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Abstract  

We present a novel method for evaluating the spatial correlation structure in two-dimensional (2D) 

mammograms and evaluate its merits for risk prediction. Two matched case-control studies were analyzed. 

Study 1 included women (N = 588 pairs) with mammograms acquired with either Hologic Selenia full field 

digital mammography (FFDM) units or Hologic Dimensions digital breast tomosynthesis units. Study 2 

included women (N =180 pairs) with mammograms acquired with a General Electric Senographe 2000D FFDM 

unit. Matching variables included age, HRT usage/duration, screening history, and mammography unit. The 

local autocorrelation function was determined with Fourier analysis and compared with template defined as 2D 

double-sided exponential function  with one spatial extent parameter: n = 4, 12, 24, 50, 74, 100, and 124 defined 

in pixel widths.  The difference between local correlation and template was gauged within a kernel with an 

adjustable parameter and summarized, producing two measures: the mean (mn+1), and standard (sn+1).  Both 

adjustable parameters were varied in Study 1. Select measures that produced significant associations with breast 

cancer were translated to Study 2.  Breast cancer associations were evaluated with conditional logistic 

regression, adjusted for body mass index and ethnicity. Odds ratios (ORs) were estimated as per standard 

increment with 95% confidence intervals (CIs). 

Two measures were selected for breast cancer association analysis in Study 1: m75 and s25. Both 

measures revealed significant associations with breast cancer: OR = 1.45 (1.23, 1.66) for m75 and OR = 1.30 

(1.14, 1.49) for s25. When translating to Study 2, these measures also revealed significant associations: OR = 

1.49 (1.12, 1.96) for m75 and OR = 1.34 (1.06, 1.69) for s25.  

Novel correlation metrics presented in this work revealed significant associations with breast cancer 

risk. This approach is general and may have applications beyond mammography.  
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1. Introduction 

The spatial correlation properties of images and texture are closely related. For example, a two-dimensional 

(2D) white noise field is featureless as it lacks spatial correlation. The lack of spatial correlation is a 

consequence of its flat power spectrum (i.e. all spatial frequency components are statically represented equally). 

Altering the spectrum of a white noise field by applying a filter produces spatial correlation in the filtered 

image, perceived as texture.  In this work, we present a general method to evaluate the local correlation 

properties of 2D images based on Fourier analysis.  The merits of this approach are evaluated with 

mammograms, where a specific problem in breast cancer risk is addressed as a possible application. Breast 

density is a strong breast cancer risk factor, typically estimated from 2D mammograms [1-6]. There are various 

methods of estimating breast density [3, 6-14]. Most often the focus of these measures is the degree of dense 

tissue within the breast area. Texture measures also correlate with breast cancer [9]. Although investigated for 

many years, the connections between breast density and the underlying biological processes are not well 

understood [15]. Identifying other metrics with defined spatial scales related to breast cancer could be useful for 

informing future studies designed to understand the related biological processes with breast structure, in 

addition to risk prediction purposes. 

 

2. Materials and Methods 

2.1 Population and Imaging  

This study includes two populations derived from the same geographical region over distinct time frames. For 

the purposes of this report, we refer these as Study 1 and Study 2 to align with the order of our current 

presentation and data processing sequence (i.e. not related to the study timeframes). Study 1 included 588 

individually matched case-control pairs of women that attended the breast clinics at Moffitt Cancer Center 

(MCC) between 2013 and 2018. Study 2 included 180 individually matched case-control pairs that attended the 

breast clinics at MCC between 2007 and 2011 presented previously [16]. For Study 1, 2D study mammograms 

were acquired from one of six Hologic (Hologic, Inc., Bedford, MA) mammography units: three conventional 
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2D Selenia full-field digital mammography (FFDM) units and three Dimensions digital breast tomosynthesis 

(DBT) units. These units use direct x-ray detection and have 70μm pitch. For Study 2, 2D study mammograms 

were acquired with one General Electric (General Electric Medical Systems, Milwaukee, WI, USA) Senographe 

2000D FFDM unit. This unit has 100μm pitch. In both studies, raw data was used for analytical purposes; these 

images are in monochrome 1 format (i.e. dense tissue has lower intensity values than adipose tissue) with 14-bit 

dynamic range per pixel. For illustration purposes, we used for presentation (processed) images when noted; 

these are the images used for clinical purposes. The unaffected breast was used as the study image for cases. A 

given control study image laterality was determined by matching with its respective case’s study image side. 

