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Abstract

Influenza A viruses cause a significant amount of morbidity and mortality. Understanding
how the infection is controlled by host immune responses and how different factors influence
severity are critical to combat the infection. During infection, viral loads increase exponentially,
peak, then decline until resolution. The viral decline is often biphasic, which we previously
determined is a consequence of density-dependent infected cell clearance. The second, rapid
clearance phase corresponds with the infiltration of CD8

+
T cells, but how the rate changes with

infected cell density and T cell density is unclear. Further, the kinetics of virus, infected cells, and
CD8

+
T cells all contribute to disease severity but do not seem to be directly correlated. Thus,

we investigated the relations between viral loads, infected cells, CD8
+

T cells, lung pathology, and
disease severity/symptoms by infecting mice with influenza A/PR8, simultaneously measuring
virus and CD8

+
T cells, and developing and calibrating a kinetic model. The model predicted

that infection resolution is sensitive to CD8
+

T cell expansion, that there is a critical T cell
magnitude below which the infection is significantly prolonged, and that the efficiency of T
cell-mediated clearance is dependent on infected cell density. To further examine the latter
finding and validate the model’s predicted dynamics, we quantified infected cell kinetics using
lung histomorphometry. These data showed that the area of lung infected matches the predicted
cumulative infected cell dynamics, and that the area of resolved infection parallels the relative
CD8

+
T cell magnitude. Our analysis further revealed a nonlinear relationship between disease

severity (i.e., weight loss) and the percent of the lung damaged. Establishing the predictive
capabilities of the model and the critical connections that map the kinetics of virus, infected
cells, CD8

+
T cells, lung pathology, and disease severity during influenza virus infection aids

our ability to forecast the course of infection, disease progression, and potential complications,
thereby providing insight for clinical decisions.
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Author Summary

Influenza A viruses infect millions of people each year. An understanding of how virus growth
and host responses impact disease progression is critical to identify disease-specific markers that
help predict hospitalization, complications, and therapeutic efficacy. To establish these relations,
we developed and validated a mathematical model that accurately forecasts the kinetics of virus,
infected cells, and CD8

+
T cells. We discovered that the rate of infected cell removal by CD8

+
T

cells increases as infected cells decline, that there is a critical number of CD8
+

T cells below
which recovery is prolonged, and that recovery time depends on the number of CD8

+
T cells

rather than their efficiency. Further, examining lung pathology showed that the area of the lung
infected and the area of the lung resolved parallel the model’s predicted cumulative infected cell
and CD8

+
T cell dynamics, respectively. Our analysis also revealed a nonlinear relation between

the lung pathology and disease severity. These connections illustrated the predictive capabilities
of our model and established how the spread and clearance of influenza virus within the lung
contributes to disease progression. This information aids our ability to predict the infection
course and potential complications, and make robust clinical decisions.
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Introduction

Over 15 million respiratory infections and 200,000 hospitalizations result from influenza A viruses

(IAVs) each year [1–4]. The incidence and severity of IAV infections increases when new strains

emerge and/or when there is a lack of prior immunity. A robust immune response is crucial for

resolving viral infections, but immune-mediated pathology can exacerbate disease [5–9]. High

viral loads also play a role in disease progression [10], but these do not always correlate with

the strength of the host response or with disease severity [11–14]. An understanding of how

viral loads, host immune responses, and disease progression are related is critical to identify

disease-specific markers that may help predict hospitalization or other complications.

