
1 

Chromatin compartment dynamics 1

in a haploinsufficient model of cardiac laminopathy 2

3

Alessandro Bertero1,2,3, Paul A. Fields1,2,3, Alec S. T. Smith2,3,4, Andrea Leonard2,3,5, Kevin Beussman2,3,5,4 

Nathan J. Sniadecki2,3,4,5, Deok-Ho Kim2,3,4, Hung-Fat Tse6, Lil Pabon1,2,3, Jay Shendure7,8, William S. 5 

Noble7, and Charles E. Murry1,2,3,4,9 6 

 7 
1 Department of Pathology, University of Washington, Seattle, WA, USA 8 
2 Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA 9 
3 Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA 10 
4 Department of Bioengineering, University of Washington, Seattle, WA, USA 11 
5 Department of Mechanical Engineering, University of Washington, Seattle, WA, USA 12 
6 Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong, China 13 
7 Department of Genome Sciences, University of Washington, Seattle, Washington, USA 14 
8 Howard Hughes Medical Institute, Seattle, Washington, USA 15 
9 Department of Medicine/Cardiology, University of Washington, Seattle, WA, USA 16 

 17 

For correspondence pertaining to this article, contact: 18 

 19 
Charles E. Murry, MD, PhD 

University of Washington 

850 Republican Street 

Brotman Building Room 453 

Seattle, WA 98109 

206-616-8685 

murry@uw.edu 

ORCID: 0000-0003-3862-6773

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/555250doi: bioRxiv preprint 

https://doi.org/10.1101/555250


 2 

Abstract 20 

 21 

Pathogenic mutations in A-type nuclear lamins cause dilated cardiomyopathy, which is postulated to 22 

result from dysregulated gene expression due to changes in chromatin organization into active and 23 

inactive compartments. To test this, we performed genome-wide chromosome conformation analyses 24 

(Hi-C) in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with a 25 

haploinsufficient mutation for lamin A/C. Compared to gene-corrected cells, mutant hiPSC-CMs have 26 

marked electrophysiological and contractile alterations, with modest gene expression changes. While 27 

large-scale changes in chromosomal topology are evident, differences in chromatin 28 

compartmentalization are limited to a few hotspots that escape inactivation during cardiogenesis. These 29 

regions exhibit upregulation of multiple non-cardiac genes including CACNA1A, encoding for neuronal 30 

P/Q-type calcium channels. Pharmacological inhibition of the resulting current partially mitigates the 31 

electrical alterations. On the other hand, A/B compartment changes do not explain most gene expression 32 

alterations in mutant hiPSC-CMs. We conclude that global errors in chromosomal compartmentation are 33 

not the primary pathogenic mechanism in heart failure due to lamin A/C haploinsufficiency. 34 

 35 

Summary 36 

 37 

Bertero et al. observe that lamin A/C haploinsufficiency in human cardiomyocytes markedly alters 38 

electrophysiology, contractility, gene expression, and chromosomal topology. Contrary to expectations, 39 

however, changes in chromatin compartments involve just few regions, and most dysregulated genes lie 40 

outside these hotspots. 41 

 42 

Condensed title 43 

 44 

Genomic effects of lamin A/C haploinsufficiency  45 
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Introduction 46 

 47 

Chromatin organization in the three-dimensional space has emerged as a key layer of mammalian gene 48 

expression control. The development of powerful technologies to map chromatin architecture, in 49 

particular genome-wide chromosome conformation capture (Hi-C; Lieberman-Aiden et al., 2009), has 50 

revealed that such 3D structure is complex, non-random, and hierarchical (Yu and Ren, 2017). Short- 51 

and long-range intra-chromosomal (cis) DNA interactions are generally constrained within topologically 52 

associating domains (TADs; Dixon et al., 2012; Nora et al., 2012; Sexton et al., 2012). TADs tend to 53 

interact based on their epigenetic status and transcriptional activity, thus dividing chromosomes into two 54 

types of large-scale compartments generally called active and inactive (A and B, respectively; Simonis 55 

et al., 2006; Lieberman-Aiden et al., 2009; Rao et al., 2014). Inter-chromosomal (trans) interactions 56 

predominantly involve the A compartment and are generally more limited, as chromosomes occupy 57 

distinct nuclear territories (Bolzer et al., 2005; Branco and Pombo, 2006; Kalhor et al., 2012). 58 

 59 

Moving beyond the third dimension, there has been growing interest in understanding the functional 60 

changes in chromatin organization during development and in disease (Dekker et al., 2017). An emerging 61 

body of work has shown that TADs are largely invariant across cell types (Dixon et al., 2012, 2015; Fraser 62 

et al., 2015; Won et al., 2016; Schmitt et al., 2016; Fields et al., 2017). On the other hand, these same 63 

studies have established that pluripotent stem cell differentiation leads to a substantial degree of A/B 64 

compartment reorganization (e.g. ~20% of the genome), and that this is associated with important 65 

developmental changes in gene expression. Nevertheless, the precise mechanisms that regulate 66 

chromatin compartmentalization dynamics during development are still poorly understood (Adriaens et 67 

al., 2018). In the context of disease, disruption of TADs due to copy number variations or point mutations 68 

was shown to lead to congenital developmental disorders and cancers (Lupiáñez et al., 2015; Katainen 69 

et al., 2015; Redin et al., 2017; Sun et al., 2018). In contrast, whether dysregulation of A/B compartments 70 

plays a role in functional changes of gene expression leading to human disease is still unclear (Krumm 71 

and Duan, 2018). 72 

 73 

The nuclear lamina has been proposed as a regulator of chromatin compartmentalization in development 74 

and disease (Buchwalter et al., 2018). The lamina lies along the inner nuclear membrane and is a 75 

complex mesh of nuclear intermediate filaments (A- and B-type lamins) and lamin-associated proteins. 76 

This structure provides key mechanical support to the nucleus, and is an important hub for the control of 77 

intracellular signaling (Dobrzynska et al., 2016). Moreover, the nuclear lamina interacts with large 78 

chromatin regions, aptly named lamin-associated domains (LADs; van Steensel and Belmont, 2017), 79 
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which show heterochromatic features such as low gene density, enrichment for repressive histone marks, 80 

and poor transcriptional activity (Guelen et al., 2008). Several studies have established that such 81 

peripherally-located LADs strongly correlate with the B compartment, while the A compartment is 82 

predominantly in the nuclear interior (Kind et al., 2015; Stevens et al., 2017; Luperchio et al., 2017; Zheng 83 

et al., 2018). Both lamins and lamin-associated proteins, such as LBR (lamin B receptor), can directly 84 

interact with chromatin (Yuan et al., 1991; Taniura et al., 1995; Ye and Worman, 1994, 1996). Based on 85 

this and on the results of loss-of-function studies it has been proposed that the nuclear lamina tethers 86 

LADs at the nuclear periphery (Solovei et al., 2013; Harr et al., 2015; Luperchio et al., 2017). However, 87 

the precise role of A- and B-type lamins in chromatin compartmentalization is still being debated 88 

(Amendola and van Steensel, 2015; Zheng et al., 2015, 2018; Adriaens et al., 2018). 89 

 90 

Elucidating the function of A-type lamins (lamin A and lamin C, which result from alternative splicing of 91 

the LMNA gene) is particularly important not only from a cell and developmental biology perspective, but 92 

also because of their involvement in human disease. LMNA mutations lead to a wide spectrum of 93 

conditions collectively referred to as laminopathies (Capell and Collins, 2006). Notably, nearly 80% of all 94 

reported LMNA mutations lead to isolated striated muscle disease, with another 10% leading to 95 

overlapping phenotypes that also affect striated muscles (Bertrand et al., 2011). The majority of patients 96 

with striated muscle laminopathies develop dilated cardiomyopathy (DCM), with variable skeletal muscle 97 

manifestations (Captur et al., 2018). Mutations in LMNA are generally considered the second-most most 98 

common cause of familial DCM, depending on the ethnicity of the population (Akinrinade et al., 2015; 99 

Haas et al., 2015; Tobita et al., 2018). Compared to other types of DCM, LMNA-DCM is quite atypical as 100 

it is characterized by early onset of life-threatening cardiac electrical abnormalities such as severe 101 

conduction system disease and/or atrial and ventricular arrhythmias (Van Rijsingen et al., 2012; 102 

Hasselberg et al., 2018; Kumar et al., 2016). Another peculiar aspect of LMNA-DCM is that not all patients 103 

go on to develop left ventricular dilatation and reduced contractile function, which are typical hallmarks 104 

of DCM (Van Berlo et al., 2005; Kumar et al., 2016; Tobita et al., 2018). Nevertheless, patients with 105 

LMNA-DCM are poorly responsive to medical treatments and show minimal beneficial left ventricular 106 

reverse remodeling (Tobita et al., 2018). This may be explained by the higher incidence of cardiac fibrosis 107 

in LMNA-DCM patients (van Tintelen et al., 2007b; Fontana et al., 2013; Tobita et al., 2018). Overall, 108 

LMNA-DCM (which throughout the rest of the manuscript we will refer to as “cardiac laminopathy”) is a 109 

more severe disease compared to other genetic DCM, with young onset, high penetrance, poor 110 

prognosis, and frequent need for heart transplantation as the only current available therapy (Hasselberg 111 

et al., 2018; Tobita et al., 2018). 112 

 113 
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Over the nearly 20 years since the first report linking mutations in LMNA to human disease (Bonne et al., 114 

1999), three central non-mutually exclusive mechanisms have been hypothesized to underpin the 115 

pathogenesis of cardiac laminopathy: (1) impaired nuclear mechanoresistance via the nucleo-116 

cytoplasmic network, or “mechanical hypothesis”; (2) alteration of lamin A/C-controlled intracellular 117 

signaling pathways, or “signaling hypothesis”; and (3) dysregulation of heterochromatin organization 118 

leading to gene expression alterations, or “chromatin hypothesis” (Worman and Courvalin, 2004; Cattin 119 

et al., 2013). While evidence supporting the first two hypotheses has accumulated over the years, and 120 

therapies targeting intracellular signaling alterations are being pre-clinically developed (Cattin et al., 2013; 121 

Captur et al., 2018), the possible involvement of chromatin dysregulation in cardiac laminopathy is still 122 

far from established (Adriaens et al., 2018). Indeed, while there have been reports of changes in the 123 

nuclear positioning of selected loci in patients with cardiac laminopathy (Meaburn et al., 2007; Mewborn 124 

et al., 2010), the functional consequences of such alterations on the disease pathogenesis are unclear. 125 

Moreover, these studies have relied on fibroblasts instead of cardiomyocytes, the primary cell type 126 

involved in cardiac laminopathy. Most importantly, to the best of our knowledge the 3D chromatin 127 

organization changes associated with cardiac laminopathy have not yet, been tested at a genome-wide 128 

level. 129 

 130 

To address these limitations, we performed genome-wide chromosome conformation capture (Hi-C) and 131 

gene expression (RNA-seq) analyses to examine the changes in 3D chromatin architecture induced by 132 

a haploinsufficient LMNA mutation in cardiomyocytes derived from human induced pluripotent stem cells 133 

(hiPSC-CMs). We hypothesized that decreased expression of A-type lamins would lead to broad 134 

functional alterations in A/B compartmentalization leading to aberrant gene expression. We observed 135 

that mutant hiPSC-CMs show marked alterations in their electrophysiological and contractile phenotypes, 136 

broad dysregulation of gene expression, and alterations in large-scale chromosomal topology 137 

(strengthened separation between chromosome territories and between chromatin compartments). 138 

However, functional changes in A/B compartmentalization are limited to a few genomic hotspots that 139 

normally transition from the A to B compartment during cardiogenesis, but remain in A in lamin A/C 140 

haploinsufficient hiPSC-CMs. These hotspots exhibit upregulation of multiple non-cardiac genes, 141 

including the neuronal gene CACNA1A, which encodes for P/Q-type calcium channels. Of note, however, 142 

changes in A/B compartments do not explain the majority of gene expression changes, including the 143 

upregulation of the cardiac gene CACNA1C, which encodes for the L-type calcium channel. 144 

Pharmacological inhibition of P/Q-type calcium currents partially mitigates the field potential duration 145 

elongation observed in mutant hiPSC-CMs, while inhibition of L-type calcium currents has a more 146 

powerful effect. We conclude that, while LMNA haploinsufficient mutations functionally affect selected 147 
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aspects of 3D chromatin organization in human cardiomyocytes, altered A/B compartmentalization does 148 

not represent the primary mechanism directly leading to gene expression changes and disease 149 

pathogenesis. 150 

 151 

Results 152 

 153 

Generation of an in vitro model of cardiac lamin A/C haploinsufficiency 154 

To investigate the role of chromatin dynamics in cardiac laminopathy, we took advantage of hiPSCs 155 

bearing a heterozygous nonsense mutation in LMNA predicted to cause premature truncation of both 156 

lamin A and lamin C splicing isoforms (c.672C>T, resulting in p.Arg225*, which we will refer to as R225X; 157 

Fig. 1A). This hiPSC line was previously derived from a 56-year-old male patient who developed severe 158 

cardiac conduction disease evolving into heart failure, a condition that segregated within the family with 159 

autosomal dominant inheritance of the R225X mutation (Siu et al., 2012). This same mutation has been 160 

reported in multiple other cohorts with similar symptoms (van Tintelen et al., 2007a; Saga et al., 2009; 161 

