validation dataset of ND cells (red, blue) and in T2D cells 

(green, purple). (B) Confusion matrix in the ND validation dataset. (C) Contribution of each feature to the 

random forest model. (D) Comparison of a-cell identification from predictions at the time of patch-
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clamping (simple cell size cut-off) versus the model. (E) t-SNE plots showing heterogeneity in gene 

expression of a-cells using over-dispersed genes and normalized electrophysiological measurements. 

 
Figure 6. Pancreas patch-seq in cells from cryopreserved T1D islets. (A) Left: tSNE projection of 

measured patch-seq cells clustered by gene expression of over-dispersed genes. Right: Distribution of 

cell types and total number of cells obtained for ND and T1D. (B) Marker genes for each cluster obtained 

from a logistic regression model. (C) Expression of key identity genes on a- and b-cells from T1D and ND 

matched controls. (D) Representative genes obtained in a differential expression analysis between T1D 

and ND for b- and a-cells respectively. (E) Pathways enriched in upregulated genes in T1D a- and b-

cells. (F) Distribution of calcium parameters showing statistically significant differences between a-cells of 

T1D and ND. ** FDR<0.01, * FDR<0.05. Mann-Whitney-U test with BH correction. 
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Figure 1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2019. ; https://doi.org/10.1101/555110doi: bioRxiv preprint 

https://doi.org/10.1101/555110
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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