During IAV infection, viral loads increase rapidly for the first 1-2 days of infection before

reaching a peak (e.g., as in [13,15–19]). In näıve hosts, viral loads then begin to decline, first

slowly (< 1 log10 TCID50/d; 3–7 d) then rapidly (4 − 5 log10 TCID50/d; 7–9 d) [15]. We

previously quantified this biphasic viral decline with a mathematical model, which indicated that

the rate of infected cell clearance increases as the density of infected cells decreases [15]. The

timing of the second, rapid viral decay phase coincides with the expansion of CD8
+

T cells, which

are the primary cell responsible for clearing infected cells and resolving the infection [20–23]. It

remains unclear whether CD8
+

T cell efficacy is dictated by their own density [24, 25], infected

cell density [26–28], or both [29]. While quantifying CD8
+

T cell efficacy is difficult in vitro and

in vivo, the question is ripe for in silico investigation. Indeed, several modeling studies have

described CD8
+

T cell-mediated infected cell clearance for various viral infections, including

IAV, HIV, and LCMV (e.g., as in [17, 24, 26,29–35]). However, for IAV infections, in particular,

nonlinearities in the efficiency of the CD8
+

T cell response and the consequences on viral loads

have yet to be investigated in detail.

A better understanding of infected cell clearance may also yield insight into the damage

induced to the lung during IAV infection. In general, widespread alveolar disease is observed in

patients who succumb to the infection [36]. Further, in hospitalized patients who died as a result

from infection with the 2009 H1N1 influenza virus had large numbers of CD8
+

T cells present

in their lung tissue [7]. Large pulmonary populations of CD8
+

T cells may result in ‘bystander

damage’ to uninfected epithelial cells [37] in addition to targeting IAV-infected cells. The

accumulation of damage to the epithelium during IAV infection, either from virally-induced cell

lysis or immune-mediated effects, is relatively understudied. This is in part due to the difficulty

in measuring the dynamics of infected cells and in establishing how damage correlates to different
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host responses. Recent technological advances, including the use of reporter viruses [38–41]

and lung histomorphometry [12, 42–44], have provided an opportunity to acquire these types

of measurements. However, even with these techniques, quantitative data over the course of

infection is not currently available. Having data such as these should help reconcile potential

nonlinearities in infected cell clearance and provide insight into the accumulated lung damage,

which we hypothesize is a marker of disease severity.

In general, measures of disease severity do not seem to be directly correlated to viral loads or

to specific immunological components. In humans infected with IAV, viral loads typically increase

prior to the onset of systemic symptoms, which peak around 2–3 d post-infection (pi) [18, 45, 46].

Respiratory symptoms often last longer and can remain following viral clearance [45]. In the

murine model, weight loss is used as an indicator of disease progression and severity, where

greater weight loss corresponds to more severe disease [47–49]. Animal weights typically drop

slowly in the first several days during an IAV infection and more rapidly as the infection begins

to resolve [19,50]. This is unlike viral load dynamics in these animals, which increase rapidly

during the first 0–3 d pi then remain relatively constant prior to resolution [15]. Because weight

loss often occurs following resolution of the infection, immune-mediated pathology is thought to

play a role [5, 49,51–53]. Host and pathogen factors, such as age, viral proteins, and inoculum

size, can also influence disease progression [13, 14, 54, 55]. While the causes of IAV-associated

disease and mortality remain elusive, this gap in knowledge impairs our ability to effectively

predict, understand, and treat the disease.

To gain deeper insight into the dynamics of viral resolution and investigate the connection

between viral loads and disease severity, we simultaneously measured viral loads and CD8
+

T

cells daily from the lungs of BALB/cJ mice infected with influenza A/Puerto Rico/8/34 (H1N1)

(PR8). We then developed a model that describes their kinetics to explore the mechanisms and

dynamics of CD8
+

T cell influx and their efficiency in removing virus-infected cells. The model

verified our previous results that infected cells are cleared in a density-dependent manner. We

further determined that infection duration is dependent on the magnitude of CD8
+

T cells rather

than their efficacy. Exploring these findings through quantitative whole lung histomorphometry

corroborated the predicted infected cell dynamics and the direct relation between infected cell

clearance and CD8
+

T cell expansion. In addition, these data revealed a nonlinear connection

between disease severity, as measured by weight loss, and the amount of the lung impacted by the

infection. The data, model, and analyses provide a robust quantification of the density-dependent

nature of CD8
+

T cell-mediated clearance, and the critical connections between these cells and
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the dynamics of viral loads, infected cells, lung pathology, and disease severity.

