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ABSTRACT: The maintenance and transition of cellular states are controlled by
orchestrated biological processes. Here we show a transformation of gene
expression of single cell RNA-Seq data using gene sets representing biological
processes provides a robust description of cellular states. Moreover, as
species-independent general descriptors of cellular states, the activity of these
biological processes can be used to align single cell states across different

organisms.

The advent of single cell RNA sequencing (scRNA-Seq) technologies has greatly
advanced our understanding of cellular states [1]. However, the signal-to-noise ratio of
scRNA-Seq data is usually poor, confounding cellular state interpretation. Considering
cellular states are controlled by orchestrated biological processes [2], we propose using
biological process activities in place of the expression of individual genes. Biological
process activity analysis is estimated from an ensemble of dozens of related genes
(Figure 1A). In this way discrepancies in individual genes are averaged out, yielding
reproducible measurements that are unaffected by common technical noises such as
batch effects [3] and drop-out events [4] (Figure 1C,D).

Gene sets have been used for years to infer the activity of biological processes in
many applications. The various catalogs of gene sets, e.g. Gene Ontology (GO) and

Molecular Signature Database (MSigDB), group genes into categories of related
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function. Such gene sets allow particular pathways to be associated with the results of
high-throughput assays. For example, gene set enrichment analysis (GSEA)
summarizes the putative importance of a biological process by using the ensemble

expression pattern of a set of genes documented to play a role in that specific process

[5].

We extend this idea to transform and interpret scRNA-Seq data into inferred
process association levels, henceforth called “activities”, using a large collection of gene
sets. For this study, we used the Biological Process (BP) portion of the GO collection [6]
as one source of gene sets. The gene expression signature of an individual cell can be
transformed into a biological process activity profile using the gene members of the
associated gene set. Moreover, because the GO-BP terminology is consistent across
species, gene set enrichment analysis can be used in each species separately to infer
an activity for the same set of processes. Thus, inferences of activity for each category
from single cell RNA-Seq data can be compared across the species (Figure 1A). In this
way, datasets of human and model organisms can be composed directly to reveal
functionally analogous cell types across species. We demonstrate the utility of using
inferred biological activities to align human and mouse datasets to shed light on their
comparative and species-specific biology in early embryo development and in the cell

types comprising the immune system.

Distinct, batch-specific clusters can be observed among peripheral blood
mononuclear cell (PBMC) scRNA-Seq datasets when gene expression profiles are used
(Figure 1B), but no longer apparent when GO-BP activity features are used (Figure 1D).
In this example, the clustering of the PBMCs recapitulates the B-cell, T-cells, and
monocytes as denoted by the cell type-specific markers CD3E, CD14 and CDZ20,
respectively. In addition, biological process activity is insensitive to drop-out events,
illustrated through a controlled simulation in which drop-outs are introduced to mimic
their distribution in real scRNA-Seq data. Complete RNA sequencing datasets of bulk
tissue samples were taken from the GTEx lung (L) and esophagus (E) collection and
labeled as “original” (Ori) while their counterparts containing simulated drop-out events
were labelled “drop-out” (Dro) (Supplementary Figure 1, see METHODS). We found that

drop-out events appreciably decrease correlations within the same biological state.
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Moreover, correlations between different tissues with full data, e.g. r(L-Ori, E-Ori) was
found to be higher than correlations between the same tissue type having drop-out data
e.g. r(L-Dro, L-Dro) or r(E-Dro, E-Dro). Thus, artifacts in downstream analyses could be
introduced when using transcript-level data containing drop-out events, since single cells
will cluster according to drop-out extent rather than measured biological conditions. The
inferred biological activity preserves within-tissue correlations, and reduces cross-tissue
correlations (Figure 1C). Taken together, inferred biological process activity profiles
produced clusters with distinctly enriched PBMC cell types according to marker gene
expression (Figure 1D, Figure 2F-H and Supplementary Figure 3), as well as the known
ordering of state transitions in a human preimplantation embryo dataset (Figure 1E,
Figure 2A and Supplementary Figure 2; see Methods).

We next performed cross-species single cell state alignment using biological
process activity profiles in place of gene expression profiles. A previous effort used the
expression pattern of one-to-one orthologous genes to align single cells across species
[7]. However, as orthologs are usually determined by computational analysis of protein
sequence alone [8], the expression pattern of orthologous genes may not be the same
across species [9]. The transformed dataset using GO-BP, on the other hand, provides a
common set of terms from which detailed gene sets can be retrieved in a
species-specific manner [6]. Each species can be analyzed separately using their
species-specific gene sets and then merged across species at the biological process
activity level assuming the ontology terms are equivalent, giving an overarching

perspective of cellular states and transitions across various organisms.