Processing was constrained to the largest rectangular box that can be inscribed within the breast area as 

illustrated in Figure 1 using an automated algorithm developed and described in detail previously [16, 17].  

 

Both studies employed the same protocol. Cases had a first-time diagnosis, pathology verified, of unilateral 

breast cancer. These cases were either (i) women diagnosed with breast cancer attending the breast clinics at 

MCC or (ii) attendees of surrounding area clinics sent to MCC for breast cancer treatment or diagnostic 

purposes and found to have breast cancer. Controls were attendees of MCC without a history of breast cancer. 

Controls were individually matched to cases on age (±2 years), hormone replacement therapy (HRT) usage and 

current duration, screening history, and mammography unit. The HRT match was based on status of current 

users or non-users. Non-users included women that have not taken HRT for at least two years. If a case was a 

current HRT user, the control was matched on this duration (±2 years). Controls were matched by screening 

history using a three-category classification. Group 1 included women with prior screening history by any 

means; the duration between the last screening and the study image date must be no more than 30 months. 

Group 2 included women without screening history. Group 3 included women with a screening history that does 

not fit within in Group 1 or Group 2. We used mammograms in cranial caudal (CC) orientation as study images. 

The unaffected breast was used as the study image for cases (image acquired before treatment) and the 

matching lateral breast for controls. 
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2.2 Image Measures 

This new approach was based on comparing the local autocorrelation properties of a given mammogram with a 

template and then summarizing the local measures within a given image. For reasons illustrated below, we 

defined the correlation template as a 2D double sided symmetric exponential function expressed as 

h(x, y) = exp − k[|(x − xa)| + |(y − ya)|],  Eq. (1) 

where x and y are pixel coordinates (i.e. integers) in a Cartesian coordinate system, and k is the decay constant. 

We used h(x, y) to make comparisons with local autocorrelation function in mammograms about an arbitrary 

location expressed as (xa, ya). The local image region centered about this location is defined as f(x, y) with x and 

y ranging from (xa - n, xa + n) and (ya - n, ya + n), respectively, giving a region size of (2 × n + 1) × (2 × n + 1) 

pixels, where n is an even integer. In practice, n was an experimental parameter to be determined. The 

associated empirical local autocorrelation function, defined as he(x, y), was determined using Fourier transform 

(FT) relationships by invoking the 2D autocorrelation theorem [18] and was forced to have the same spatial 

extent in each coordinate direction ranging from –n through n (demonstrated below). The parameter k is a 

function of n, derived empirically to ensure that h(x, y) tends to zero expressed as k =
ln (0.01)

n
.  

 

Modification to the region dimensions was required to eliminate wraparound effects of the discrete FT and force 

the associated relationships to match those derived from the continuous FT theory. This modification is 

illustrated with a specific example. Figure 2 (left) shows an image region with n = 124, corresponding to the 

smaller region shown in Figure 1. We extended the spatial extent of this region by zero padding by 
n

2
 (i.e. 62) 

about f(x, y) in each spatial direction as illustrated in Figure 2 (left) and then used the 2D Fourier correlation 

relationship [18] to determine he(x, y). We take the FT of f(x, y) after zero padding, giving F(fx, fy). We then 

formed the power spectrum expressed as F(fx, fy)×F
*
(fx, fy); the asterisk indicates complex conjugate and fx, and 

fy are Cartesian spatial frequency coordinates in x and y directions, respectively. This was followed by Fourier 

inversion giving the empirical autocorrelation function he(x, y) illustrated in Figure 2 (middle). This empirical 

correlation function was then normalized such that he(xa, ya) = 1. The multiplication in the Fourier domain used 
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to form the power spectrum is equivalent to performing a correlation operation in the image domain[18]. When 

viewed in the image domain, zero padding ensures that the shifted function in the correlation operation moves 

into a region where the stationary (non-shifted) function is zero. This accounts for the wraparound artifact in 

discrete FT, allowing a closer relationship to continuous FT theory. This is illustrated Figure 2 (right), which 

shows a profile through he(x, ya). Note that the correlation tends to zero and the spatial extent along the profile 

spans from shift = -124 to shift = 124. In contrast, Figure 3 shows the same example region without zero 

padding (left), the related he(x, y) (middle), and profile through he(x, ya) [right]. Note that the profile does not 

tend to zero and that the spatial extent spans from [-64, 64] measured in pixel width shifts.  