Results

Virus and CD8
+
T cell kinetics

In animals infected with 75 TCID50 PR8, virus rapidly infects cells or is cleared within 4 h pi

(Fig 1). Virus then increases exponentially and peaks after ∼2 d pi. Following the peak, virus

enters a biphasic decline. In the first phase (2–6 d pi), virus decays slowly and at a relatively

constant rate (0.2 log10 TCID50/d) [15]. In the second phase (7–8 d pi), virus is cleared rapidly

with a loss of 4− 5 log10 TCID50 in 1–2 d (average of −3.8 log10 TCID50/d) [15]. CD8
+

T cells

remain at their baseline level from 0–2 d pi before they infiltrate the lung tissue and increase

slightly at 2–3 d pi. The population briefly contracts (3–5 d pi) before expanding rapidly (6–8 d

pi). This expansion corresponds to the second viral decay phase. Sixty percent of mice clear the

infection by 8 d pi, and the other forty percent by 9 d pi. CD8
+

T cells decline following viral

clearance (8–10 d pi), but do not return to their baseline level. These cells then increase again

slightly from 10–12 d pi.

Viral kinetic model with CD8
+
T cell-mediated clearance

We previously described the viral load kinetics and biphasic decline using the density-dependent

(DD) model in Eq (1)–(4), which assumes that the rate of infected cell clearance increases as

the density of infected cells decreases (i.e., δd(I2) = δd/(Kδ + I2)) [15]. Because the second

viral decay phase is thought to be due to the clearance of infected cells by CD8
+

T cells, we

developed a model to describe the dynamics of these cells and their efficiency in resolving the

infection (Eq (5)–(10); Fig 1A). The model includes equations for effector (E, denoted CD8E)

and memory (EM , denoted CD8M) CD8
+

T cells, and two mechanisms of infected cell clearance.

During the first viral decay phase (2–6 d pi), the rate of infected cell clearance by non-specific

mechanisms is relatively constant (δ). During the rapid, second viral decay phase (7–8 d pi),

CD8E-mediated infected cell clearance occurs at a rate that increases as the density of infected

cells decreases (δE(I2, E) = δEE/(KδE + I2)). Excluding this density dependence resulted in a

significant and premature decline in viral loads, which disagreed with the experimental data.

Although memory CD8
+

T cells are not the focus here, it was necessary to include the CD8M

population because CD8
+

T cells are at a significantly higher level at 10–12 d pi than at 0 d
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Table 1: CD8
+
T cell model parameters.

Parameter Description Units Value 95% CI

β Virus infectivity TCID
−1
50 d

−1
6.2 × 10

−5
[5.3 × 10

−6
, 1.0 × 10

−4
]

k Eclipse phase transition d
−1

4.0 [4.0, 6.0]

p Virus production TCID50 cell
−1

d
−1

1.0 [5.8 ×10
−1

, 1.1 ×10
2
]

c Virus clearance d
−1

9.4 [5.6, 9.5 × 10
2
]

δ Infected cell clearance d
−1

2.4 × 10
−1

[1.0 × 10
−1
, 6.6 × 10

−1
]

δE Infected cell clearance by CD8E cells CD8
−1
E d

−1
1.9 [3.3 × 10

−1
, 2.0]

KδE Half-saturation constant cells 4.3 × 10
2

[1.0 × 10
2
, 2.9 × 10

5

ξ CD8E infiltration CD8
2
E cell

−1
d
−1

2.6 × 10
4

[1.3 × 10
2
, 8.7 × 10

4
]

KE Half-saturation constant CD8E 8.1 × 10
5

[1.0 × 10
3
, 1.0 × 10

6
]

η CD8E expansion cell
−1

d
−1

2.5 × 10
−7

[1.6 × 10
−8
, 6.7 × 10

−7
]