Jakobs et al., 2001), establishing it as a bona fide genetic cause of cardiac laminopathy. 162 

 163 

It is well established that variability among hiPSC lines can profoundly influence both molecular and 164 

cellular phenotypes (Ortmann and Vallier, 2017), which is particularly evident when assessing the 165 

complex electrophysiology and contractile properties of hiPSC-CMs (Sala et al., 2017). Thus, we decided 166 

to generate isogenic control hiPSCs by correcting the R225X mutation back to the wild-type allele, a 167 

strategy currently considered the gold standard to determine the association between genotype and 168 

phenotype in hiPSC-CMs (Bellin et al., 2013; Kodo et al., 2016; Mosqueira et al., 2018). By leveraging 169 

existing methods (Yusa, 2013), we designed a two-step scarless gene editing strategy relying on 170 

CRISPR/Cas9-facilitated homologous recombination of a targeting vector containing the wild-type allele 171 

in the 3’ homology arm, and an excisable piggyBac drug resistance cassette (Fig. S1A-B). To control for 172 

the potential variability between hiPSC sublines, we obtained two isogenic control hiPSCs using distinct 173 

sgRNA sequences (Fig. 1B and S1C-D). The resulting hiPSCs, which we will refer to as Corr.1 and Corr.2 174 

(short for Corrected 1 and Corrected 2) were karyotypically normal (Fig. S1E). 175 

 176 

Lamin A/C is expressed at very low levels in human pluripotent stem cells, and is upregulated during 177 

differentiation (Constantinescu et al., 2006; Liu et al., 2011). Given that hiPSC-CMs are quite immature 178 

(Yang et al., 2014), we sought to first confirm whether hiPSC-CMs express substantial levels of lamin 179 

A/C. Further, we tested the consequence of the R225X mutation on lamin A/C expression at the transcript 180 

and protein level. For this, we differentiated hiPSCs into hiPSC-CMs using an established protocol based 181 
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on the temporal modulation of WNT signaling using small molecules (Burridge et al., 2014; Fields et al., 182 

2017; Fig. 1C). Both mutant and corrected hiPSCs could be differentiated with high efficiency, as 183 

measured by flow-cytometry for TNNT2 (Fig. 1D, Video S1, and Video S2; 91.6% ± 3.2%, 94.4% ± 2.5%, 184 

and 91.3% ± 3.1% for Mutant, Corr.1, and Corr.2, respectively; average ± SEM of n = 4 independent 185 

differentiations). Western blot and quantitative reverse transcription PCR (RT-qPCR) confirmed that all 186 

hiPSC lines underwent the expected developmental progression through mesoderm and cardiac 187 

progenitors before reaching a cardiomyocyte phenotype (Fig. 1F and S2A). Lamin A/C was upregulated 188 

specifically in hiPSC-CMs, and mutant lines showed significantly reduced levels of both mRNA and 189 

protein compared to both corrected controls (Fig. 1E-G). Of note, no detectable protein truncation was 190 

detected by western blot (Fig. S2B), and lamin A/C expression in mutant hiPSC-CMs also proved to be 191 

reduced when compared to cardiomyocytes generated from an unrelated hiPSC line derived from a 192 

healthy individual (Fig. S2C). Finally, other minor LMNA isoforms were undetectable or nearly 193 

undetectable by RT-qPCR in both control and mutant hiPSC-CMs, excluding possible compensatory 194 

mechanisms (data not shown). These gene expression data agree with earlier findings from analysis of 195 

skin fibroblasts bearing the R225X heterozygous mutation (Siu et al., 2012), and indicate that such 196 

premature nonsense mutation leads to lamin A/C haploinsufficiency presumably due to nonsense-197 

mediated decay of both the lamin A and lamin C transcripts. Collectively, we established a robust in vitro 198 

model to study cardiac laminopathy due to lamin A/C haploinsufficiency in developing cardiomyocytes. 199 

 200 

Lamin A/C haploinsufficiency alters hiPSC-CM automaticity and prolongs membrane 201 

depolarization 202 

Before exploring the effect of lamin A/C haploinsufficiency on chromatin dynamics, we wished to confirm 203 

a phenotypic effect on cardiac physiology in developing hiPSC-CMs. Indeed, cardiac laminopathy is a 204 

disease that manifests in the third to fourth decade of life, and previous efforts to model the disease in 205 

immature cardiomyocytes have been focused on studying nuclear dysmorphology, cellular senescence, 206 

and susceptibility to apoptosis (Siu et al., 2012; Lee et al., 2017). Since electrical abnormalities are the 207 

primary and most characteristic manifestations of cardiac laminopathy (Van Rijsingen et al., 2012; 208 

Hasselberg et al., 2018; Kumar et al., 2016), we began by assessing the electrophysiological properties 209 

of mutant hiPSC-CMs. For this, we first used multi-electrode arrays (MEAs) to measure the extracellular 210 

electric field potential elicited by spontaneously contracting monolayers of hiPSC-CMs at day 30 of 211 

differentiation. Mutant cells showed a number of alterations compared to both corrected controls. Most 212 

notably, the beat rate proved highly erratic and prone to prolonged pauses (Fig. 2A). Moreover, even 213 

when the analysis was focused on the periods showing the highest consistency, the beat rate was still 214 

more irregular and reduced (Fig. 2B). The amplitude of field potential changes was elevated more than 215 
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2-fold compared to controls, which is indicative of stronger depolarizing ion currents (Fig. 2B). Along the 216 

same lines, the field potential duration (FPD), which indicates the interval between depolarization and 217 

repolarization, was prolonged by ~60% (Fig. 2B). This finding held true even when the FPD was corrected 218 

for the beat period (FPDc; Fig. 2B), an established way to robustly compare the FPD across multiple 219 

conditions (Rast et al., 2016; Asakura et al., 2015). Of note, despite all of these alterations, the conduction 220 

velocity across the monolayer was not affected (Fig. 2B), indicating that intercellullar electrical coupling 221 

was preserved in mutant cells. 222 

 223 

To further characterize the electrophysiological properties of mutant hiPSC-CMs, we performed whole-224 

cell patch clamp recordings of voltage changes occurring during action potentials firing in individual 225 

cardiomyocytes. To promote a mature phenotype and enhance cell viability during the invasive patch 226 

procedure, we cultured hiPSC-CMs onto biomimetic anisotropic nanopatterns (Carson et al., 2016; 227 

Macadangdang et al., 2015). While a number of parameters were unaffected in mutant cells (such as 228 

maximum diastolic potential, action potential amplitude, mean diastolic potential, and repolarization 229 

amplitude; Fig. 2D and data not shown), the action potential duration and exponential time constant for 230 

the action potential decay were increased (Fig. 2C-D). This observation provided a cell-autonomous 231 

explanation for the increased FPDc in cell monolayers, and indicated that this phenotype is maintained 232 

in maturing hiPSC-CMs. 233 

 234 

Finally, we measured the effects of excitation abnormalities in mutant cells on their intracellular calcium 235 

dynamics using the fluorescent calcium reporter Fluo-4. Electrically-paced mutant cell monolayers 236 

showed stronger and longer calcium peaks (Fig. 2E-F, Video S3, and Video S4), in agreement with MEA 237 

and patch clamp data. Overall, these findings indicate that lamin A/C haploinsufficiency in developing 238 

cardiomyocytes leads to altered automaticity and prolonged membrane depolarization leading to more 239 

robust calcium transients. 240 

 241 

Systolic hyperfunction and diastolic dysfunction in lamin A/C haploinsufficient hiPSC-CMs 242 

Since changes in intracellular calcium concentrations are the primary determinant of hiPSC-CM 243 

contractility, we examined the effect of lamin A/C haploinsufficiency on this process. First, we performed 244 

correlation-based contraction quantification (CCQ) analyses to measure the cellular displacement 245 

associated with cardiac contraction in electrically-paced hiPSC-CM monolayers (Macadangdang et al., 246 

2015). Mutant cells showed ~50% stronger contractions and a delayed relaxation time (Fig. 3A-B, Video 247 

S5, and Video S6), consistent with their stronger and prolonged calcium fluxes.  248 

 249 
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To validate these findings in a more physiologically-relevant model, we performed biomechanical 250 

assessments of contractility in electrically-paced three-dimensional engineered heart tissues (3D-EHTs), 251 

an established model to promote cardiac maturation by providing topological, mechanical, and 252 

multicellular cues (Leonard et al., 2018; Ruan et al., 2016). In agreement with observations in 2D 253 

monolayers, mutant 3D-EHTs showed ~2-fold stronger and prolonged contractions with a markedly 254 

impaired relaxation kinetic (Fig. 3C-D, Video S7, and Video S8). Collectively, we concluded that lamin 255 

A/C haploinsufficiency leads to systolic hyperfunction and diastolic dysfunction in both early and maturing 256 

cardiomyocytes. 257 

 258 

Lamin A/C haploinsufficiency causes dysregulation of specific ion channel genes and broad gene 259 

expression changes 260 

To explore the molecular mechanisms that might explain the electrophysiological and contractile 261 

phenotypes observed in lamin A/C haploinsufficient hiPSC-CMs, we first monitored the expression of the 262 

genes encoding key ion-handling proteins involved in the generation of action potentials and in excitation-263 

contraction coupling (Amin et al., 2010; Eisner et al., 2017). RT-qPCR analyses excluded a dysregulation 264 

of a large number of such genes, including the voltage-gated sodium channel SCN5A, the sodium-265 

calcium exchanger NCX, and the sarcoplasmic calcium ATPase ATP2A2 (also known as SERCA2a; Fig. 266 

S2D). On the other hand, mutant cells showed a significant upregulation of CACNA1C, and 267 

downregulation of KCNQ1 (Fig. 4A). CACNA1C encodes for the pore-forming subunit of L-type calcium 268 

channels which mediate ICa,L, the main source of inward depolarizing current during phase 2 (plateau) of 269 

the action potential (Bodi et al., 2005). On the other hand, IKS, the outward potassium current resulting 270 

from the potassium channel encoded by KCNQ1, antagonizes ICa,L in phase 2 by initiating membrane 271 

repolarization (Peroz et al., 2008). Thus, the combined effects of CACNA1C upregulation and KCNQ1 272 

downregulation could explain the prolonged membrane depolarization observed in mutant cells. 273 

 274 

We then expanded these gene expression analyses genome-wide by performing RNA sequencing of 275 

hiPSC-CM monolayers at day 14 of differentiation on biological triplicates (RNA-seq; Table S1). While 276 

cells from the two corrected control lines clustered closely and showed remarkably similar gene 277 

expression profiles (29 upregulated and 71 downregulated genes between Corr.1 and Corr.2; fold-278 

change > 2 and q-value < 0.05; Fig. 4B and Table S1), mutant cells clustered separately due to 279 

substantial gene up- and downregulation (Fig. 4B-C and Table S1). To increase the robustness of our 280 

subsequent analyses, we only considered genes as dysregulated if they had significant expression 281 

changes in mutant hiPSC-CMs versus both corrected controls (185 upregulated and 140 downregulated; 282 

Fig. 4C and Table S1). Ontology and pathway enrichment analyses on these gene lists revealed that 283 
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upregulation in mutant cells was significantly associated with: (1) focal adhesion, MAPK, and TGFß 284 

pathways; (2) transcriptional activation, positive regulation of cardiac differentiation, and inhibition of 285 

apoptosis; (3) non-cardiac lineage expression (such as fibroblast and smooth muscle; Fig. 4D and Table 286 

S2). Notable examples of genes within these categories include: (1) PDGFA, EGF, and GDF7; (2) TBX3, 287 

TBX20, and HAND1, (3) CTGF/CCN2, MYH9, and ACTA2. In contrast, downregulated genes were 288 

enriched in cardiac transcripts and factors involved in cardiomyopathy and PI3K pathways, such as 289 

TNNT3, TNNI3, SGCA, NGFR, and PDGFD (Fig. 4D and Table S2). We also compared these RNA-seq 290 

data with those we recently obtained from human embryonic stem cells (hESCs) profiled at different time 291 

points of cardiac differentiation (Fields et al., 2017). Linear dimensionality reduction by principal 292 

component analysis showed that both mutant and corrected hiPSC-CMs clustered closely to hESC-CMs 293 

(Fig. 4E). This indicated that despite dysregulation of >300 genes, mutant hiPSC-CMs were not globally 294 

developmentally delayed from a transcriptional standpoint. These data suggest that lamin A/C 295 

haploinsufficiency in developing hiPSC-CMs leads to dysregulation of multiple signaling pathways, in 296 

agreement with earlier findings from mouse models (Arimura et al., 2005; Muchir et al., 2007; Ramos et 297 

al., 2012; Choi et al., 2012). Further, it prevents efficient silencing of some cardiac developmental 298 

regulators and alternative lineage genes, while specific cardiac genes are not fully activated. 299 