 

The local autocorrelation function, he(x,y), was estimated as a function of location across each mammogram 

and compared with the template  using a kernel function expressed as 

ε =  
1

N
∑

exp−(he(x,y)−h(x,y))2

σ2x,y , Eq. (2) 

resulting in a spatial map of the local correlation. The comparison within the kernel normalizes ε by 

constraining it between (0, 1).  Both the mean and standard deviation (SD) of the ε distribution for a given 

image was used as two measures defined as εm and εs respectively. For a given n, specific εm and εs metrics were 

labeled as mn+1 and sn+1, respectively. The kernel width, σ, is the other experimental parameter to be determined. 

To reduce processing time, the coordinates (xa, ya) were shifted across the image in 
n

2
 steps in both spatial 

dimensions.  

 

The operator assisted software, Cumulus 3, was implemented by JH to determine the percentage of breast 

density (PD) for processed images for both studies. The PD findings for Study 2 were discussed previously [16] 

and are presented in this report as well for completeness. Cases and controls were randomly mixed and JH was 

blinded to all patient information. PD was used as a standard for comparison with selected correlation metrics. 
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2.3 Statistical Methods 

Study 1 was used for exploration purposes. Seven region sizes for n+1 were investigated (expressed in pixel 

widths): 5, 13, 25, 51, 75, 101, and 125, corresponding with approximately 0.35mm, 0.91mm, 1.75mm, 

3.57mm, 5.25mm, 7.07mm, and 8.75mm, respectively. For each region size, σ was varied from 0.001 through 

0.05 with 0.001 increments giving 50 separate settings. To demonstrate that the template is a reasonable choice, 

a random selection experiment was used for illustration. Five mammograms were selected at random from the 

control group in Study 1, and the largest rectangle was determined for each mammogram. For each of these 

regions, one position was selected at random and he(x, y) was constructed for n + 1 = 51. For each random 

he(x,y)  graphical comparisons were made with the respective h(x, y) by plotting profiles taken through both 

functions through the coordinate axes.  

 

The spatial correlation processing will result in many measures per image. There are 7 region sizes each with 50 

settings for σ and two measurements giving a total of 7 × 50 × 2 = 700 spatial correlation measures for each 

mammogram. To acquire an overview of these measures, we applied a paired t-test across case and control 

groups for each measure and summarized these measures according to three significance levels: 0.05, 0.025, 

and 0.01. A two-dimensional correlation table was developed for select measure(s) with p < 0.01. Due to the 

way the spatial correlation measures were developed, we expect high correlation between them.  Measures were 

selected for further analysis based on this significance level, correlation (Pearson’s correlation coefficient 

denoted by R) between the other template measures and PD: maximal difference between case and control 

groups, minimal correlation with PD, and minimal correlation with other correlation measures. These select 

measure(s) were analyzed with conditional logistic regression. The specific settings (n and σ) for these select 

measure(s) were used to process Study 2 mammograms. To keep the spatial distances the same, the region 

size(s) determined with Study 1were translated to Study 2 by reducing the respective region dimension by the 

pitch ratio, 
7

10
×

n

2
 , with rounding.  
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Conditional logistic regression modeling was used to estimate breast cancer associations. Image measurement 

distributions were log-transformed. Odds ratios (ORs) were used as the association metrics with 95% 

confidence intervals (CIs). Continuous ORs were estimated as per standard deviation (SD) increment 

determined for the respective image measurement distribution. We also considered the area under the receiver 

operating characteristic curve (Az) for each model with 95% CIs. Models will be presented unadjusted and 

adjusted for body mass index (BMI) and ethnicity. In Study 1, the case/control paired t-test for BMI was 

calculated with the 581 complete pairs due to missing data on seven controls: BMI values were set to the 

control distribution BMI mean for modeling purposes. When comparing proportions, McNemar’s (exact) test 

was used for within population comparisons. When comparing continuous measures, we used the t-test. Image 

processing was implemented with IDL version 8.6 (Exelis Visual Information Solutions, Boulder, CO) and 

regression analyses was done using SAS version 9.4 (SAS Institute Inc., Cary, NC).  