τE Delay in CD8E expansion d 3.6 [2.1, 5.9]

dE CD8E clearance d
−1

1.0 [5.1 × 10
−2
, 2.0]

ζ CD8M generation CD8M CD8
−1
E d

−1
2.2 × 10

−1
[1.0 × 10

−2
, 9.4 × 10

−1
]

τM Delay in CD8M generation d 3.5 [3.0, 4.0]

Ê0 Baseline CD8 CD8 4.2 ×10
5

[3.3 × 10
5
, 5.3 × 10

5
]

T (0) Initial uninfected cells cells 1 × 10
7

-
I1(0) Initial infected cells cells 75 -
I2(0) Initial infected cells cells 0 -
V (0) Initial virus TCID50 0 -
E(0) Initial CD8E CD8E 0 -
EM(0) Initial CD8M CD8M 0 -

Parameters and 95% confidence intervals obtained from fitting the CD8
+

T cell model (Eq (5)–(10)) to viral
titers and CD8

+
T cells from mice infected with 75 TCID50 PR8. CD8E and CD8M denote effector (E) and

memory (EM ) CD8
+

T cells, respectively. The total number of CD8
+

T cells is Ê = E + EM + Ê0 and is
denoted by CD8.

pi (Fig 1B). The model includes terms for CD8E infiltration (ξI2/(KE + E)), which accounts

for the initial increase at 2–3 d pi, and for CD8E expansion (ηEI2(t − τE)), which accounts for

the larger increase between 5–8 d pi. To capture the contraction of CD8
+

T cells between these

times (3–5 d pi), it was necessary to assume that CD8E infiltration is reduced by their own

population (i.e., ξ(E) = ξ/(KE +E)). In both terms, the increase is proportional to the number

of infected cells. Fitting the model simultaneously to viral loads and CD8
+

T cells from the

lungs of infected animals illustrated the accuracy of the model (Fig 1B). The resulting parameter

values, ensembles, histograms, and 95% confidence intervals (CIs) are given in Table 1 and Figs 2

and S1–S2.

Plotting the model ensembles indicated that the behavior of the virus-specific parameters

(i.e., the rates of virus infectivity (β), virus production (p), virus clearance (c), and eclipse phase

transition (k)) in the CD8
+

T cell model were similar to the results obtained fitting the DD

model to the viral load data [15] (Fig 2A). In addition, they revealed a correlation between the
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two infected cell clearance parameters (δ and δE ; Fig 2B), which represent the efficacy of the

non-specific and CD8
+

T cell immune responses, respectively. Performing a sensitivity analysis

showed that the viral load dynamics do not change substantially when these parameters are

increased or decreased. However, decreasing the rate of non-specific infected cell clearance (i.e.,

lower δ) resulted in a significant increase in the number of CD8E due to the small increase in the

number of infected cells (Fig S3). Even with a larger CD8E population, recovery was delayed by

only ∼ 0.1 d. Given the correlation between δ and δE (Fig 2B), a more efficient CD8E response

(i.e., higher δE) may be able to overcome this short delay in resolution. The lack of sensitivity to

changes in the infected cell clearance parameters is in contrast to the DD model, where the viral

dynamics were most sensitive to perturbations in δd (Fig S5) [15], which encompasses multiple

processes. With CD8
+

T cells explicitly included in the model, the infection duration was most

sensitive to changes in the rate of CD8E expansion (η) (Figs S3 and S5; discussed in more detail

below).

Examining the parameter ensembles and sensitivity analysis also yielded insight into how

other model parameters affect the CD8
+

T cell response. The rates of CD8E expansion (η) and

clearance (dE) were slightly correlated, indicating a balance between these two processes (Fig 2C).