 300 

Lamin A/C haploinsufficiency strengthens the separation between chromosome territories and 301 

between chromatin compartments 302 

Having established that lamin A/C haploinsufficiency results in marked changes in both gene expression 303 

and cellular physiology in developing hiPSC-CMs, we tested whether some of these phenotypes could 304 

be explained by changes in chromatin topology. In order to explore this aspect at a genome-wide level, 305 

we took advantage of in situ DNase Hi-C to capture all pairwise interactions between any two genomic 306 

regions (Ramani et al., 2016). We analyzed two independent batches of hiPSC-CMs at day 14 of 307 

differentiation from the mutant and two corrected lines, and we confirmed that the resulting Hi-C data 308 

were of high quality and reproducible across biological replicates, with samples clustering separately 309 

based on their genotype (Fig. 5A and Table S3). We then began exploring the global properties of 310 

chromatin topology and noticed that mutant cells showed an increased ratio of genomic interactions with 311 

the same chromosome (in cis) over those involving different chromosomes (in trans; Fig. 5B). Moreover, 312 

trans interactions were distributed differently: while all hiPSC-CMs showed the expected pattern of 313 

preferential self-association between small, gene-rich chromosomes (especially chromosomes 16, 17, 314 

19, 20, and 22) and between large, gene-poor chromosomes (such as chromosomes 1 to 8; Fig. S3A; 315 

Lieberman-Aiden et al., 2009), this property was even more striking in mutant cells (Fig. 5C). On the 316 

contrary, interactions between small and large chromosomes were less frequent (Fig. 5C). Thus, lamin 317 
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A/C haploinsufficiency reinforces the separation between chromosome territories and their segregation 318 

based on size and gene density. 319 

 320 

We then analyzed the separation of chromatin domains into the active (A) or inactive (B) compartment. 321 

For this, we computed the first principal component (PC1) from the contact matrix using bins of 500 Kb 322 

(Table S4), a well-established method to determine chromatin compartments based on their preferential 323 

association (Imakaev et al., 2012; Lieberman-Aiden et al., 2009). In agreement with our previous 324 

observations in hESC-CMs (Fields et al., 2017), trans interactions between chromatin domains favored 325 

A-A compartments, and this was not affected by lamin A/C haploinsufficiency (Fig. S3B). In cis, mutant 326 

cells showed stronger interactions between A-A compartments (Fig. 5D and Fig. S3B), particularly due 327 

to increased short-range contacts within 0.5-1 Mb (Fig. 5E). In contrast, interactions between heterotypic 328 

regions (A-B) were reduced in mutant cells (Fig. 5D and Fig. S3B), particularly for long-range contacts 329 

>10 Mb (Fig. 5E). Collectively, lamin A/C haploinsufficiency reinforces the separation between the active 330 

and inactive chromatin compartments. 331 

 332 

Incomplete transitions from the active to inactive chromatin compartment in lamin A/C 333 

haploinsufficient hiPSC-CMs 334 

To assess the effect of lamin A/C haploinsufficiency on chromatin compartmentalization, we identified 335 

genomic bins with significantly different A/B compartment scores and switching from active to inactive or 336 

vice versa between at least two conditions (Table S4). We noticed that the vast majority of compartment 337 

transitions were observed for mutant hiPSC-CMs versus each corrected control (Fig. 6A), and that B to 338 

A inversions were more common than A to B ones (42 and 27, respectively; Table S4). We observed 339 

that, 63% of A to B transitions in mutant cells involved the X chromosome, while B to A changes showed 340 

a notable concentration on chromosome 19 but were otherwise evenly spread across 13 additional 341 

chromosomes (Fig. 6B, Fig. S4A, and Table S4). Overall, compartment changes involved approximately 342 

1.2% of the genome, indicating that chromatin compartment dysregulation in mutant cells is not 343 

widespread but is actually highly restricted. 344 

 345 

To gain insight into the relationship between dysregulated regions and normal chromatin compartment 346 

dynamics during cardiomyocyte differentiation, we integrated Hi-C data from mutant and corrected 347 

hiPSC-CMs with those we previously generated at different time points throughout hESC-CM 348 

differentiation (Fields et al., 2017). Linear dimensionality reduction of A/B compartment scores for all 349 

samples confirmed that mutant hiPSC-CMs cluster separately from both corrected controls (Fig. 6C). 350 

Moreover, this analysis revealed that based on the first principal component (which explained 39% of the 351 
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variance and ordered hESC samples based on their developmental progression), mutant cells were 352 

mildly developmentally delayed from a chromatin compartmentalization standpoint (Fig. 6C). Accordingly, 353 

we observed a strong and significant enrichment for domains that normally transition from A to B during 354 

cardiac differentiation but remain in A in mutant cells (Fig. 6D). Notable examples of such behavior 355 

involved two 0.5 and 2.5 Mb-long portions of chromosome 19 (corresponding to 19p13.13 and 19q13.33, 356 

respectively), and a 1 Mb region on chromosome 5 (5q31.3; Fig. 6B and 6E). We also observed a weaker 357 

enrichment for the opposite dynamic (impaired B to A transitions; Fig. 6D), but we note that this analysis 358 

was limited to autosomes since compartment transitions of the X chromosome could not be assessed in 359 

female hESC-CMs due to the confounding factor of X inactivation (Fields et al., 2017). In sum, lamin A/C 360 

haploinsufficiency in developing hiPSC-CMs results in highly selective dysregulation of chromatin 361 

compartmentalization, particularly for a handful of genomic hotspots that fail to transition from the active 362 

to inactive compartment. We will refer to these as lamin A/C-sensitive B domains. 363 

 364 

Dysregulation of lamin A/C-sensitive B domains leads to ectopic expression of non-cardiac genes 365 

We then assessed the functional consequences of compartment dysregulation due to lamin A/C 366 

haploinsufficiency. Strikingly, we observed almost no overlap between genes within lamin A/C-sensitive 367 

domains and genes significantly and strongly up- or downregulated in mutant cells (Fig. S4B). 368 

Accordingly, there were no significant changes in the average expression of genes found in lamin A/C-369 

sensitive domains in mutant versus corrected controls (Fig. 7A). Nevertheless, we noticed a small number 370 

of genes located in lamin A/C-sensitive B domains that were expressed at very low levels in corrected 371 

hiPSC-CMs and upregulated in mutant cells (29 genes with an average fold-change > 2; Fig. 7A and Fig. 372 

S4C). These genes were significantly enriched for three chromosome locations (Fig. 7B), two of which 373 

corresponded to the lamin A/C-sensitive hotspots 5q31.3 and 19q13.33 (Fig. 6E), and were associated 374 

with neuronal development (Fig. 7B, and Table S5). 375 

 376 

Of note, most genes in the group just described had not been determined as differentially expressed 377 

based on RNA-seq analysis using Cufflinks since lowly-expressed genes are subject to strong negative 378 

penalization when calculating the q score due to the challenges in robustly assessing their expression 379 

(Trapnell et al., 2012, 2010). This explains their absence in the lists used for the overlap shown in 380 

Supplemental Figure 4B. To increase our confidence with these results we validated the expression of 381 

several genes within this class by RT-qPCR. Moreover, to exclude that such gene expression differences 382 

were simply explained by a differentiation delay in mutant hiPSC-CMs, we analyzed hiPSC-CMs matured 383 

either by longer 2D culture or by the generation of 3D-EHTs. Remarkably, nearly all genes tested showed 384 

consistent significant upregulation in mutant samples (Fig. 7C-D and Fig. S4D-E). These findings 385 
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confirmed that impaired transition to the B compartment of selected lamin A/C-sensitive domains leads 386 

to upregulation of multiple non-cardiac genes that would otherwise be silenced during cardiomyocyte 387 

differentiation. 388 

 389 

Ectopic P/Q-type and potentiated L-type calcium currents contribute to electrophysiological 390 

abnormalities of lamin A/C haploinsufficient hiPSC-CMs 391 

Genes found in lamin A/C-sensitive B domains and upregulated in mutant hiPSC-CMs included multiple 392 

factors with either unknown function, such as the putative uncharacterized protein C19orf81, or with 393 

established roles in the nervous system but not normally expressed in the heart (Fig. 7C-D and Fig. S4D-394 

E). This group included genes from all of the three protocadherin clusters on chromosome 5 (alpha, beta, 395 

and gamma, exemplified by PCDHA10, PCDHB15, and PCHDGB4; Chen and Maniatis, 2013), LRRC4B 396 

(encoding for the postsynaptic cell adhesion molecule NGL-3; Maruo et al., 2017), SYT3 (involved in 397 

postsynaptic endocytosis; Awasthi et al., 2018), and CACNA1A (which encodes for the pore-forming 398 

subunit of neuronal P/Q-type calcium channels; Rajakulendran et al., 2012).  399 

 400 

CACNA1A appeared particularly interesting given the prolonged action potential duration observed in 401 

mutant hiPSC-CM populations. Indeed, the depolarizing ICa,P and ICa,Q currents resulting from the protein 402 

product of CACNA1A are known to be strong and long-lasting, even more so than ICa,L currents typical of 403 

hiPSC-CMs (Catterall et al., 2005; Nimmrich and Gross, 2012). Thus, we tested whether ICa,P and ICa,Q 404 

currents contributed to the electrophysiological abnormalities of mutant cells by inhibiting such currents 405 

using two structurally unrelated highly-specific inhibitors derived from spider venoms: ω-Conotoxin MVIIC 406 

and ω-Agatoxin TK (Adams et al., 1993; McDonough et al., 1996; Nimmrich and Gross, 2012). MEA 407 

experiments demonstrated that both toxins led to a modest but significant decrease in the FPDc in 408 

monolayers of mutant hiPSC-CMs, while they did not affect their depolarization amplitude (Fig. 8A-B). 409 

On the other hand, neither toxin had a significant effect on the FPDc in corrected controls (Fig. 8A-B), 410 

confirming that ICa,P and ICa,Q currents do not play a role in cardiac depolarization in physiological 411 

conditions, and establishing that the toxins had no overt non-specific effects on hiPSC-CM 412 

electrophysiology at the doses tested. These experiments indicated that ectopic expression of CACNA1A 413 

in mutant cells and the resulting P/Q-type calcium currents contribute to the prolonged depolarization 414 

observed in lamin A/C haploinsufficient hiPSC-CMs. 415 

 416 

As mentioned above, we also observed CACNA1C upregulation and KCNQ1 downregulation in mutant 417 

hiPSC-CMs at day 14 of differentiation (Fig. 4A). RT-qPCR analyses in hiPSC-CMs matured for a longer 418 

period in 2D monolayers or in 3D-EHTs indicated that KCNQ1 downregulation was specific to early 419 
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hiPSC-CMs (Fig. 8C-D). On the other hand, upregulation of CACNA1C was maintained in more mature 420 

hiPSC-CMs (Fig. 8C-D). Of note, CACNA1C is a gene always found in the A chromatin compartment 421 

throughout hiPSC-CM differentiation (Fields et al., 2017), and such localization was unaltered in mutant 422 

hiPSC-CMs (Table S4). Given the established role of ICa,L in the development and maintenance of the 423 

cardiac action potential (Catterall et al., 2005), we tested if its inhibition with the L-type calcium blocker 424 

verapamil could revert the electrophysiological abnormalities of mutant hiPSC-CMs. Remarkably, low 425 

concentrations of verapamil markedly reduced both the FPDc and the spike amplitude of mutant hiPSC-426 

CM monolayers, while they had little or no effect on corrected controls (Fig. 8E). Overall, we conclude 427 

that the combination of ectopic P/Q-type calcium currents due to aberrant chromatin compartment 428 

dynamics, and of enhanced L-type calcium currents via other epigenetic mechanisms lead to the 429 

electrophysiological abnormalities of lamin A/C haploinsufficient hiPSC-CMs (Fig. 8F). 430 

 431 

Discussion 432 

 433 

Disease modeling of cardiac laminopathy in developing cardiomyocytes 434 

Previous efforts to study cardiac laminopathy using patient-derived hiPSCs have relied on hiPSCs from 435 

unrelated healthy subjects as controls (Siu et al., 2012; Lee et al., 2017), a strategy which has known 436 

limitations (Sala et al., 2017). By developing a method to generate isogenic control hiPSCs through 437 

entirely scarless gene correction we provide a more rigorous in vitro model of cardiac laminopathy due 438 

to lamin A/C haploinsufficiency, which we apply to broaden our understanding of the disease with respect 439 

to cardiac electrophysiology and contractility.  440 

 441 

Because the earliest manifestation of cardiac laminopathy is severe electrical abnormalities in the 442 

myocardium (Van Rijsingen et al., 2012; Hasselberg et al., 2018; Kumar et al., 2016), our observations 443 

of aberrant electrophysiological properties in mutant hiPSC-CMs may be noteworthy. While alterations in 444 

cardiac rhythm could have been anticipated given the clinical manifestations of this disease, we were 445 

surprised to note increased FPDc and action potential duration. The FPD is the in vitro analogue of the 446 

QT interval measured by electrocardiogram (which indicates the interval between ventricular 447 

depolarization and repolarization). Genetic or acquired prolongation of QT interval is a strong risk factor 448 

for development of severe arrhythmias (Vandael et al., 2017), and QT interval prolongation has been 449 

reported in patients with LMNA mutations causing cardiac laminopathy (Pan et al., 2009), Emery-Dreifuss 450 

muscular dystrophy (Russo et al., 2012), and Hutchinson-Gilford progeria syndrome (Merideth et al., 451 