 

3. Results 

Patient characteristics for Study 1 and Study 2 [16] are provided in Table 1a and 1b, respectively. Both studies 

were comprised of primarily Caucasian women (83.8% for Study 1 and 89.2% for Study 2). In both studies 

ethnicity was similar with Non-Hispanics representing 84.3% in Study 1 and 90.6% in Study 2. The Hispanic 

population was higher in controls than cases in Study 1 (p < 0.0001) and similar in Study 2. The mean age of 

participants in either study was approximately 58 years. Cases had a higher BMI than controls with p = 0.0003 

and p = 0.0071 for Study 1 and Study 2, respectively. Menopausal status was similar between cases and controls 

with p = 0.50 for Study 1 and p = 0.076 for Study 2 when comparing menopausal women versus other status 

(i.e. pre-menopausal plus unknown). PD was similar between cases and controls in Study 1 (p = 0.25) and 

significantly different in Study 2 (p = 0.025). 

 

To justify the template choice, the random selection illustrations are discussed first. The top row of Figure 4 

shows the largest rectangles for five mammograms that were selected at random (processed images are used for 
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display purposes only). The smaller outlined box (n+1 = 51) within each image was also selected at random.  

Figure 5 shows five randomly selected he(x, y) images for each smaller region with the same ordering as Figure 

4. The middle row of Figure 5 shows profiles through the origin along the x-direction and the bottom row shows 

profiles along the y-direction for h(x,y) [solid line] and he(x, y) [dashed line]. Comparing the empirical profiles 

with the corresponding template profiles illustrates the similarities graphically. The bottom row of Figure 4 

shows the related spatial maps of the local correlation difference measure, ε, derived from Eq. (3). Brighter 

regions represent stronger agreement with the reference template. 

 

Table 2 shows the initial evaluation derived from the t-test. These findings are separated by measurement-type, 

significance levels, and by distribution stochastic dominance. Most of the mean-measurements were significant 

at both p < 0.05 and p < 0.025. When considering p < 0.01, both m51 and m75 were significant for all σ settings 

as was s13 indicating these measures were robust with respect to this parameter setting. Table 3 shows the 

correlation measures with p < 0.01 for the σ setting that gave the smallest p-value. There was a high degree of 

correlation across the mn+1 measures with R > 0.95 for all pairs, whereas the correlation between the sn+1 

measures varied with R ~ 0.80-0.86 for most pairs; deviation was noted between s5 and s25 with R = 0.53. The 

correlation across the mn+1 and sn+1 measures was negative and varied with R ~ (-0.86 – -0.63). As such, we 

choose the optimal m75 (5.75mm) determined with σ = 0.006 (p = 0.005) as one measure to examine more 

closely and translate to Study 2. The optimal sigma setting for s25 was determined with σ = 0.050 (p < 0.002), 

where the case distribution exhibited stochastic dominance. The correlation between m75 and s25 was R = -0.68; 

the respective correlation between these measures with PD was R = -0.70 and R = 0.50, respectively. As such, 

we also selected s25 (1.75mm) to examine in more detail as another measure.  

 

Table 4 (top) shows the breast cancer associations provided by PD (left), m75 (middle) and s25 (right) for Study 

1. All measures provided significant association with breast cancer in the adjusted models. Cases exhibited 

stochastic dominance for both PD and s25 and both methods produced similar ORs of 1.34 and 1.30, respectively 
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with Az = 0.64 and 0.63. In contrast controls exhibited stochastic dominance for m75 with OR = 0.69 with Az = 

0.64, which was similar to the Az produced by the other measures. Inverting this measure gave OR = 1.45 

(1.23, 1.66) showing magnitude similarity with other associations. We translated m75 and s25 to Study 2 giving 

n+1 = 53 and n+1 = 17 respectively, preserving spatial distances and metrics across studies. The corresponding 

Study 2 breast cancer associations for PD, m75 (m53) and s25 (s17) are provided in the Table 4 (bottom). All 

measures provided significant associations in the adjusted models. Cases exhibited stochastic dominance for 

both PD and s25 with ORs of 1.73 and 1.34, respectively with Azs of 0.64 and 0.63. When comparing respective 

metrics across Studies (adjusted models), PD provided a marginally greater OR in Study 2 with an identical Az. 