This correlation and the sensitivity of η produce model dynamics that were also sensitive to

changes in the CD8E clearance rate (dE) (Fig S4). As expected, the rates of CD8M generation

(ζ) and CD8E clearance (dE) were correlated (Fig 2C). It has been estimated that approximately

5–10% of effector CD8
+

T cells survive to become a long-lasting memory population [56]. Despite

the inability to distinguish between CD8E and CD8M in the data, the model predicts that 17%

of CD8E transitioned to the memory class by 15 d pi. Additional insight into the regulation of

the CD8
+

T cell response, results from the model fitting, and a comparison of the DD model

and the CD8
+

T cell model are in the Supporting Information.

Density-dependent infected cell clearance

To gain further insight into the nonlinear dynamics of CD8
+

T cell-mediated infected cell clearance,

we plotted the clearance rate (δE(I2, E) = δEE/(KδE + I2)) as a function of infected cells (I2)

and CD8E (E) (Fig 3). This confirmed that there is minimal contribution from CD8E-mediated

clearance to viral load kinetics or infected cell kinetics prior to 7 d pi (Fig 3A–C, markers a–b).

At the initiation of the second decay phase (7 d pi), the clearance rate is δE(I2, E) = 3.5/d

(Fig 3A–B, marker c). As the infected cell density declines towards the half-saturation constant
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(KδE = 4.3 × 10
2

cells), the clearance rate increases rapidly to a maximum of 4830/d (Fig 3A–C,

markers d–g). The model predicts that there are 6× 10
5

infected cells remaining at 7 d pi, which

can be eliminated by CD8E in 6.7 hours.

To explore how recovery time is altered by varying CD8E levels, we examined the resulting

dynamics from increasing or decreasing the rate of CD8E expansion (η). When η was increased

by 50%, the CD8E population increased by a substantial 670% (Fig S3). However, this was

insufficient to significantly shorten the infection (8.4 d versus 7.8 d). The infection duration can

be reduced if CD8E expansion began earlier (i.e., smaller τE ; Fig S4). Although recovery is not

significantly expedited by a larger CD8E population, the infection is dramatically prolonged if

these cells are depleted (Figs 3D–E and S3). This in silico analysis revealed a bifurcation in

recovery time, such that the infection is either resolved within ∼15 d pi or may last up to ∼45 d

if CD8E are below a critical magnitude required to resolve the infection (Fig 3D–E). The critical

number of total CD8
+

T cells needed for successful viral clearance was Ê
crit
max = 7.4 × 10

5
CD8,

which was 39.2% of the maximum number of CD8
+

T cells obtained from the best-fit solution

(i.e., Êmax = 1.9 × 10
6

CD8). This corresponds to 17% of CD8E (i.e., E
crit
max = 2.3 × 10

5
CD8E;

Fig 3D–E). The model predicts that decreasing the total number of CD8
+

T cells by as little as

0.1% from this critical level (i.e., 39.2% to 39.1%) lengthens the infection from 15 d pi to 25 d pi

(Fig 3D).

Lung histomorphometry validates infected cell dynamics

To investigate the dynamics of infected cells, we quantified these cells and the infection progression

and resolution within the lung using serial whole lung histomorphometry (Fig 4A). Antigen-

positive areas of the lung (“active” lesions) were first detectable at 2 d pi (Fig 4A–B), which

coincides with the peak in viral loads. The infected area continued to increase until 6 d pi,

whereas viral loads remained high until 7 d pi (Fig 1B). At this time, resolution of the infection

began and ∼28.7% of the infected area was cleared between 6–7 d pi (Fig S6A). Few to no infected

cells were present by 8 d pi (Fig 4A). Correspondingly, virus was undetectable in most animals

by 8 d pi (Fig 1B). Because the percent active lesion is a reflection of the influenza-positive

cells, we examined whether the CD8
+

T cell model accurately predicted these dynamics. In the

model, the accumulated infection is defined by the cumulative area under the curve (CAUC) of

the productively infected cells (I2). Plotting the percent active lesion against the CAUC of I2

showed that the model accurately predicts the cumulative infected cell dynamics and, thus, the
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infection progression within the lung (Fig 4B).