2008). Although prolonged QT has not been widely described as a hallmark of cardiac laminopathy, we 452 

speculate that this could be an underappreciated early clinical phenotype. Prolonged QTc and 453 
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subsequent increase in calcium influx might predispose patients to cardiac arrhythmias and/or could be 454 

an early marker of a broader conduction system disease. 455 

 456 

A striking phenotype of the laminopathic cardiomyocytes was their enhanced contractility in monolayers 457 

and in engineered heart tissues. Increased contractility can be explained by the prolonged action 458 

potentials and stronger calcium fluxes that these myocytes exhibit. At a first glance, greater contractility 459 

might appear to conflict with the clinical phenotype of some laminopathy patients who develop systolic 460 

heart failure. However, in contrast to the early-onset and highly penetrant malignant conduction disease, 461 

left ventricular dilatation and systolic failure is experienced by just a fraction of cardiac laminopathy 462 

patients and only after years after the initial diagnosis (Van Berlo et al., 2005; Kumar et al., 2016; Tobita 463 

et al., 2018). Moreover, heart failure is a complex disease that involves multiple cell types as well as the 464 

extracellular matrix (Metra and Teerlink, 2017). Thus, we propose that the systolic hyperfunction and 465 

diastolic dysfunction of lamin A/C haploinsufficient hiPSC-CMs might reflect an early and cell-466 

autonomous phenotype of cardiac laminopathy, which over the years can evolve into an organ-level 467 

disease characterized by decreased systolic function. A possible mechanism for this could be the chronic 468 

calcium overload in laminopathic cardiomyocytes, as this is a well-established stimulus that can lead to 469 

dilated cardiomyopathy due to activation of signaling pathways such as calcineurin/NFAT (Molkentin et 470 

al., 1998; Nakamura et al., 2008; Zhang et al., 2016). Additionally, it was previously shown that 471 

laminopathic cardiomyocytes are highly sensitive to apoptosis (Ho et al., 2011; Lee et al., 2017), which 472 

could over the years contribute to the development of severe cardiac fibrosis that is typical in cardiac 473 

laminopathy patients (van Tintelen et al., 2007b; Fontana et al., 2013; Tobita et al., 2018). A corollary of 474 

these intriguing hypotheses is that medical interventions during the early phases of the disease, such as 475 

the use of calcium antagonists and/or anti-apoptotic agents (Lee et al., 2014; Nie et al., 2018), may be 476 

able to prevent the development of heart failure in cardiac laminopathy patients. 477 

 478 

Chromatin architecture changes in lamin A/C haploinsufficient cardiomyocytes 479 

Our study’s primary goal was to study the pathogenesis of cardiac laminopathy. Nevertheless, by 480 

integrating Hi-C results from lamin A/C haploinsufficient and control hiPSC-CMs with our previous Hi-C 481 

dataset at different stages of human cardiogenesis (Fields et al., 2017), we were also able to shed light 482 

on the physiological roles of lamin A/C during cardiac specification. We observed that lamin A/C 483 

haploinsufficiency reduces inter-chromosomal interactions, reinforces the separation between small and 484 

large chromosomes, increases the long-range segregation of A and B chromatin compartments, and 485 

strengthens short-range homotypic interactions within the A compartment. Intriguingly, most of these 486 

effects antagonize the chromatin organization dynamics that normally occur during human cardiogenesis 487 
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(Fields et al., 2017). These data demonstrate that lamin A/C is an important mediator of physiological 488 

changes in nuclear architecture during differentiation, in agreement with its gradual upregulation as cells 489 

exit the pluripotent state and commit to the cardiac lineage. 490 

 491 

The major hypothesis going into this study was that lamin A/C haploinsufficiency would induce 492 

widespread gene dysregulation due to inappropriate A/B compartmentalization, the so-called “chromatin 493 

hypothesis” for the pathogenesis of cardiac laminopathy (Worman and Courvalin, 2004; Cattin et al., 494 

2013). This hypothesis was not robustly supported. RNA-seq analysis showed that only ~325 genes were 495 

up- or down-regulated in laminopathic cardiomyocytes. Analysis of A/B compartment changes revealed 496 

that only ~1.2% of the genome changed compartments in LMNA mutants, and these aberrations were 497 

concentrated in hotspots on chromosomes 5 and 19. Surprisingly, the overlap between strong 498 

dysregulation in gene expression and compartment aberrations was minimal (less than 2%; Fig. S4B). 499 

As discussed below, the CACNA1A gene is ectopically expressed and resides in an A compartment that 500 

fails to silence during differentiation. Thus, while examples can be found that may contribute to disease, 501 

most of the transcriptional dysregulation appears to result from factors other than errors in 502 

compartmentalization. Overall, these findings do not support the “chromatin hypothesis” for the 503 

pathogenesis of cardiac laminopathy. On the other hand, our results agree with previous findings from 504 

mouse embryonic stem cells (mESCs), in which depletion of B-type nuclear lamins results in minimal 505 

changes in A/B compartmentalization (Amendola and van Steensel, 2015; Zheng et al., 2015, 2018). Our 506 

results establish that while A-type lamins seem to participate in chromatin organization in developing 507 

cardiomyocytes, lamin A/C haploinsufficiency leads to only modest alterations in A/B 508 

compartmentalization even in mechanically active cells. 509 

 510 

Interestingly, we identify CACNA1A as a disease-associated gene linked to alterations of A/B 511 

compartmentalization. CACNA1A is normally expressed throughout the nervous system with the highest 512 

expression on Purkinje neurons in the cerebellum and in cerebellar granular cells (Nimmrich and Gross, 513 

2012). Its ectopic expression and the modest contribution of the resulting P/Q-type calcium currents on 514 

FPDc prolongation in lamin A/C haploinsufficient hiPSC-CMs suggests that this may represent a 515 

therapeutic target to ameliorate the electrical abnormalities in the myocardium of cardiac laminopathy 516 

patients. Further assessments of CACNA1A expression in patient-derived primary samples will be of high 517 

interest. We also identified the locus containing the three protocadherin clusters as another lamin A/C-518 

sensitive B domain associated to ectopic gene expression. Protocadherin genes are well-established 519 

mediators of accurate neuronal connectivity, and are not normally expressed in the heart (Hayashi and 520 

Takeichi, 2015). It is an intriguing possibility that ectopic protocadherin expression may change cellular 521 
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adhesion patterns in the cardiac conduction system, which may contribute to conduction disease in 522 

cardiac laminopathy. Other interesting targets of chromatin compartment dysregulation in lamin A/C 523 

haploinsufficient hiPSC-CMs are GPC4, whose upregulation might explain the incomplete silencing of 524 

cardiac progenitor genes (Strate et al., 2015), and CLEC11A (also known as stem cell growth factor), a 525 

cytokine normally involved in bone marrow homeostasis but upregulated in cardiac disease (Wang et al., 526 

2013). 527 

 528 

If chromatin compartment alterations do not directly explain the majority of gene expression changes 529 

observed in lamin A/C haploinsufficient hiPSC-CMs, what is driving these changes? An important 530 

example of ths behaviour is CACNA1C, which is upregulated in mutant cells while not changing 531 

compartmentalization. At least two non-exclusive possibilities come to mind. First, it remains possible 532 

that alterations in chromatin organization play a primary role, albeit not in the form of outright changes in 533 

A/B compartmentalization. For instance, it was reported that B-type lamins can indirectly affect the 534 

expression of genes within the nuclear interior by affecting the interaction between TADs as a 535 

consequence of distal alterations in LAD compaction (Zheng et al., 2018). It is thus possible that A-type 536 

lamins might have a similar role, which will be interesting to test in detail in future studies. A second 537 

possibility for compartment-independent gene expression changes might be the result of changes in 538 

intracellular signaling pathways such as MAPK and mTOR. Indeed, such pathways have well-established 539 

links with the nuclear lamina (Dobrzynska et al., 2016), and are upregulated in animal models of cardiac 540 

laminopathy (Muchir et al., 2007, 2012; Choi et al., 2012). 541 

 542 

Emerging evidence suggests that nonsense/haploinsufficency mutations in LMNA may have a different 543 

pathogenesis than missense mutations. We have recently collaborated to study a previously described 544 

heterozygous K219T missense mutation in LMNA (Roncarati et al., 2013). Interestingly, this mutation 545 

leads to distinct electrophysiological abnormalities, namely reduced peak sodium current and diminished 546 

conduction velocity, which are caused by downregulation of SCN5A as result of closer proximity to the 547 

nuclear lamina and increased H3K27me3 (Salvarani, Crasto et al., manuscript in preparation). In the 548 

current study we have not observed a similar reduction of SCN5A expression in lamin A/C 549 

haploinsufficient hiPSC-CMs (Fig. S2D). Furthermore, our Hi-C data indicate that the SCN5A gene is 550 

found in a chromatin domain which is always part of the A compartment both throughout normal cardiac 551 

differentiation (Fields et al., 2017) and in lamin A/C haploinsufficient hiPSC-CMs (Table S4). These 552 

observations prompt the intriguing hypothesis that haploinsufficient and missense mutations in LMNA 553 

might lead to cardiac laminopathy via distinct molecular mechanisms.  554 

 555 
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In conclusion, our work establishes that while lamin A/C haploinsufficient hiPSC-CMs show marked 556 

alterations in electrophysiology, contractility, and chromosomal topology, phenotypic changes cannot, for 557 

the most part, be directly explained by alterations in chromatin compartmentalization. With this in mind, 558 

it is important to mention that this study does not come without limitations. We acknowledge that modeling 559 

diseases of the adult heart in immature hiPSC-CMs suffers from inherent drawbacks. It is possible that 560 

functional chromatin dysregulation could be more important in adult myocytes subjected to high levels of 561 

mechanical stress in vivo. Addressing this aspect will require substantial advances in our ability to mature 562 

hiPSC-CMs and/or improvements of genome-wide chromatin conformation capture technologies in order 563 

to reliably measure chromatin architecture from small numbers of myocytes isolated from precious 564 

primary samples. Furthermore, future studies will be required to test whether other types of mutations 565 

(such as missense changes like the aforementioned K219T mutation) result in more substantial genome-566 

wide alterations in chromatin topology than what was observed following lamin A/C haploinsufficiency. 567 

All considered, our work provides a stepping stone towards understanding the relevance of the 568 

“chromatin hypothesis” in the pathogenesis of cardiac laminopathy, while it also sheds light on the 569 

physiological roles of A-type lamins in the chromatin dynamics that accompany human cardiogenesis. 570 

 571 

Materials and methods 572 

 573 

hiPSC culture and differentiation 574 

Human induced pluripotent stem cells (hiPSCs) were cultured and differentiated into cardiomyocytes 575 

(hiPSC-CMs) with minor modifications of previously described methods (Burridge et al., 2014; Fields et 576 

al., 2017). hiPSCs were cultured on plates pre-coated with 0.5 µg/cm2 recombinant human Laminin-521 577 

matrix (rhLaminin521; Biolamina) with daily changes of antibiotic-free Essential 8 (E8) media 578 

(ThermoFisher). Cells were passaged as small clumps with Versene (ThermoFisher), and 10 µM Y-27632 579 

(Tocris) was added for the first 16 hr. 580 

 581 

For hiPSC-CM generation, cells were passaged as single cells with Versene, and seeded at a density of 582 

2.5 x 105 per well of a 12-well plate pre-coated with 2 µg/cm2 rhLaminin521 (denoted day -2). After 24 hr 583 

media was changed to E8 with 1 µM CHIR-99021 (Cayman), denoted day -1. On day 0 media was 584 

changed to RBA media (RPMI 1640 with glutamine [ThermoFisher] supplemented with 500 µg/ml BSA 585 

and 213 µg/ml ascorbic acid [both from Sigma-Aldrich]) supplemented with 4 µM CHIR-99021. At day 2, 586 

media was changed to RBA with 2 µM WNT-C59 (Selleckchem). On day 4, media was changed to RBA. 587 

On day 6, media was changed to RPMI-B27 media (RPMI with 1x B-27 supplement, both from Thermo 588 
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Fisher), with further media changes every other day. Beating was first observed between day 7 and day 589 

9, and cells were cultured until day 14 before collection (unless otherwise indicated). hiPSC-CMs to be 590 

used for functional assays of cardiac electrophysiology or contractility were preconditioned with a 30 min 591 

heat-shock at 42º on day 13, and cryopreserved at day 14 following single-cell dissociation using 0.25% 592 

w/vol Trypsin (ThermoFisher) in Versene. 593 

 594 

Frozen hiPSC-CM stocks were thawed and seeded at a density of 2 x 105 cells/cm2 onto rhLamin521 pre-595 

coated dishes (2 µg/ml) in RPMI-B27, which was supplemented with 10 µM Y-27632 and 5% FBS 596 

(ThermoFisher) for the first 16 hr. hiPSC-CMs were then cultured in RPMI-B27 with media changes every 597 

other day. After one week (day 21 of differentiation), hiPSC-CMs were dissociated to single cell using 598 

0.05% Trypsin-EDTA (ThermoFisher), and seeded at the desired density the downstream assays. 599 

 600 

Gene editing 601 

hiPSCs with a heterozygous c.672C>T mutation in the LMNA gene (resulting in p.Arg225*, or R225X) 602 

were generated through lentiviral reprogramming of dermal fibroblasts from a 56 year-old male patient 603 

with severe cardiac laminopathy (Siu et al., 2012). Cells were obtained at passage 29, adapted to culture 604 

in E8/rhLaminin521, and banked at passage 34. These hiPSC stocks were confirmed to be Mycoplasma 605 

negative (MycoAlert Detection Kit, Lonza), and proved euploid by conventional G-banding karyotyping 606 