The remaining metric, m75, had an OR 0.67 with an Az of 0.61. Inverting the associations for m75, gave OR = 

1.49 (1.12, 1.96).  Both m75 and s25 provided nearly identical ORs in both studies, whereas Az was marginally 

greater for m75 in Study 1 (0.64 vs. 0.61) and was identical for s25. 

 

4. Discussion 

A technique for evaluating the correlation structure in mammograms based on a template comparison was 

presented. This technique was applied to one study for exploration purposes by varying the adjustable 

parameters. Many measures were significantly different across the case and control groups. Two correlation 

measures were selected for further analytical scrutiny. These measures produced similar and significant breast 

cancer associations when applied in both studies; indicating that they are robust given the different FFDM 

technologies. Moreover, the findings from Study 2 did not require additional adjustments beyond accounting for 

pitch differences. The first and last images in Figure 4 show that adipose tissue may have a stronger association 

with the reference than glandular tissue, which is also indicated by the negative correlation with PD and m75 and 

the related inverted association with breast cancer. 

 

There has been considerable work in relating textures to breast cancer risk [9, 19]. We are unaware of 

techniques that are similar to this correlation approach.  Metrics derived from the co-occurrence approach may 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 21, 2019. ; https://doi.org/10.1101/555136doi: bioRxiv preprint 

https://doi.org/10.1101/555136


11 
 

be considered as distant relatives. When developing co-occurrence metrics [9, 20], spatial correlation is 

considered by selecting specific spatial distances and directions between two relative locations (i.e. some 

number of pixel distances in the x-direction and some number of pixel distances in the y-direction) resulting in 

metrics based on bivariate histograms for fixed distances. In contrast, our approach considered correlation as a 

function of all distances and directions up to the specific local region size. To our knowledge, the use of a 

template approach and zero padding to mitigate artifacts of the discrete FT in this context are novel. The 

template comparison is the important link connecting the local Fourier analysis (i.e. the correlation function) 

with the summary measurements; this essentially transforms a parametric approach to a non-parametric 

approach. Both correlation measures provided breast cancer associations similar in magnitude to those provided 

by PD. The longer spatial range m75 measure was moderately correlated with PD, whereas the s25 measure 

showed a weak correlation with PD.  

 

Our study design has several limitations. The Study 1 exploration resulted in many measures. The method of 

selecting measures for evaluation in Study 2 may be less than optimal. This technique relied on univariate t-test 

findings, which are not the final metrics of interest (i.e. ORs). As such, selecting measures for further analysis 

could have some deficiencies. For example, image metrics can be influenced by BMI or other factors. We have 

noted that controlling for BMI either has a negligible impact or strengthens a given image measure’s breast 

cancer association. As illustration, we have provided a supplemental table where BMI and ethnicity were 

controlled for separately for m75 and s25. It interesting to note that m75 does not have a significant association in 

Study 2 until controlling for BMI in isolation. Sampling of cases and controls was not population-based, but 

rather a mixture of cases derived from an NCI-designated comprehensive cancer center inclusive of referrals 

from the community. The current findings should be replicated in population-based studies, although there is no 

evidence indicating the cases are not representative or referral to MCC is based on the images that formed the 

basis of the current work. Our analysis was restricted to areas that approximate the largest rectangle that fits 

within the breast region. Thus, a portion of the breast area was not included in the spatial correlation analysis. 
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The comparisons with PD suggest that this influence is likely to be negligible. The demographic of our 

population was primarily Non-Hispanic Caucasian women. Further studies with a wider range of race and 

ethnicity should be implemented to explore whether these measures generalize to wider populations for risk 

prediction purposes. As illustrated in Figure 4 (bottom row), within a given mammogram the correlation 

properties vary from region to region. Our study did not attempt to quantify this nonstationary statistical 

behavior beyond summarizing the local behavior to produce a given measure. 