Antigen-negative, previously-infected or damaged areas of the lung (“inactive” lesions) are

evident beginning at 5 d pi (Fig 4A,C). This resolution of the infection continued from 5–8 d pi,

causing a 14.6%/d increase in the area of inactive lesions (Fig S6B). Following this, healing of

the lung is apparent as the inactive lesioned areas decline (-14.5%/d from 9–10 d pi; Figs 4C

and S6B). These dynamics parallel the CD8
+

T cell dynamics (Fig 1B). Fitting a line to the

CD8
+

T cell data from 5–8 d pi indicated that the influx rate is 4.7 × 10
5

cells/d (Fig S6C).

Thus, every 100,000 CD8
+

T cells clear ∼ 3.1% of the lung. During CD8
+

T cell contraction

phase (8–10 d pi; Fig 1B), a similar linear regression analysis suggested that these cells decline at

a rate of ∼ 3.3 × 10
5

CD8/d (Fig S6C). Similar to the relation discussed above, the dynamics of

the damaged areas of the lung corresponded precisely to the dynamics of the percent maximum

CD8E (i.e., E/Emax) in the model (Fig 4C).

Weight loss predicts area of lung affected

To monitor disease progression, weight loss was measured daily throughout the course of infection

(Fig 4D). During the first 5 d pi, animals gradually lost ∼4% of their initial weight. This was

followed by a sharper drop (8%) at 6 d pi. Animal weights increased slightly at 7 d pi (∼6%)

before reaching peak weight loss (10–14%) at 8 d pi. Following virus resolution, the animals’

weights began to restore as the inactive lesions resolved (9–10 d pi; Fig 4D). We hypothesized that

these weight loss dynamics may reflect the area of the lung impacted by the infection. Indeed,

plotting weight loss together with the percent total (active and inactive) lesioned area of the lung

revealed the similarity in their dynamics (Fig 4D-E). To further quantify their relationship, we

plotted the percent weight loss against the percent total lesioned area and observed a nonlinear

relation. Thus, we fit the saturating function L = lmaxW
n/(Wn +Kn

w) to these data, where

L is the percent total lesioned area, W is percent weight loss, lmax is the maximum rate of

the interaction, Kw is the half-saturation constant, and n is the Hill coefficient. This function

provided a close fit to the data (R
2
= 0.9; Fig 4E) with best-fit parameters lmax=39.7% total

lesioned area, Kw=2.6% weight loss, and n = 5.2.

Discussion

Influenza A virus infections pose a significant threat to human health, and it is crucial to

understand how the virus spreads within the respiratory tract, how specific immune responses
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contribute to infection control, and how these relate to disease progression. Although it has been

difficult to directly relate these features, we circumvented the challenge by pairing comprehensive,

experimental data with robust mathematical models and analyses. Our iterative model-driven

experiment approach [57,58] revealed important dynamic relations between virus, infected cells,

CD8
+

T cells, lung damage, and weight loss (Fig 5). Identifying these nonlinear connections

allows for more accurate interpretations of viral infection data and significant improvement in

our ability to predict disease severity, the likelihood of complications, and therapeutic efficacy.

Our histomorphometric data provided the first quantification of the spread of influenza virus

infection within the lung. These data allowed us to validate our model’s predicted infected cell

dynamics and, thus, confirm that their density impacts the rate at which they are cleared by

effector CD8
+

T cells (CD8E) (Fig 4). We first detected this density-dependence in a model that

excluded specific immune responses (i.e., Eq (1)–(4)) [15]. That model was a mathematically

elegant way to capture the nonlinearity in the viral load decline, but it could not distinguish

between different mechanisms of viral clearance. Here, we verified that the second viral clearance

phase reflects CD8
+

T cell-mediated clearance, determined that their efficiency increases as more

infected cells are removed, and identified the critical level needed for a timely recovery (Fig 3).