(Diagnostic Cytogenetics Inc, Seattle). Cell identity was tested by Sanger sequencing of a genomic PCR 607 

product for exon 4 of LMNA (PCR primers: 5’- GGCTGGGTGATGACAGACTT-3’ and 5’-608 

TACTGCTCCACCTGGTCCTC-3’; sequencing primer 5’- GCCCTAGTGGACAGGGAGTT-3’), which 609 

confirmed the expected c.672C>T heterozygous mutation. 610 

 611 

The mutation was corrected into the wild-type allele by adapting a previously described two-step method 612 

for scarless genome editing relying on CRISPR/Cas9-facilitated homologous recombination of a targeting 613 

vector containing the wild-type allele in one homology arm, and an excisable piggyBac drug resistance 614 

cassette (Fig. S1A; Yusa, 2013; Yusa et al., 2011). Since the c.672C>T mutation lies close to the 3’ splice 615 

acceptor site of exon 4 (Fig. S1B), we reasoned that any intergenic mutation could have poorly 616 

predictable effects on LMNA splicing. To avoid any kind of genomic scar, we identified a suitable 617 

endogenous “TTAA” site in the third intron of LMNA and located 151 bp upstream to the c.672C>T 618 

mutation in exon 4 (Fig. S1B). Further, we designed single guide RNAs (sgRNAs) spanning such TTAA 619 

site, so that only the endogenous allele could be cut by CRISPR/Cas9. This strategy allowed us to avoid 620 

inserting any additional mutation onto one of homology arms in the targeting vector (such as those 621 

classically used to disrupt the PAM site). Two sgRNAs were designed using mit.crispr.edu, and had a 622 
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score higher than 75%, indicating a very high in-silico predicted specificity (sgRNA 1: 5’- 623 

CTACCAGCCCCACTTTAACC-’3 and sgRNA2 5’-TCAGCTCCCAGGTTAAAGTG-3’, sequences without 624 

PAM site). To further decrease the risk of CRISPR/Cas9 off-target activity, we adopted the enhanced 625 

specificity Streptococcus Pyogenes Cas9 (eSpCas9) developed by Dr. Feng Zhang and colleagues 626 

(Slaymaker et al., 2015). The sgRNA was cloned into the eSpCas9(1.1) plasmid (Addgene #71784) using 627 

a standard method based on restriction digestion with BbsI followed by ligation of a double-stranded oligo 628 

(Ran et al., 2013). The resulting plasmids were named eSpCas9(1.1)_LMNA_sgRNA1 and 629 

eSpCas9(1.1)_LMNA_sgRNA2. The sequences were confirmed by Sanger sequencing, and the sgRNAs 630 

were validated to have a high on-target activity as measured by T7E1 assay in HEK293 cells (which was 631 

comparable to that observed using wild-type SpCas9). 632 

 633 

The LMNA targeting vector was constructed starting from the MV-PGK-Puro-TK_SGK-005 plasmid 634 

(Transposagen), which contains a piggyBac transposon encoding for a PGK-EM7 promoter-driven dual 635 

positive/negative selection cassette (puromycin N-acetlytransferase, ensuring resistance to puromycin, 636 

and truncated Herpes simplex virus thymidine kinase, conferring sensitivity to ganciclovir or its analog 637 

fialuridine). First, the piggyBac cassette was excised using NsiI and BsiWI and isolated. Then, a 638 

backbone with ends suitable for the subsequent overlap-based assembly was obtained from this same 639 

plasmid after removal of the piggyBac cassette using NotI and AscI. Finally, these two fragments were 640 

re-assembled together with two PCR products representing the 5’ and 3’ homology arms to the LMNA 641 

gene. The two homology arms were approximately 1 Kb long, and were amplified from genomic DNA of 642 

RUES2 human embryonic stem cells (hESCs) using primers: 5’- GGTCCCGGCATCCGATACCCAATG-643 

GCGCGCCCGTACTTCAGGCTTCAGCAGT-3’ and 5’- AAAGAGAGAGCAATATTTCAAGAATGCATG-644 

CGTCAATTTTACGCAGACTATCTTTCTAGGGTTAACCTGGGAGCTGAGTGC-3’ (for the 5’ homology 645 

arm); 5’- AATTTTACGCATGATTATCTTTAACGTACGTCACAATATGATTATCTTTCTAGGGTTAAAGT-646 

GGGGCTGGTAGTG-3’ and 5’-CGAATGCGTCGAGATATTGGGTCGCGGCCGCCCTGTCACAAATAG-647 

CACAGCC-3’ (for the 3’ homology arm), and Q5 High-Fidelity DNA Polymerase (New England Biolabs) 648 

according to the manufacturer’s instructions. The four-way assembly reaction was performed using 649 

NEBuilder HiFi DNA Assembly Kit (New England Biolabs) according to the manufacturer’s instructions, 650 

and the resulting targeting plasmid was named pbLMNA_R225R. Sanger sequencing confirmed that the 651 

3’ homology arm contained the wild-type R225R allele, while the remaining genomic sequence of both 652 

homology arms was identical to that of the R225X hiPSC line as no SNPs were identified. The cloning 653 

strategy was designed so that during PCR the “TTAA” site was inserted both at the end of the 5’ homology 654 

arm and at the start of the 3’ homology arm, ensuring that the piggyBac cassette contained within could 655 
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be excised using transposase while leaving behind a single “TTAA” matching the original genomic 656 

sequence (Fig. S1A). 657 

 658 

For the first gene targeting step, 7.5 x 104 hiPSCs were seeded in each well of 6-well plate and 659 

immediately transfected using GeneJuice (Millipore) according to the manufacturer’s instructions. Briefly, 660 

for each well 3 µl of GeneJuice was mixed with 100 µl of Opti-MEM (ThermoFisher Scientific) and 661 

incubated for 5 min at room temperature. 1 µg of DNA was added to the transfection solution (equally 662 

divided between pbLMNA_R225R and either eSpCas9(1.1)_LMNA_sgRNA1 or 663 

eSpCas9(1.1)_LMNA_sgRNA2), which was further incubated for 15 min at room temperature and finally 664 

added to the cell suspension. After 16 hr from transfection, cells were washed with DPBS and cultured 665 

for another 3 days. Gene targeted cells were selected by adding 1 µg/ml puromycin to the media for 4 666 

days, after which the dose was reduced to 0.5 µg/ml. 10 µM Y-27362 was added for the first 48 hr of 667 

selection. Puromycin was then maintained at all times until the second gene targeting step to prevent 668 

silencing of the piggyBac transgene. After 7 days from the transfection, 10-15 individual and well-669 

separated colonies could be identified in each well of 6-well plate, indicating that they likely arose from 670 

clonal expansion of a single gene-edited hiPSC. Colonies were manually picked following gentle 671 

treatment with Versene to facilitate their detachment from the matrix, and individually expanded as 672 

individual lines. Clones were screened by genomic PCR using LongAmp Taq Polymerase (New England 673 

Biolabs) according to manufacturer’s instructions, except that all reactions were performed using an 674 

annealing temperature of 63 °C and an extension time of 2 min. The primer sequences are reported in 675 

Supplemental Table 6, and the genotyping strategies are illustrated in Supplemental Figure 1. Briefly, 676 

junctional PCRs for both the 5’ and 3’ integration site (5’- and 3’-INT) were used to confirm site-specific 677 

integration, while locus PCRs were used to monitor the presence of residual wild-type alleles. This 678 

allowed to discriminate homozygous clones from heterozygous ones or mixed cell populations. Finally, 679 

PCRs of the targeting vector backbone (5’- and 3’-BB) were performed to exclude random integration of 680 

the plasmid elsewhere in the genome. Homozygous clones with only on-target integration events were 681 

selected (3 out of 18 and 2 out of 24 for sgRNA 1 and sgRNA 2, respectively). These positive clones 682 

were further characterized by Sanger sequencing of the 5’- and 3’-INT PCR products to confirm the 683 

presence of the wild-type R225R allele in homozygosity (found in all of the 5 lines) and exclude other 684 

unwanted mutations elsewhere in the locus (absent in all 5 lines). Two clones (one for each sgRNA) were 685 

karyotyped by standard G-banding, which confirmed their euploidy, and were therefore selected for the 686 

second gene targeting step. These clones were named pb R225R g1 and pb R225R g2 (Fig. S1C). 687 

 688 
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To remove the piggyBac and restore the LMNA locus to its original form, pb R225R g1 and pb R225R g2 689 

hiPSCs were transfected as described above but using 1 µg of excision-only piggyBac transposase 690 

expression vector (PBx; Transposagen). Puromycin was removed from the media the day before 691 

transfection, and subsequently omitted. After 3 days from the transfection, the populations were 692 

passaged as single cells, and 1 x 104 cells were seeded per 10 cm plate in the presence of 10 µM Y-693 

27362. On the next day, negative selection of cells still possessing the piggyBac cassette was initiated 694 

by adding 200 nM fialuridine. 10 µM Y-27362 was added for the subsequent 48 hr. Selection was 695 

complete after 5 days, at which point 10-50 individual and well-separated colonies could be identified in 696 

each 10 cm dish. Individual colonies were isolated, clonally expanded, and screened by genomic PCR 697 

as described above to identify those with homozygous reconstitution of the wild-type allele (5 out of 30 698 

and 6 out of 39 for sgRNA 1 and sgRNA2, respectively). These were further characterized by sequencing 699 

to ensure that the sequence surrounding the “TTAA” site was faithfully reconstituted upon piggyBac 700 

excision (confirmed in a subset of 4 lines, 2 for each sgRNA; Fig. S1C-D). Two clones (one for each 701 

sgRNA), were karyotyped by standard G-banding, which confirmed their euploidy, and therefore selected 702 

for subsequent functional experiments. These clones were named R225R g1-15 and R225R g1-38, and 703 

are referred to in the text and figures as Corrected 1 and Corrected 2 (or Corr.1 and Corr.2).  704 

 705 

Parental R225X hiPSCs (referred to in the text and figures as Mutant or Mut) were cultured in parallel 706 

throughout the whole gene editing procedure to provide a passage-matched control, and were re-banked 707 

at passage 49 together with Corrected 1 and Corrected 2. These cells were confirmed to be euploid by 708 

G-banding karyotyping. Mutant and Corrected hiPSCs to be used for derivation of hiPSC-CMs were 709 

cultured between passage 50 to 60 before resorting to a new frozen stock. 710 

 711 

MEA 712 

Multi-electrode array (MEA) analyses were performed on hiPSC-CM monolayers at day 30 of 713 

differentiation. hiPSC-CMs at day 21 of differentiation were seeded at a density of 5 x 104 cells per well 714 

of 48-well MEA plates (CytoView MEA 48; Axion Byosystems) pre-coated with rhLaminin521 (2 µg/ml). 715 

Cells were cultured in RPMI-B27 with media changes every other day. After 9 days (day 30 of 716 

differentiation), cells were prepared for MEA analysis by changing the culture media to Tyrode’s buffer 717 

(140 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 0.33 mM NaH2PO4, 5 mM D-glucose, and 10 718 

mM HEPES; pH adjusted to 7.36) pre-warmed at 37 ºC. After 10 min of equilibration in Tyrode’s buffer 719 

at 37 ºC, MEA data were acquired for 5 min using the Maestro MEA system (Axion Biosystems) using 720 

standard recording settings for spontaneous cardiac field potentials. Data acquisition and automated data 721 

analysis was performed using Axis software, version 2.1. Standard acquisition settings have 130 × gain, 722 
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and record from 1 to 25 000 Hz, with a low-pass digital filter of 2 kHz for noise reduction. Automated data 723 

analysis was focused on the 30 most stable beats within the recording period. The beat detection 724 

threshold was 100 µV, and the field potential duration (FPD) detection utilized an inflection search 725 

algorithm with the threshold set at 1.5 × noise to detect the T wave. The FPD was corrected for the beat 726 

period (FPDc) according to the Fridericia’s formula: FPDc = FPD / (beat period)1/3 (Rast et al., 2016; 727 

Asakura et al., 2015). Reported results for individual wells were calculated by averaging all of the 728 

electrodes. In certain instances, poor signal quality and/or irregularity of field potential behavior prevented 729 

the calculation of certain parameters (such as FPD). The presented data constitutes all recorded values 730 

that could be reliably measured by the software based on automatic quality-control thresholds. 731 

 732 

For pharmacological studies of P/Q- and L-type calcium current inhibition, Tyrode’s buffer was 733 

supplemented with 2 µM ω-Conotoxin MVIIC, 0.5 µM ω-Agatoxin TK, or 0.001-0.5 µM verapamil (all from 734 

Tocris). hiPSC-CMs were incubated at 37 ºC for 20 min or 10 min (for ω-Conotoxin and ω-Agatoxin, or 735 

verapamil, respectively) before MEA data acquisition. 736 

 737 

Whole cell patch clamp 738 

Whole-cell patch clamp recordings were obtained from individual hiPSC-CMs at day 30 of differentiation. 739 

hiPSC-CMs at day 21 of differentiation were seeded at a density of 4.5 x 105 cells per well of 35-mm 740 

glass-bottom FluoroDish with nanopatterned surfaces pre-coated with rhLaminin521 (2 µg/ml). 741 

Anisotropically nanofabricated substrata (ANFS) with 800 nm topographic features were fabricated via 742 

UV-assisted capillary force lithography as previously described (Macadangdang et al., 2015). First, liquid 743 

polyurethane acrylate (PUA) prepolymer was drop dispensed onto a silicon master mold. A transparent 744 

polyester film (PET) was then placed on top of the dispensed PUA. After exposure to UV radiation (λ = 745 