We analyzed scRNA-Seq profiles reported in a human-mouse comparative study
on embryo development. While early embryo development is a continuous process, it
can be roughly divided into three steps [2]. By analyzing human and mouse single cells
separately, we find that the three steps were recapitulated. In human, the first step spans
the oocyte stage to the 4-cell stage; the second step includes the 8-cell stage; and the
third step includes only the morula stage. In mouse, the first step is relatively shorter,
including the oocyte and pronuclear stages; the second step includes the 2-cell and
4-cell stages; and the last step includes the 8-cell and morula stages (Figure 2A). The
data sets transformed with GO-BP produce the expected alignment of the three steps

between the two species (Figure 2A), which was further confirmed objectively using
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dynamic time warping (Supplementary Figure 5) [7][10], In addition, the stage-specific
activation pattern of biological processes determined in the original study were

recapitulated in both human and mouse cells (Figure 2B, C).

We next performed biological process activity analysis to compare and align
human and mouse immune cells. We included scRNA-Seq profiles of human PBMCs
from a healthy donor (Chromium, Figure 1A, C and Figure 2F), mouse spleen and
thymus (Tabula Muris, Figure 2G) [11] and human monocytes and dendritic cells
(GSE94820, Figure 2H) [12]. To extend the scope of biological process selection, and to
better describe the cellular states, we also included an immunologic gene set (see
METHODS). Within each individual dataset, cell types (Figure 2F-H), as well as cell
type-specific biological processes (Supplementary Table 1-3) were recapitulated using
biological process activity, benchmarking the immunologic gene set in interpreting
cellular states. Data sources, as well as cell types for the integrated analysis of the three
datasets are shown in Figure 2D and E, respectively. Although some species-specificity
was observed, cells are primarily clustered according to cell types, recapitulating T-cell
and phagocyte (composed of monocytes and dendritic cells) populations. These results
indicate that single cells from different experiments and across species can be aligned
using biological process activity. Noticeably and against this trend, human and mouse
B-cells failed to co-cluster with one another. We investigated this incongruity by
measuring how each biological process was differentially activated in human vs. mouse
B-cells. The top differential process was B-cell receptor signaling, with a higher activity in
mouse compared to human. This suggests the mouse cells underwent B-cell mediated
immune responses to a larger degree compared to the human cells when harvested

(Supplementary Figure 4, Supplementary Table 4).

In summary, we have presented an enrichment analysis-based approach for
inferring biological process activity among single cells. Transforming the transcript-level
data into higher-level features representing cellular processes produces a dataset that is
resistant to common technical noises in scRNA-Seq profiles. The transformed data
preserves the integrity of cellular states and their transitions. Moreover, analysis in
biological process activity space enables a straightforward comparison of cell states

across platforms and species. Using this approach, model organisms can be directly
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combined with human counterpart datasets to uncover inter-species commonalities and
differences in evolution, normal development, and diseases at the resolution of individual

cells.
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METHODS

Biological process activity inference

Gene sets were downloaded from CRAN R package {msigdbr} that provides the MSigDB

(http://software.broadinstitute.org/gsea/msigdb/index.jsp) dataset [5]. We included all 7

categories of MSigDB gene sets (C1-7), including positional gene sets (C1), curated

gene sets (C2), motif gene sets (C3), computational gene sets (C4), GO gene sets (C5)
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oncogenic gene sets (C6) and immunologic gene sets (C7) from 11 species including
Bos taurus, Caenorhabditis elegans, Canis lupus familiaris, Danio rerio, Drosophila
melanogaster, Gallus gallus, Homo sapiens, Mus musculus, Rattus norvegicus,
Saccharomyces cerevisiae and Sus scrofa. In this study, we used GO gene sets (C5)
biological processes (BP) subsets and immunologic gene sets (C7) from Homo sapiens
and Mus musculus. To avoid bias, we exclude gene sets with too many (>100 for C5,
>210 for C7) or too few (<50 for C5, < 190 for C7) genes. Specifically, C7 contains both
up-regulated and down-regulated gene sets. Since single-cell RNA-sequencing profiles
have high drop-out rate, the accuracy for quantifying under-expressed genes is low.
Therefore we only took the up-regulated gene sets in C7 for all analyses. Enrichment
analysis was performed using the aREA() function from the Bioconductor R package
{viper}. aREA() function performs analytical rank-based enrichment analysis, which
provides a computationally efficient analytical approximation of the widely-used GSEA
[13][14].