 

5. Conclusion  

Mammograms contain content informative of the future risk of breast cancer, although the basis for this 

connection is not understood [15]. Most often, the degree of dense tissue is used for risk prediction purposes.  

Measurements that focus on other image attributes, such as those presented in this report, rather than breast 

density directly may be useful for informing future studies designed to unravel the biology of risk. A given 

correlation metric is defined over a specific spatial distance range, which provides another measurable 

parameter that can be used for analytical purposes. Whether metrics of this kind provide additional information 

in the mammographic-risk landscape will require more elaborate studies in the future. On the other hand, this 

correlation approach is a general analysis technique.  By hypothesis, this approach may be useful for other 

forms of image analyses with varying endpoints beyond mammography, noting the template can be easily 

modified. 
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Tables, Figures and Captions  

Study 1 

Measure p-value Case 

N 

Case Mean 
(standard deviation) 

or relative frequency 

Control 

N 

Control Mean 
(standard deviation) 

or relative frequency 

Total 

N 

Total Mean 
(standard 

deviation) or 

relative frequency 
Age 0.50 588 58.2 (11.6) 588 58.1 (11.6) 1176 58.2 (11.6) 

BMI 0.0003* 588 29.3 (6.8) 581 27.9 (6.8) 1169 28.6 (6.8) 

Race        

  Caucasian 1.00 492 83.7% 493 83.8% 985 83.8% 

  African-American 0.78 57 9.7% 61 10.4% 118 10.0% 

  Asian 0.84 14 2.4% 12 2.0% 26 2.2% 

  More than One 0.022 9 1.5% 1 0.2% 10 0.9% 

  Other 0.83 11 1.9% 13 2.2% 24 2.0% 

  Unknown 0.58 5 0.9% 8 1.4% 13 1.1% 

Ethnicity        

  Non-Hispanic <0.0001 530 90.1% 461 78.4% 991 84.3% 

  Hispanic <0.0001 58 9.9% 122 20.8% 180 15.3% 

  Unknown N/A 0 0% 5 0.9% 5 0.4% 

Screening Group N/A       

  Group 1  390 66.3% 390 66.3% 780 66.3% 

  Group 2  88 15.0% 88 15.0% 176 15.0% 

  Group 3  110 18.7% 110 18.7% 220 18.7% 

HRT Usage N/A       

  Current  37 6.3% 37 6.3% 74 6.3% 

  Not Currently  551 93.7% 551 93.7% 1102 93.7% 

MS        

  Pre-Menopausal 0.58 157 26.7% 150 25.5% 307 26.1% 

  Menopausal 0.51 430 73.1% 436 74.2% 866 73.6% 

  Unknown 1.00 1 0.2% 2 0.3% 3 0.3% 

PD 0.25 588 24.2 (10.8) 588 23.5 (11.1) 1176 23.8 (10.9) 

Table1a: Study 1 characteristics: This table provides Study 1 characteristics by either distribution mean for a 

given measure or percentages of the population. Where applicable, the standard deviation of the respective 

distribution is provided parenthetically. Images were acquired with either Selenia FFDM or Dimensions DBT 

units. The case/control paired t-test for BMI was calculated with the 581 complete pairs due to missing data on 

seven controls.  
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 Study 2 

Measure p-value Case 

N 

Case Mean 
(standard deviation) 

or relative frequency 

Control 

N 

Control Mean 
(standard deviation) 

or relative frequency 

Total 

N 

Total Mean 
(standard 

deviation) or 

relative frequency 
Age 0.25 180 58.6 (10.5) 180 58.5 (10.4) 360 58.6 (10.4) 

BMI 0.0071 180 26.6 (4.7) 180 25.2 (4.3) 360 25.9 (4.5) 