250–400 nm), the film was peeled away from the silicon master, creating a PUA mold. A polyurethane-746 

based prepolymer (NOA76, Norland Products Inc.) was then drop dispensed onto standard glass 747 

coverslips and the PUA mold was placed on top. The mold was then exposed to UV radiation for curing. 748 

After curing, the PUA mold was peeled off, leaving behind an ANFS for cell culture. Dishes were sterilized 749 

and activated by gas plasma treatment before coating with rhLaminin521. After 9 days, cells were 750 

assayed by whole-cell patch clamp on the 37 °C heated stage of an inverted DIC microscope (Nikon) 751 

connected to an EPC10 patch clamp amplifier and computer running Patchmaster software version 752 

2x73.2 (HEKA). Cells on patterned coverslips were loaded onto the stage and bathed in Tyrode’s buffer. 753 

An intracellular recording solution (120 mM L-aspartic acid, 20 mM KCl, 5 mM NaCl, 1 mM MgCl2, 3 mM 754 

Mg2+-ATP, 5 mM EGTA, and 10 mM HEPES) was used in conjunction with borosilicate glass patch 755 

pipettes (World Precision Instruments) with a resistance in the range of 2–6 MΩ. Offset potentials were 756 
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nulled before formation of a gigaΩ seal and fast and slow capacitance was compensated for in all 757 

recordings. Membrane potentials were corrected by subtraction of a 15 mV liquid junction potential 758 

calculated by the HEKA software. Current injection was controlled by the software and used to hold 759 

patched cells at an artificial resting membrane potential of -70 mV. Cells that required more than 100 pA 760 

of current to achieve a -70 mV resting membrane potential were excluded from analysis as excessive 761 

application of current was taken as indication of poor patch quality and/or membrane integrity. To 762 

generate a single action potential, a 5 ms depolarizing current pulse of 50 nA was then applied and the 763 

resulting voltage change recorded in current clamp mode. Action potential rise times were calculated as 764 

the time taken to reach 90% maximum action potential amplitude from 10% of the maximum amplitude. 765 

The exponential time constant (τ) was calculated from 90% to 10% repolarization of the action potential. 766 

Action potential duration was calculated as the time delay between 10% of the maximum depolarization 767 

and 90% repolarization from the maximum action potential amplitude. Gap-free recordings of 768 

spontaneous cardiomyocyte activity were then collected for 30 seconds with 0 pA current injection to 769 

provide a measure of the maximum diastolic membrane potential held by the cell without current input.  770 

 771 

Assessment of intracellular calcium fluxes 772 

Calcium fluxes were assessed in hiPSC-CM monolayers at day 30 of differentiation. hiPSC-CMs at day 773 

21 of differentiation were seeded at a density of 5 x 105 cells per well of 6-well plate pre-coated with 774 

rhLaminin521 (2 µg/ml). After 9 days, cells were prepared for imaging by incubation for 30 min at 37 ºC 775 

with 1 µM Fluro-4, AM (ThermoFisher) diluted in culture media. Cells were rinsed in fresh media for 30 776 

min at 37 ºC, and equilibrated in Tyrode’s buffer pre-warmed at 37 ºC for 10 min. hiPSC-CMs were paced 777 

at 1 Hz using a C-Dish for 6-well plate connected to a C-Pace EM cell stimulator (both from IonOptix) 778 

providing biphasic field stimulation (pulses of 10 V/cm for 20 ms). Videos of Fluo-4 fluorescence 779 

(excitation/emission of 494 and 516) were recorded at 20 frames per second (FPS) for at least 5 780 

contractions using a Nikon Ti-E epi-fluorescent microscope with a 20x-objective and 1x coupler between 781 

the microscope and Hamamatsu flash V3 camera. Videos were obtained for at least 20 random fields of 782 

view. A custom Matlab program was used to define the region of interest (ROI, containing an individual 783 

hiPSC-CM), threshold the Fluo-4 intensity based on the surrounding non-fluorescent background, and 784 

track the average ROIFluo-4 fluorescence (F) over time. The relaxation time constant, τ, was determined 785 

by fitting the formula F(t) = Ae-t/τ + B to the decay phase of the Fluo-4 transient profile, where t is time in 786 

seconds and A and B are fitted constants.  787 
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CCQ analysis of cardiac contractility in hiPSC-CM monolayers 788 

Contraction correlation quantification (CCQ) analysis was performed on hiPSC-CM monolayers at day 789 

30 of differentiation. hiPSC-CMs at day 21 of differentiation were seeded at a density of 1 x 106 cells per 790 

well of 6-well plate pre-coated with rhLaminin521 (2 µg/ml). After 9 days, cells were paced at 1 Hz as just 791 

described for the measurement of calcium fluxes. Bright-field videos of at least ten contractions in multiple 792 

random field of views were recorded at 30 fps using a Nikon TS100 microscope with a 20x-objective and 793 

1x coupler between the microscope and a Canon VIXIA HF S20 camera. Videos were analyzed by CCQ 794 

using a custom Matlab script, as previously described (Macadangdang et al., 2015). Briefly, this method 795 

utilizes particle image velocimetry and digital image correlation algorithms to provide relevant contractile 796 

endpoints from bright field video recordings. A reference video frame is divided into a grid of windows of 797 

a set size. Each window is run through a correlation scheme with a second frame, providing the new 798 

location for that window in the second frame. This displacement is converted into a vector map, which 799 

provides contraction angles and, when spatially averaged, contraction magnitudes. The correlation 800 

equation used provides a Gaussian correlation peak with a probabilistic nature that provides sub-pixel 801 

accuracy. 802 

 803 

Generation and biomechanical characterization of 3D-EHTs 804 

3D engineered heart tissues (3D-EHTs) were generated and characterized with minor changes to a 805 

previously described method (Leonard et al., 2018). Racks of polydimethylsiloxane (PDMS) posts were 806 

fabricated by pouring uncured PDMS (Sylgard 184 mixed at a 1:10 curing agent to base ratio) into a 807 

custom acrylic mold. Glass capillary tubes (1.1 mm diameter; Drummond) were cut to length and inserted 808 

into the holes on one side of the mold before curing to render one post in each pair rigid. Post racks were 809 

baked overnight at 65 °C before being peeled from the molds. Racks consisted of six pairs of posts that 810 

were evenly spaced to fit along one row of a standard 24-well plate. Fabricated posts were 12.5 mm long 811 

and 1.5 mm in diameter with a cap structure (2.0 mm diameter for the topmost 0.5 mm) to aide in the 812 

attachment of 3D-EHTs. The center-to-center post spacing (corresponding to pre-compacted 3D-EHT 813 

length) was 8 mm. Prior to casting 3D-EHTs, all 3D printed parts and PDMS posts were sterilized in a 814 

UVO Cleaner (Jetlight, No. 342) for 7 min, submerged in 70% ethanol, and rinsed with sterile deionized 815 

water. Rectangular 2% w/vol agarose/PBS casting troughs (12 mm in length, 4 mm in width, and ~4 mm 816 

in depth) were generated in the bottom of 24-well plates by using custom 3D printed spacers (12 mm x 817 

4 mm in cross section and 13 mm long) as negative molds. PDMS posts racks were positioned upside 818 

down with one rigid-flexible post pair centered in each trough (leaving a 0.5 mm gap between the tip of 819 

the post and the bottom of the casting trough). Each tissue consisted of a 97 μL fibrinogen-media solution 820 

(89 μL of RPMI-B-27; 5.5 μL of 2X DMEM with 20% FBS; and 2.5 μL of 200 mg/mL bovine fibrinogen, 821 
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Sigma-Aldrich) containing 5 x 105 hiPSC-CMs and 5 x 104 supporting HS27a human bone marrow stromal 822 

cells (ATCC), which was chilled and mixed with 3 μL of cold thrombin (at 100 U/mL, Sigma-Aldrich) just 823 

before pipetting into the agarose casting troughs. The 3D-EHT mixtures were incubated for 90 min at 37 824 

°C, at which point the fibrin gels were sufficiently polymerized around the posts to be lubricated in media 825 

and transferred from the casting troughs into a 24-well plate with fresh 3D-EHT media (RPMI-B-27 with 826 

penicillin/streptomycin, and 5 mg/mL aminocaproic acid, Sigma-Aldrich). 3D-EHTs were supplied with 827 

2.5 mL/well of fresh 3D-EHT media three times per week. 828 

 829 

In situ force measurements were performed after 4 weeks from 3D-EHT casting. In order to pace 3D-830 

EHTs, post racks were transferred to a custom-built 24-well plate with carbon electrodes connected 831 

through an electrical stimulator (Astro Med Grass Stimulator, Model S88X) to provide biphasic field 832 

stimulation (5 V/cm for 20 ms durations) during imaging (Leonard et al., 2018). 3D-EHTs were 833 

equilibrated in Tyrode’s buffer (containing 1.8 mM Ca2+) pre-heated to 37 °C and paced at 1 Hz, which 834 

was greater than the average spontaneous twitch frequency of the tissues. Videos of at least ten 835 

contractions were recorded inside a 37 °C heated chamber using a monochrome CMOS camera 836 

(Mightex, SMN-B050-U) with a board lens (The Imaging Source, TBL 8.4-2 5MP). The camera-lens 837 

configuration allowed for a capture rate of 65 frames per second (FPS) with 8.3 μm/pixel resolution and 838 

a field of view of 1536 × 400 pixels, which was sufficient to capture images of the whole 3D-EHT from 839 

rigid to flexible post. A custom Matlab program was used to threshold the images and track the centroid 840 

of the flexible post relative to the centroid of the rigid post. The twitch force profile, Ftwitch(t) = kpost*Δpost(t), 841 

was calculated from the bending stiffness, kpost, and deflection of the flexible post, Δpost, at all time points 842 

(t), where kpost = 0.95 μN/μm was determined from beam bending theory using the dimensions of the 843 

posts and taking the Young’s modulus of PDMS to be 2.5 MPa (Sniadecki and Chen, 2007). The twitch 844 

force and twitch kinetics were calculated from the twitch force profiles using a custom Matlab program. 845 

 846 

RT-qPCR 847 

Quantitative reverse-transcription PCR (RT-qPCR) was performed as previously described for 2D cell 848 

monolayers (Fields et al., 2017) or 3D-EHTs (Leonard et al., 2018). 2D monolayers were lysed in RLT 849 

buffer supplemented with 1% 2-Mercaptoethanol before RNA purification using the RNeasy Mini Kit 850 

(QIAGEN) according to the manufacturer’s instructions and including the on-column DNase digestion 851 

step. cDNA was synthetized by reverse transcription of 500 ng of total RNA using M-MLV RT (Invitrogen) 852 

and random hexamer priming according to the manufacturer’s protocol and including RNase OUT 853 

(Invitrogen). RT-qPCR was performed in technical duplicate with SYBR Select Master Mix (Applied 854 

Biosystems) using 10 ng of cDNA and 400 nM forward and reverse primers. Reactions were run for 40 855 
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cycles on a 7900HT Fast Real-Time PCR System (Applied Biosystem, 4329001), all according to the 856 

manufacturer’s instructions, Gene expression relative to the housekeeping gene RPLP0 was calculated 857 

using the ∆Ct method as 2(Ct gene – Ct housekeeping). Where indicated, gene expression was further normalized 858 

to a control condition (which was set at the arbitrary value of 1). Primers were designed using PrimerBlast, 859 

and confirmed to amplify a single product. A complete list can be found in Supplemental Table 7. 860 

 861 

For 3D-EHTs, RNA was extracted using RNeasy Plus Micro Kit (QIAGEN) according to the 862 

manufacturer’s instructions except for the following modifications. Individual 3D-EHTs were pre-digested 863 

using 2 mg/ml Proteinase K in 100 µl DPBS for 10 min at 56 °C in agitation. Cells were then lysed by 864 

adding 350 µl of RLT Plus Buffer supplemented with 1% 2-Mercaptoethanol, and cleared through the 865 

gDNA Eliminator Mini Spin Column. The RNA lysate was finally prepared for binding to the RNeasy 866 

MinElute Spin Column by adding 250 µl of 200 proof ethanol. All subsequent steps were performed 867 

according to the supplier’s recommendations. 10 µl of eluted RNA (corresponding to 50-100 ng) were 868 

subjected to reverse transcription, and 2 ng of cDNA were used as template for RT-qPCR, all as just 869 

described for 2D monolayers. 870 

 871 

Western blot 872 

Protein lysates were obtained using ice-cold 1X RIPA buffer containing protease and phosphatase 873 

inhibitors (Cell Signaling 9806), and freshly supplemented with 1 mM phenylmethylsulfonyl fluoride 874 

(PMSF). After incubation for 30 min on ice, the lysate was clarified from insoluble material by 875 

centrifugation at 16,000 g for 10 minutes at 4 °C. The protein concentration was assessed using the 876 

Pierce BCA Protein Assay Kit (ThermoFisher) according to the manufacturer’s instructions. After addition 877 

of Laemmli Sample Buffer (Bio-Rad) to a final concentration of 1x, and 2-mercaptoethanol to a final 878 

concentration of 2.5%, the samples were denatured by heating at 95 °C for 5 minutes. For electrophoretic 879 

separation, 20 µg of protein for each sample was loaded onto 7.5% Mini-PROTEAN TGX Precast Protein 880 