Simulating the drop-out effect

We randomly selected 20 samples from each of the GTEx lung and esophagus bulk
RNA sequencing samples. To mimic the single-cell RNA sequencing scenario, the
simulated drop-out rate was determined by using a drop out probability that is a function
of the absolute expression level of each transcript. For example, more lowly expressed
transcripts have a higher likelihood of drop-out than those that are more highly
expressed. Such relationship was determined empirically by analyzing Chromium and
[18] datasets. Although absolute drop-out rate varies depending on cell types, such
relationship stands. The simulation was done in lung and esophagus datasets

separately, yielding 81.32% and 82.84% overall drop-out rate (Supplementary Figure 1).
Single cell heterogeneity analysis

For the cluster analysis used to detect cell types, we projected single cells from the
original biological process activity space onto a two-dimensional space with t-SNE[15],
using the Rtsne() function from the CRAN R package {Rtsne}. We then performed
DBSCAN [16] clustering on the 2D space, using the dbscan() function from the CRAN R

package {dbscan}. For pseudo-lineage analysis, we projected single cells from the


https://paperpile.com/c/OWTWmV/8Y6J
https://paperpile.com/c/OWTWmV/trlg
https://paperpile.com/c/OWTWmV/CLgF
https://paperpile.com/c/OWTWmV/V1tt
https://paperpile.com/c/OWTWmV/n4z2
https://doi.org/10.1101/555268
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/555268; this version posted February 19, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

original biological process activity or expression space onto a 2D t-SNE space, followed
by pseudo-lineage analysis using principal curves [17], which was adopted in the original
study [18]. Principal curves were calculated using the principal.curve() function from the

CRAN R package {princurve}.
Data availability

GTEX bulk RNA  sequencing profiles can be found from the

website: https://gtexportal.org/home/. We downloaded the provided normalized

expression profiles and log-transformed them into log2(RPKM+1) for downstream

analysis.

scRNA-Seq profiles for the human PBMC dataset were taken from healthy donors
generated using 10x Genomics V2 and V1 chemistry and available from:

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.0.1/pbmc4k,

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k.

We downloaded the provided raw UMI counts and normalized by the sequencing depth

as log2(TPM+1) for downstream analysis.

scRNA-Seq profiles for the human preimplantation embryo dataset, including time point:

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3929/. We downloaded the

provided normalized expression profiles and log-transformed them into log2(RPKM+1)

for downstream analysis.

scRNA-Seq profiles for the human and mouse early embryos, including time point

annotations: https://www.nature.com/articles/nature12364. We downloaded the provided

normalized expression profiles and log-transformed them into log2(RPKM+1) for

downstream analysis.

scRNA-Seq profiles for the human monocytes and dendritic cells, including cell type

annotation: http://science.sciencemag.org/content/356/6335/eaah4573. We downloaded

the provided normalized expression profiles and log-transformed them into log2(TPM+1)

for downstream analysis.
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Tabula Muris datasets: https://www.nature.com/articles/s41586-018-0590-4. We

downloaded the provided raw counts of spleen and thymus datasets and normalized by

the sequencing depth as log2(CPM+1) for downstream analysis.

All relevant data and analysis results are available from the authors.

Code availability

All scripts are available at https://github.com/hd2326/BiologicalProcessActivity.
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Figure 1. Biological process activity is resistant to technical noises in single-cell RNA
sequencing profiles, providing accurate description of cellular heterogeneity. (A)
Overview of biological process activity inference. Single cell gene expression profiles for
human (outer left column) can be compared to a mouse gene expression profile (outer
right column) using transformed biological process activity profiles for human (inner left)
and mouse (inner right) even though the gene members of each Gene Ontology
Biological Process (GO-BP) are distinct in each species (outer links). (B) Single PBMCs
(Peripheral Blood Mononuclear Cell) profiled using 10x Genomics V1 and V2 chemistry
were visualized using transcript expression features. Cells were color-coded according
to expression of B-cell, monocyte and T-cell specific markers CD3E, CD14 and CD20,
respectively. (C) Drop-out events (Dro) were simulated into GTEx lung (L) and
esophagus (E) bulk RNA sequencing (Ori) data (Supplementary Figure 1, see Methods);
pairwise correlations between samples was computed and plotted. Cellular cell states
(D, Figure 2F and Supplementary Figure 3) and state transitions (E, Figure 2A and
Supplementary Figure 2), are recapitulated using biological process activity (see
Methods). Following the original study [18], pseudo-lineage was constructed using
principal curves [17] on t-SNE space [15]. Correlation between pseudo-lineage distance
and the expression of known lineage markers is shown.
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Figure 2. Aligning human and mouse single cell datasets using biological process
activity. Human and mouse early embryo single cells were taken from [2] and (A)
pairwise correlation of cells were calculated and displayed. (B, C) Inferred activity of
biological processes involved in early embryo development described in the original
study. For human and mouse immune cells profiling, (D) data sources, as well as (E) cell
types were shown according to biological process activity-based single cell alignment.
(F-H) Cell type analysis using biological process activity within individual datasets
(Supplementary Figure 3, see Methods). Chromium, single-cell RNA sequencing profiles
of human PBMC from healthy donor (Figure 1A and C); Tabula Muris, single-cell RNA
sequencing profiles of mouse spleen and thymus [11]; GSE94820, single-cell RNA
sequencing profiles of human monocytes and dendritic cells [12].
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