Several factors may contribute to the density-dependent change in the rate of CD8E-mediated

clearance. One possibility is that the slowed rate of clearance at high infected cell densities

is due to a “handling time” effect, which represents the time required for an immune cell to

remove an infected cell (e.g., as in [15, 24, 29, 59–62]). When CD8E interact with infected cells, a

complex is formed for ∼20–40 min [32,63–66]. Because CD8E cannot interact with other infected

cells during this time, the global rate of infected cell clearance would be lowest when infected

cells outnumber CD8E. In addition, contact by a single CD8E may be insufficient to remove

an infected cell [28]. Infected cell clearance is more frequently observed after interactions with

multiple CD8E, with an average of 3.9 contact events either serially or simultaneously [28]. Thus,

the high density of infected cells early in the infection reduces the probability that a single

virus-infected cell would be targeted a sufficient number times to induce cell death. However,

as CD8E accumulate and the density of infected cells decreases (Fig 3A), the probability of

simultaneous interactions will increase. This should reduce the handling time required to remove

of an infected cell and, thus, result in a higher efficiency. While this is a likely explanation, it

is possible that spatial limitations also contribute, such that a high infected cell density may

hinder CD8
+

T cells from reaching infected cells on the interior of the infected tissue. Crowding

of immune cells at the periphery of infected lesions has been observed in other infections (e.g.,
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in tuberculosis granulomas [67,68]) and has been suggested in agent-based models of influenza

virus infection [69].

The new knowledge about how the infection spreads throughout the lung also uncovered a

novel connection between the percent weight loss of an infected animal (i.e., disease severity) and

the percent total area of the lung impacted by the virus infection (Fig 4D–E). This discovery is

significant because it suggests that disease severity is linked to the amount of lung involvement,

which we showed is directly connected to infected cell and CD8E kinetics (Fig 4B–C) and

indirectly connected to viral load kinetics (Fig 5). Other studies utilizing histomorphometry data,

although not quantitatively, provide support for the relationship between weight loss and lung

involvement during IAV infection [12]. For example, animals treated with antivirals in various

conditions (single or combination therapy and in immunocompetent or immunosuppressed hosts)

demonstrated reduced weight loss that corresponded to reduced infected areas of lung [12,42].

Examining the histomorphometric kinetics and the connection between weight loss and lung

pathology in various infection settings should improve our predictive capabilities. This may

be particularly helpful in understanding the exacerbated morbidity and mortality in elderly

individuals. In the animal model, elderly mice typically have lower viral loads compared to adult

mice yet experience more weight loss, symptoms, and/or mortality [13,14].

The nonlinear relations derived from the histomorphometric analysis further provide a way

to interpret and utilize weight loss data, which is the most readily available type of data and

commonly used as a measure of disease severity in infection models (Figs 4–5). In our data

and others’, there is a spike in weight loss, symptom score, and/or inflammation at ∼6 d

pi [50,54,70,71] (Fig 4D). Our data suggests that this is due to CD8E infiltration and activity

while the infection continues to spread (Fig 4). Utilizing this observation and the function

describing the correlation between the percent lung lesion and weight loss (L(W ); Fig 4E), the

kinetics of the active and inactive lesioned areas can be directly estimated from weight loss data

(Fig 5). Taking this one step further, the dynamics of the CAUC of the infected cells and the

relative CD8E can be obtained. Finally, the CD8
+

T cell model (Eq (5)–(10)) can be employed

to estimate the viral load and CD8
+

T cell dynamics (Fig 5). These connections can be reversed

to estimate disease severity (i.e., weight loss) from viral load data.