Gels (Bio-Rad) and run at 100V for 60 minutes using 1x Tris/Glycine/SDS running buffer (Bio-Rad). 881 

Proteins were transferred onto Immobilion-P PVDF membranes (Millipore Sigma) by means of tank 882 

blotting in 1X Tris/Glycine (Bio-Rad) supplemented with 20% methanol; transfer was performed at 100 V 883 

for 60 minutes at 4 °C. Membranes were blocked in PBS supplemented with 0.1% Tween-20 (hereafter 884 

PBST) and 4% Blotting-Grade Blocker (Bio-Rad) for 1 hr at room temperature. Primary antibody 885 

incubation of whole membranes was performed overnight at 4 °C under agitation, and antibodies were 886 

diluted in the same blocking buffer. The following antibodies were used: goat polyclonal anti-lamin A/C 887 

(Santa Cruz sc-6215), 1:500 dilution; mouse monoclonal anti-TNNI (clone OTI8H8, Novus Biologicals 888 

NBP2-46170), dilution 1:500; goat polyclonal anti-NKX2-5 (R&D Systems AF2444), dilution 1:500; goat 889 
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polyclonal anti-TBXT (R&D Systems AF2085), dilution 1:500; rabbit polyclonal anti-POU5F1 (Abcam 890 

19857), dilution 1:1000; mouse monoclonal anti-GAPDH (clone 6C5, Abcam ab8245), dilution 1:2000. 891 

Membranes were washed three times in PBST for 10 minutes at room temperature, incubated for 1 hr at 892 

room temperature with species-appropriate HRP-conjugated secondary antibodies (ThermoFisher) 893 

diluted 1:10,000 in blocking buffer, and washed three times in PBST for 10 minutes at room temperature. 894 

Chemiluminescent reaction was initiated by incubation with SuperSignal West Pico PLUS 895 

Chemiluminescent Substrate (ThermoFisher), and images were acquired using a ChemiDoc Imaging 896 

System (Bio-Rad) in “high resolution” mode. Before re-probing with a new antibody, membranes were 897 

treated with Restore Plus western blot stripping buffer (ThermoFisher), washed three times, and re-898 

blocked. Densitometric quantification of Western blots was performed using ImageJ, and protein 899 

abundance estimation was normalized on the levels of GAPDH within each lysate. 900 

 901 

RNA-seq 902 

RNA sequencing (RNA-seq) was performed on 2-3 x 106 hiPSC-CMs at day 14 of differentiation on three 903 

biological replicates (independent differentiations) per cell line. RNA-seq libraries were prepared from 904 

100 ng of total RNA (obtained as described above for RT-qPCR) using the TruSeq Stranded Total RNA 905 

LT Kit with Ribo-Zero H/M/R (all Illumina), according to the manufacturer’s instructions. The analysis 906 

RNA-seq libraries were paired-end sequenced on a Illumina NextSeq 500 in a high output run with 150 907 

cycles (75 for each end), achieving approximately 40 million paired-end reads per sample. Reads were 908 

mapped to hg38 using STAR (Dobin et al., 2013), and then quantified and processed through the 909 

Cufflinks suite (Trapnell et al., 2012), all using default parameters. Differential expressed genes exhibited 910 

a q-value < 0.05 for a pairwise comparison and were expressed at least 1 RPKM (read kilobase per 911 

million mapped reads) in one time point. Hierarchical clustering was performed with the CummeRbund 912 

suite in R. Ontology enrichment analysis was done using EnrichR (Chen et al., 2013). For comparision 913 

with previously described RNA-seq data of hESC-CM differentiation (Fields et al., 2017), all datasets 914 

were collectively re-normalized and -quantified using Cufflinks. Principal component analysis (PCA) was 915 

performed using the R function “prcomp”. 916 

 917 

In situ DNase Hi-C 918 

Genome-wide chromosome conformation capture based on in situ proximity ligation of DNase I-digested 919 

nuclei (DNase Hi-C) was performed with minor modifications of a previously described method (Ramani 920 

et al., 2016; Fields et al., 2017). The assay was performed on ~2 x 106 hiPSC-CMs at day 14 of 921 

differentiation on two biological replicates (independent differentiations) per cell line. Unless otherwise 922 

indicated, all molecular biology reagents were from ThermoFisher and reactions were performed at room 923 
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temperature (RT). Cells were fixed in the dish with fresh RPMI-1640 supplemented with 2% formaldehyde 924 

while in gentle orbital rotation for 10 min, and subsequently quenched with 25 mM Glycine for 5 min at 925 

room temperature followed by 15 min at 4 °C. Cells were then treated with 0.05% Trypsin for 10 min at 926 

37 °C, rinsed in RPMI-1640 with 10% FBS, and scraped off the plate. Cells were washed once with PBS, 927 

flash frozen in liquid nitrogen, and stored at -80 °C. After rapid thawing, samples were resuspended in 928 

500 µL of ice-cold cell lysis buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.5% Igepal CA-630, 929 

supplemented with the protease inhibitor cocktail from Sigma-Aldrich), incubated for 20 min on ice, and 930 

dounce-homogenized 60-80 times with a tight pestle. Extracted nuclei were centrifuged at 2,500 g for 1 931 

min at RT (standard spinning protocol), resuspended in 300 µL 0.5x DNase I digestion buffer with 0.2% 932 

SDS and 20 mM MnCl2, and incubated at 37 °C for 60 min with periodic gentle vortexing. Then, 300 µL 933 

0.5x DNase I digestion buffer with 2% Triton X-100, 20 mM MnCl2, and 0.4 µg/µL RNase A were added 934 

and incubated for another 10 min. Chromatin was finally digested with 7 U of DNase I during a 7 min 935 

incubation at RT. The reaction was stopped with 30 µL of 0.5M EDTA and 15 µL 10% SDS. The efficiency 936 

of DNase I digestion was confirmed by comparing the DNA shearing patterns of small samples of 937 

undigested and digested nuclei using a 6% PAGE gel (following proteinase K digestion). Nuclei were 938 

spun down and resuspended in 150 µl RNase and DNase-free water. 300 µl of AMPure XP beads 939 

(Beckman) were added to irreversibly bind nuclei; going forward nuclei were therefore cleaned up by 940 

magnetic purification. In situ reactions were performed first for end repair (15 U of T4 DNA Polymerase 941 

and 30 U of Klenow Fragment for 1 hr at RT) and dA-tailing (75 U of Klenow exo-minus for 1 hr at 37 °C), 942 

each in 200 µL, and followed by inactivation with 5 µL of 10% SDS and cleanup. Nuclei were then 943 

subjected to overnight ligation of custom T- and blunt-bridge biotin-tagged adapters (each at 8 µM; 944 

sequences detailed in Ramani et al., 2016) using 25 U of T4 DNA ligase and 5% polyethylene glycol 945 

(PEG) in a 100 µl reaction incubated at 16 °C. The reaction was stopped with 5 µL of 10% SDS, and 946 

nuclei were washed twice with AMPure buffer (20% PEG in 2.5 M NaCl) followed by 2 washes with 80% 947 

ethanol to remove un-ligated adapter. Nuclei were then treated for 1 hr at 37 °C with 100 U of T4 PNK in 948 

a 100 µL reaction to phosphorylate the adapters. Proximity ligation of DNA ends was performed for 4 949 

hours at RT using 30 U of T4 DNA ligase in a 1 mL reaction maintained in gentle agitation. Nuclei were 950 

resuspended in 1x NEBuffer 2 (New England Biolabs) with 1% SDS, and digested with 800 µg of 951 

Proteinase K overnight at 62 °C. DNA was precipitated by adding 60 µg glycogen, 50 µL 3M Na-acetate 952 

(ph5.2) and 500 µL isopropanol followed by incubation for 2 hours at -80 °C and centrifugation at 16,000 953 

g for 30 min at 4 °C. DNA was resuspended in 100 µL water and purified with 100 µL AMPure beads 954 

according to the manufacturer’s instructions, and resuspended in 100 µL elution buffer (EB; 10 mM Tris-955 

HCl pH 8.5). Biotin pull-down was performed on the purified DNA to isolate ligation products containing 956 

the biotin adapters. 100 µL Myone C1 beads were mixed with the DNA for 30 min at RT under gentle 957 
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rotation. Samples were washed 4 times with B&W buffer (5 mM Tris-HCl pH 8.0, 0.5 mM EDTA, 1 M 958 

NaCl, 0.05% Tween-20), and twice with EB. DNA was then treated on the beads to perform end-repair 959 

(200 µL reaction with the Fast DNA End Repair Kit for 10 min at 18 °C) and dA-Tailing (50 µL reaction 960 

with 25 U of Klenow exo-minus in NEBuffer 2 and 1.2 mM dATP for 30 min at 37 °C). Custom Y-adapters 961 

for Illumina sequencing (each at 2 µM; sequences detailed in Ramani et al., 2016) were then ligated 962 

using 20 U of T4 DNA ligase for 1 hour at RT in a 50 µL reaction using the Rapid Ligation Buffer. Beads 963 

were washed 4 times with B&W buffer and twice with EB after each of these reactions. Finally, libraries 964 

were amplified by 12 PCR cycles with Kapa HiFi ReadyStart Master Mix with custom barcode-containing 965 

primers (sequences detailed in Ramani et al., 2016). Libraries were purified with 0.8x Ampure XP beads 966 

according to the manufacturer’s instructions, quantified with a Qubit and the DNA high-sensitivity reagent, 967 

and pooled at equimolar ratios in preparation for next-generation sequencing. Samples were paired-end 968 

sequenced on three runs with an Illumina NextSeq 500 at high output with 150 cycles (75 for each end), 969 

resulting in approximately 150 M paired-end reads per sample. 970 

 971 

Hi-C data analysis 972 

Fastq files were mapped to the hg38 genome using BWA-MEM with default parameters, mapping each 973 

end of the read pairs individually. The mapped files were processed through HiC-Pro (Servant et al., 974 

2015), filtering for MAPQ score greater than 30 and excluding pairs less than 1 Kb apart, to generate 975 

valid pairs and ICE balanced matrices at 500 Kb resolution. Hi-C QC metrics from HiC-Pro are reported 976 

in Supplemental Table 3. Samples were clustered based on HiC-Rep scores calculated using a resolution 977 

of 500 Kb with a max distance of 5 Mb and h = 1 (Yang et al., 2017). Hi-C contact matrix heatmaps for 978 

cis or trans interactions were generated with Cooler (https://github.com/mirnylab/cooler) using default 979 

parameters and logarithmic interaction probabilities, without diagonals. A/B compartmentalization was 980 

computed by eigenvalue decomposition of the contact maps using HOMER (Heinz et al., 2010) with 500 981 

Kb resolution and no additional windowing (super-resolution also set at 500 Kb). The sign of the first 982 

eigenvector (PC1) was selected based on the expression ~5000 genes constitutively expressed across 983 

hESC-CM differentiation (Fields et al., 2017), so that positive and negative values indicate A and B 984 

compartmentalization, respectively. Saddle plots of inter-compartment interaction enrichment were 985 

generated by assigning each genomic bin to its corresponding percentile value based on PC1, and 986 

dividing the genome into 10 deciles. Each interaction was normalized to the average score at the 987 

corresponding distance (for cis interactions) or to the average of all contacts (for trans interactions), and 988 

assigned to a pair of deciles based on the PC1 scores of the two bins. The data was plotted in heatmaps 989 

representing the log2 average value for pairs of deciles, while the change between mutant and corrected 990 

hiPSC-CMs is the log2 value of the difference in such values. To calculate the interaction probability at 991 
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varying genomic distances based on compartmentalization, each interaction was assigned to A-A, B-B, 992 

or A-B based on the pairs of bins involved, and then the average interaction score for a given distance 993 

was normalized to the average interaction score for all pairs of contacts at that distance. The data was 994 

plotted on a logarithmic scale and loess-smoothed using the R function “geom_smooth”. Visualization of 995 

sample similarity by PC1 scores was performed with the R function “prcomp”. Gene tracks were 996 

generated using IGV (Thorvaldsdóttir et al., 2013). Changes in A/B compartmentalization were 997 

determined by a one-way ANOVA of PC1 scores across the two replicates for the three cell lines, using 998 

a significance cutoff of p-value < 0.05 combined by the need for the average PC1 to change sign across 999 

at least one pair of condition. Consistent changes in A/B compartmentalization were further selected if 1000 

the average PC1 score for mutant hiPSC-CMs changed sign compared the average PC1 score of each 1001 

corrected hiPSC-CMs. 1002 

 1003 

Statistical analyses 1004 

Unless specifically described elsewhere in the methods, all statistical analyses were performed using 1005 

Prism 7 (GraphPad). The type and number of replicates, the statistics plotted, the statistical test used, 1006 

and the test results are described in the figure legends. All statistical tests employed were two-tailed. No 1007 

experimental samples were excluded from the statistical analyses. Sample size was not pre-determined 1008 

through power calculations, and no randomization or investigator blinding approaches were implemented 1009 

during the experiments and data analyses. When a representative experiment is reported, this 1010 

exemplifies the results obtained in at least two independent biological replications. 1011 

 1012 

Data and code availability 1013 

Hi-C and RNA-seq data is available on Gene Expression Omnibus accession number GSE126460. 1014 

Custom code for Hi-C analyses was previously described (Fields et al., 2017) and is available on github 1015 