Race              

  Caucasian 0.74 159 88.3% 162 90.0% 321 89.2% 

  African-American 0.26 7 3.9% 13 7.2% 20 5.6% 

  Asian 0.291 7 3.9% 3 1.7% 10 2.8% 

  More than One N/A 2 1.1% 0 0.0% 2 0.6% 

  Other N/A 4 2.2% 0 0.0% 4 1.1% 

  Unknown 1.00 1 0.6% 2 1.1% 3 0.8% 

Ethnicity        

  Non-Hispanic 0.85 164 91.1% 162 90.0% 326 90.6% 

  Hispanic 0.84 14 7.8% 16 8.9% 30 8.3% 

  Unknown 1.00 2 1.1% 2 1.1% 4 1.1% 

Screening Group N/A       

  Group 1  162 90.0% 162 90.0% 324 90.0% 

  Group 2  5 2.8% 5 2.8% 10 2.8% 

  Group 3  13 7.2% 13 7.2% 26 7.2% 

HRT Usage N/A       

  Current  36 20.0% 36 20.0% 72 20.0% 

  Not Currently  144 80.0% 144 80.0% 288 80.0% 

MS 0.076       

  Pre-Menopausal  38 21.1% 48 26.7% 86 23.9% 

  Menopausal  142 78.9% 132 73.3% 274 76.1% 

PD 0.025 180 22.6 (14.7) 180 19.8 (12.9) 360 21.2 (13.9) 

Table1b: Study 2 characteristics. This table provides Study 2 population characteristics by either distribution 

mean for a given measure or percentages of the population. Where applicable, the standard deviation of the 

respective distribution is provided parenthetically. Images were acquired with a Senographe 2000D unit. 
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 n+1 

mn+1 sn+1 mn+1 sn+1 

Case measure exhibits stochastic 

dominance: p < 0.05 

Control measure exhibits stochastic 

dominance: p < 0.05 

5 0 37 50 4 

13 0 50 50 0 

25 0 30 50 0 

51 0 5 50 0 

75 0 0 50 0 

101 0 0 50 0 

125 0 0 50 0 

n+1  
Case measure exhibits stochastic 

dominance: p < 0.025 

Control measure exhibits stochastic 

dominance: p < 0.025 

5 0 36 0 0 

13 0 50 50 0 

25 0 26 50 0 

51 0 0 50 0 

75 0 0 50 0 

101 0 0 50 0 

125 0 0 49 0 

 n+1 
Case measure exhibits stochastic 

dominance: p < 0.01 

Control measure exhibits stochastic 

dominance: p < 0.01 

5 0 2 0 0 

13 0 50 0 0 

25 0 20 38 0 

51 0 0 50 0 

75 0 0 50 0 

101 0 0 0 0 

125 0 0 0 0 

Table 2: t-test comparison summary. This table provides a summary of the paired t-test separated by the two 

metrics, case or control distribution stochastic dominance, and three significance levels. The spatial correlation 

dimensional parameter, n+1, is provided in the left column.  
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metric 
m25 

(0.001) 

m51 

(0.001) 

m75 

(0.006) 

s5 

(0.018) 

s13 

(0.002) 

s25 

(0.050) 

m25 

(0.001) 
1.00 0.98 0.97 -0.71 -0.86 -0.68 

m51 

(0.001) 
0.98 1.00 0.99 -0.65 -0.84 -0.72 

m75 

(0.006) 
0.97 0.99 1.00 -0.63 -0.83 -0.73 

s5 

 (0.018) 
-0.71 -0.65 -0.63 1.00 0.80 0.53 

s13 

(0.002) 
-0.86 -0.84 -0.83 0.80 1.0000 0.86 

s25 

(0.050) 
-0.68 -0.72 -0.73 0.53 0.86 1.00 

Table 3: Correlation table. This table provides a summary of the linear correlation coefficients for measures in 

Table 2 with p < 0.01. The σ settings are provided parenthetically for the minimal p-value.
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PD (Study 1) 

 

m75 (Study 1) 

 

s25 (Study 1) 

LOG 

CON 

LOG 

STD 

unadjusted OR 

(95% CI) 

BMI and ethnicity 

adjusted OR 

(95% CI) 

 

LOG 

CON 

LOG 

STD 

unadjusted OR 

(95% CI) 

BMI and ethnicity 

adjusted OR 

(95% CI) 

 

LOG 

CON 

LOG 

STD 

unadjusted OR 

(95% CI) 

BMI and ethnicity 

adjusted OR 

(95% CI) 

  0.5007 
1.10  

(0.97, 1.23) 

1.34 

 (1.15, 1.55) 

 

  0.1774 
0.85 

 (0.75, 0.96) 

0.69  

(0.60, 0.81) 

 

  0.0867 
1.22  

(1.07, 1.38) 