(https://github.com/pfields8/Fields_et_al_2018/). All other raw data and custom code is available from 1016 

the corresponding author upon reasonable request. 1017 

 1018 

Supplemental material 1019 

The Supplemental material linked to this article includes Supplemental Figures 1 to 4 and their matching 1020 

Figure Legends (presented in the same document), Supplemental Tables 1 to 5 (presented as individual 1021 

files), Supplemental Tables 6 and 7 (presented in the same document as the Supplemental Figures), and 1022 

Supplemental Videos 1 to 8 (presented as individual files).  1023 
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Figures and figure legends 1421

 1422
Figure 1. Generation of lamin A/C haploinsufficient hiPSC-CMs. 1423
(A) Predicted effect of the LMNA R225X mutation on the two splicing products lamin A and C. Key protein domains 1424
and their location along the amino acid sequence are indicated. (B) Sanger sequencing of LMNA exon 4 in hiPSCs 1425
with heterozygous R225X mutation (top), or in hiPSCs obtained after CRISPR/Cas9-based scarless correction of 1426 
the mutation (bottom). (C) Schematic of the protocol for step-wise directed differentiation of hiPSC-CMs. CHIR: 1427 
CHIR99021 (WNT activator); WNT C-59: WNT inhibitor; AA: ascorbic acid. (D) Quantification of cardiac 1428 
differentiation efficiency by flow cytometry for cardiac troponin T (TNNT2) on hiPSC-CMs at day 14 of differentiation.1429 
The percentage of TNNT2+ cells is reported. (E) RT-qPCR analyses at the indicated stages of hiPSC-CM 1430 
differentiation (see panel C). Differences versus mutant were calculated by two-way ANOVA with post-hoc Holm-1431 
Sidak binary comparisons (* = p < 0.05, *** = p < 0.001; n = 3 differentiations; average ± SEM). (F) Representative 1432 
western blot for lamin A/C and differentiation markers during iPSC-CM differentiation. (G) Quantification of lamin 1433 
A/C expression in hiPSC-CMs from western blot densitometries (n = 3 differentiations; average ± SEM). Differences 1434 
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versus mutant were calculated by one-way ANOVA with post-hoc Holm-Sidak binary comparisons (** = p < 0.01,  1435 
*** = p < 0.001; n = 3 differentiations; average ± SEM). Throughout the figure (and in all other figures), Mut or Mutant 1436 
indicates LMNA R225X hiPSCs, and Corr.1/2 or Corrected 1/2 indicate the two isogenic corrected control LMNA 1437 
R225R hiPSC lines.  1438 
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 1439 
Figure 2. Electrophysiological properties of lamin A/C haploinsufficient hiPSC-CMs. 1440 
(A) Representative traces from MEA recordings of spontaneous electrical activity in hiPSC-CM monolayers. On the 1441 
right, the average field potential changes during an individual beat are reported, and depolarization and 1442 
repolarization timings are indicated by vertical lines. (B) Representative quantifications of electrophysiological 1443 
properties from MEA analyses. Differences versus mutant were calculated by one-way ANOVA with post-hoc Holm-1444 
Sidak binary comparisons (** = p < 0.01, *** = p < 0.001; n = 5-16 wells; average ± SEM). (C) Representative 1445 
voltage recordings by whole-cell patch clamp during evoked action potentials in individual hiPSC-CMs. (D) 1446 
Quantifications of electrophysiological properties from whole-cell patch clamp analyses. Differences versus mutant 1447 
were calculated by one-way ANOVA with post-hoc Holm-Sidak binary comparisons (* = p < 0.05, ** = p < 0.01, *** 1448 
= p < 0.001; n = 26-30 cells from two differentiations; average ± SEM). (E) Representative optical recordings of 1449 
calcium fluxes with Fluo-4 in hiPSC-CM monolayers electrically paced at 1 Hz. (F) Representative quantifications 1450 
of calcium fluxes properties. Differences versus mutant were calculated by unpaired t-test (*** = p < 0.001; n = 69-1451 
70 cells; average ± SEM).  1452 
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 1453 
Figure 3. Contractile properties of lamin A/C haploinsufficient hiPSC-CMs. 1454 
(A) Representative measurements of cellular displacement during contraction of hiPSC-CM monolayers electrically 1455 
paced at 1 Hz. (B) Representative quantifications of cell contractility from analyses of optical recordings. Differences 1456 
versus mutant were calculated by one-way ANOVA with post-hoc Holm-Sidak binary comparisons (* = p < 0.05; n 1457 
= 5-6 field of views; average ± SEM). (C) Representative measurements of twitch force during contraction of 3D-1458 
EHTs electrically paced at 1 Hz. (D) Representative quantifications of tissue contractility from analyses of optical 1459 
recordings. Differences versus mutant were calculated by one-way ANOVA with post-hoc Holm-Sidak binary 1460 
comparisons (* = p < 0.05, ** = p < 0.01, *** = p < 0.001; n = 4-5 3D-EHTs; average ± SEM).  1461 
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 1462
Figure 4. Gene expression changes in lamin A/C haploinsufficient hiPSC-CMs. 1463
(A) RT-qPCR analyses in hiPSC-CMs at day 14 of differentiation. Differences versus mutant were calculated by 1464
one-way ANOVA with post-hoc Holm-Sidak binary comparisons (* = p < 0.05, n = 3 differentiations; average ± 1465
SEM). (B) Hierarchical clustering of hiPSC-CMs analyzed by RNA-seq based on all expressed genes. Biological 1466
replicates from 3 independent differentiations were analyzed (r1, r2, r3). (C) Overlap in genes up- or downregulated 1467 
in mutant hiPSC-CMs versus hiPSC-CMs from the two corrected control lines (fold-change > 2 and q-value < 0.05; 1468 
Table S1). (D) Selected results from ontology and pathway enrichment analyses of genes consistently up- or 1469 
downregulation in mutant hiPSC-CMs. For each term, the rank and the corresponding p-value are reported (terms 1470 
ranked by combined score; Table S2). (E) Linear dimensionality reduction by principal component analysis of RNA-1471 
seq data of mutant and corrected hiPSC-CMs, and hESC-CMs sampled at different time points of differentiation 1472 
(Fields et al., 2017). The amount of variance captured by each of the two main principal components (PC) is 1473 
reported, and the biological interpretation for the PC1 axis is indicated.  1474 
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 1475
Figure 5. Global properties of chromatin topology in lamin A/C haploinsufficient hiPSC-CMs. 1476
(A) Hierarchical clustering of hiPSC-CMs analyzed by in situ DNase Hi-C based on similarity scores between the 1477
genomic contact matrices calculated with HiCRep. Biological replicates from 2 independent differentiations were 1478
analyzed (r1, r2). (B) Proportion of genomic interactions between different chromosomes (trans) or within the same 1479
chromosome (cis) involving distances < 20 Kb (cis short) or > 20 Kb (cis long; Table S3). Differences versus mutant 1480 
were calculated by two-way ANOVA with post-hoc Holm-Sidak binary comparisons (* = p < 0.05; n = 2 1481 
differentiations; average ± SEM). (C) Representative heatmaps of differential contact matrices between 1482 
chromosomes. Autosomes are ranked based on their size from left to right and top to bottom. (D) Representative 1483 
heatmaps of differential cis interactions between active (A) and inactive (B) chromatin compartments. 500 Kb 1484 
genomic bins were assigned to ten deciles based on their PC1 score from the linear dimensionality reduction of the 1485 
Hi-C matrix (from most B to most A; Table S4), and average observed/expected distance normalized scores for 1486 
each pair of deciles were calculated. (E) Probability of cis genomic contacts over increasing genomic distance for 1487 
regions in homotypic (A-A or B-B) or heterotypic (A-B) chromatin compartments. Values are normalized to all 1488 
contacts observed at a given distance, and LOESS curves are shown (gray background: 95% confidence bands).  1489 
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 1490 
Figure 6. Chromatin compartment transitions in lamin A/C haploinsufficient hiPSC-CMs. 1491 
(A) Heatmap of all significantly different A/B compartment scores (Hi-C matrix PC1; p < 0.05 by one-way ANOVA; 1492 
n = 2 differentiations; Table S4) in 500 Kb bins that changed PC1 sign between two or more conditions. Positive 1493 
and negative PC1 indicate A and B compartmentalization, respectively. (B) Representative log-transformed contact 1494 
probability maps for chromosome 19. Topologically associating domains (TADs) are visible as squares along the 1495 
diagonal. TADs within the same compartment interact off the diagonal as indicated by the symmetrical checkerboard 1496 
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patterns. Two genomic regions which show different compartmentalization in mutant hiPSC-CMs are indicated by 1497 
dashed boxes to highlight the differences in contact probabilities with other genomic regions off the diagonal. (C) 1498 
Linear dimensionality reduction by principal component analysis of A/B compartment scores from Hi-C data of 1499 
mutant and corrected hiPSC-CMs, and hESC-CMs sampled at different time points of differentiation (Fields et al., 1500 
2017). The amount of variance captured by each of the two main principal components (PC) is reported, and the 1501 
biological interpretation for the PC1 axis is indicated. (D) Significance of the overlap between changes in A/B 1502 
compartments in mutant hiPSC-CMs and those occourring during hESC-CM differentiation. The number of genomic 1503 
bins within each of the categories is indicated, and p-values were calculated by chi-squared tests. Note that only 1504 
autosomes were considered. (E) Representative genomic tracks of chromatin compartmentalization for 1505 
chromosome 19 and a section of chromosome 5. Positive and negative Hi-C matrix PC1 scores are shown in red 1506 
and blue, and indicate 500 Kb genomic bins in the A and B compartments, respectively. Genomic regions that 1507 
transition from A to B during hESC-CM differentiation but remain in A in mutant hiPSC-CMs (noted as B to A) are 1508 
indicated by dashed boxes. Selected genes found within such regions are listed (refer to Fig. 7 and Fig. S4).  1509 
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 1510
Figure 7. Correlation between altered chromatin compartmentalization and gene expression changes in 1511
lamin A/C haploinsufficient hiPSC-CMs. 1512
(A) Violin plots showing the expression of genes found with lamin A/C-sensitive domains (average expression in 1513
RNA-seq data from 3 differentiations). Boxplots indicate the first quartile, median, and third quartile, while whiskers 1514
are from the 5th to 95th percentile. In the left panel, note that the tail of genes expressed at very low levels in corrected 1515 
hiPSC-CMs is less pronounced in mutant cells. (B) Selected results from ontology enrichment analyses of 1516 
upregulated genes in domains aberrantly found in the A compartment in mutant hiPSC-CMs (average fold-change 1517 
> 2; Fig. S3C). Term as are listed by their rank based on the combined score, and the p-values are reported (Table 1518 
S5). (C-D) RT-qPCR validation of gene expression changes in hiPSC-CMs matured by culture in vitro for 30 days 1519 
(C) or by generation of 3D-EHTs (D). Differences versus mutant were calculated by one-way ANOVA with post-hoc 1520 
Holm-Sidak binary comparisons (* = p < 0.05, ** = p < 0.01; n = 4 differentiations for panel C, and n = 3 3D-EHT 1521 
batches for panel D; average ± SEM).  1522 
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 1523
Figure 8. Role of P/Q- and L-type calcium currents in electrophysiological abnormalities of lamin A/C1524
haploinsufficient hiPSC-CMs. 1525
(A-B) Representative quantifications of electrophysiological properties from MEA analyses. hiPSC-CMs were 1526
maintained in standard culture conditions, or pre-treated for 20 min with the indicated inhibitors for P/Q-type calcium 1527
channels (ω-Conotoxin MVIIC: 2 µM; ω-Agatoxin TK: 0.5 µM). Differences versus mutant were calculated by one-1528 
way ANOVA with post-hoc Holm-Sidak binary comparisons (* = p < 0.05, n = 3-8 wells; average ± SEM). (C-D) RT-1529 
qPCR validation of gene expression changes in hiPSC-CMs matured by culture in vitro for 30 days (C) or by 1530 
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generation of 3D-EHTs (D). Differences versus mutant were calculated by one-way ANOVA with post-hoc Holm-1531 
Sidak binary comparisons (* = p < 0.05, ** = p < 0.01, *** = p < 0.001; n = 4 differentiations for panel C, and n = 3 1532 
3D-EHT batches for panel D; average ± SEM). (E) As in panels A-B, but hiPSC cm were pre-treated for 10 min with 1533 
increasing doses of the L-type calcium channel blocker verapamil. (F) Proposed model for the chromatin 1534 
compartmentalization-dependent and independent effects of lamin A/C haploinsufficieny in developing hiPSC-CMs. 1535 
Mutant cells have stronger interactions within the A compartment and decreased intermixing of A and B 1536 
compartments. Trans interactions are globally reduced, while large chromosomes (exemplified by chromosomes 5 1537 
and 12) and small-chromosomes (exemplified by chromosome 19) self-associate more. Compartmentalization of 1538 
selected genomic hotspots is dysregulated, in particular for compartments that developmentally transition from A to 1539 
B in normal hiPSC-CMs but remain in A in mutant cells (exemplified by the magenta, green, and yellow loci). A 1540 
large number of genes are dysregulated independently of chromatin compartment changes (exemplified by the red 1541 
locus). These combined effects drive stronger L-type calcium currents (thick red line) and ectopic P/Q type calcium 1542 
currents (thin magenta line), leading to prolonged action potentials, stronger calcium fluxes, systolic hyperfunction, 1543 
and diastolic dysfunction. 1544 
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