1.30  

(1.14, 1.49) 

Az   
0.52  

(0.49, 0.57) 

0.64 

 (0.60, 0.68) 

 

Az   
0.55 

 (0.51, 0.59) 

0.64 

 (0.61, 0.68) 

 

Az   
0.54 

 (0.50, 0.58) 

0.63  

(0.59, 0.67) 

              PD (Study 2) 

 

m75 (m53 Study 2) 

 

s25 (s17 Study 2) 

LOG 

CON 

LOG 

STD 

unadjusted OR 

(95% CI) 

BMI and ethnicity 

adjusted OR 

(95% CI) 

 

LOG 

CON 

LOG 

STD 

unadjusted OR 

(95% CI) 

BMI and ethnicity 

adjusted OR 

(95% CI) 

 

LOG 

CON 

LOG 

STD 

unadjusted OR 

(95% CI) 

BMI and ethnicity 

adjusted OR 

(95% CI) 

  0.7668 
1.35  

(1.05, 1.74) 

1.73  

(1.28, 2.34) 

 

  0.1333 
0.80 

 (0.62, 1.02) 

0.67 

 (0.51, 0.89) 

 

  0.0538 
1.29  

(1.03, 1.63) 

1.34  

(1.06, 1.69) 

Az   
0.57 

 (0.50, 0.64) 

0.64  

(0.57, 0.71) 

 

Az   
0.55  

(0.48, 0.62) 

0.61  

(0.54, 0.68) 

 

Az   
0.56  

(0.48, 0.63) 

0.63  

(0.56, 0.70) 

Table 4: Conditional logistic regression modeling for Study 1 and Study 2. This table provides  odd ratios (ORs) and the area under the receiver 

operating characteristic curve (Az) with 95% confidence intervals (CIs) for  PD and the two selected spatial correlation metrics for both studies: m75 

(or equivalently m53 for Study 2) and s25 (or equivalently s17 for Study 2).  Models are provided in unadjusted and adjusted for body mass index 

(BMI) and ethnicity formats.  
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Figure 1: Mammogram with the largest rectangle: This shows typical mammogram in processed format used 

for viewing purposes with the largest rectangle inscribed within the breast area. The smaller region is 125×125 

pixels equating with n = 124. We used this smaller region for illustration purposes in Figure 1 and 2. 
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Figure 2: Correlation with zero padding: The section on the left was extracted from Figure 1 and zero padded. 

In this example, n = 125, giving a region of (2n+1)×(2n+1)= 249×249 pixels with the zero padding. The middle 

pane shows the corresponding two-dimensional auto correlation function, he(x, y). The pane on the right shows 

a slice along the middle of he(x,y) along the x-direction (horizontal). Note that he(x, y) tappers to zero as the 

shift approaches |124|. 
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Figure 3: Correlation without zero padding: The section on the left was extracted from Figure 1. In this 

example, n = 125, giving a region of (n + 1) × (n + 1) = 125×125 pixels. The middle pane shows the 

corresponding two-dimensional autocorrelation function, he(x, y). The pane on the right shows a slice along the 

middle of he(x, y) along the x-direction (horizontal). Note that he(x, y) does not tapper to zero in contrast with 

the example shown in Figure 2. 
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Figure 4: Random mammogram section illustrations and spatial autocorrelation maps. This figure shows the 

largest rectangles constructed from five randomly selected mammograms (top row). The dimensions in pixels 

(left to right) are: 1470×1698, 586×1187, 852×1394, 1128×1693, and 921×1555.  The small box (n+1 = 51) 

outlined within each image was also selected at random.  The respective spatial distributions (resized to the full 

rectangle dimensions) for ε are illustrated in the bottom row; both the far left and far right images illustrate 

clearly that adipose regions (dark areas in the top row images) correspond with larger ε (bright areas in the 

bottom row images).
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Figure 5: Randomly selected autocorrelation images and profiles.  The top row shows the associated he(x,y) 

images for the randomly selected regions (n + 1 = 51) shown in Figure 4 (smaller region in the top row).  The 

middle row shows the respective profiles taken through he(x, y) [dashes] and h(x,y) [solid]  along the x axis. 

The bottom row shows the respective profiles taken through the y axis.  
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