Weight loss increases following infection resolution (8–9 d pi), which is likely attributed to

CD8
+

T cell-mediated pathology (Fig 4C). This is supported by other studies that suggest a

large number of CD8
+

T cells poses a risk of acute lung tissue injury [5–9]. According to our

model predictions, excessive CD8
+

T cell numbers may augment disease progression yet do not
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improve recovery time (Fig S3). Instead, an earlier onset of CD8E proliferation (i.e., smaller

τE) would be required to significantly shorten the infection (Fig S4). This aligns with evidence

that hosts with adaptive immune responses primed by vaccine or prior infection recover more

rapidly [72,73]. While higher CD8
+

T cell numbers have little impact on viral kinetics, the model

agrees with clinical and experimental studies from a wide range of host species that impaired

CD8
+

T cell responses can prolong an IAV infection [17, 22, 74–77]. That is, virus can persist for

up to several weeks if CD8
+

T cell-mediated clearance is unsuccessful (Fig 3; [74,78,79]). The

bifurcation in recovery time revealed by the model suggests that this may occur when the total

number of CD8
+

T cells are <39.2% of their maximum (Fig 3D–E)). This number is expected to

vary depending on parameters like the rate of virus replication and the infected cell lifespan,

which has been noted in another modeling study that detailed similar bifurcation behavior [80].

Although some previously published models also predict delayed resolution with depleted CD8
+

T cell responses [17, 33, 34, 81], this bifurcation has not been observed and their estimated delays

in recovery do not amount to the long-lasting infections in immunodeficient patients [74, 78, 79].

In addition to illuminating the connections between virus spread, virus clearance, the

associated pathology, and the severity of disease, the histomorphometric data validated the

model’s infected cell dynamics (Fig 4B). The dynamics of susceptible and infected cells throughout

the infection and, thus, the accuracy of the target cell limited approximation used within influenza

viral kinetic models have been questioned for several years [58,82–87]. The data here corroborate

the use of this approximation, which does not define what limits the availability of target cells.

The data also agree with the model that there are few infected cells during the time when viral

loads are growing most rapidly (0–2 d pi; Figs 1B and 4B). We previously used this information to

derive approximations for the model and gain deeper insight into how each parameter influences

the kinetics [88], which has been utilized by numerous studies [15,17,89,90]. Further, the data

support the model’s hypothesis that that there is minimal clearance of infected cells prior to

CD8E infiltration (Fig 3A–B). The knowledge of the model’s accuracy and of the spatial growth

throughout the lung should aid investigation into the mechanisms that limit virus growth during

the early stages of the infection.

Employing targeted model-driven experimental designs to examine and validate the predictions

of models like the one presented here is pivotal to elucidating the mechanisms of infection spread

and clearance [57, 58]. Determining the factors that influence disease severity/weight loss is the

first step to understand the disproportionate mortality in at-risk populations (e.g., elderly) and

to improve therapeutic design. This is particularly important because current antivirals alleviate
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symptoms but do not effectively lower viral loads [91–96]. Validated models like the one here

have enormous predictive capabilities and should prove useful in forecasting infection dynamics

for a variety of scenarios. These tools and analyses provide a more meaningful interpretation

of infection data and a deeper understanding of the progression and resolution of the disease,

which will undoubtedly aid our ability to make robust clinical decisions.

Materials and methods

Use of experimental animals

All experimental procedures were approved by the Animal Care and Use Committee at St. Jude

Children’s Research Hospital under relevant institutional and American Veterinary Medical

Association guidelines and were performed in a biosafety level 2 facility that is accredited by

AALAAS.

Mice

Adult (6 week old) female BALB/cJ mice were obtained from Jackson Laboratories (Bar Harbor,

ME). Mice were housed in groups of 5 mice in high-temperature 31.2cm × 23.5cm × 15.2cm

polycarbonate cages with isolator lids. Rooms used for housing mice were maintained on a

12:12-hour light:dark cycle at 22 ± 2
◦
C with 50% humidity in the biosafety level 2 facility at St.

Jude Children’s Research Hospital (Memphis, TN). Prior to inclusion in the experiments, mice

were allowed at least 7 d to acclimate to the animal facility such that they were 7 weeks old at

the time of infection. Laboratory Autoclavable Rodent Diet (PMI Nutrition International, St.

Louis, MO) and autoclaved water were available ad libitum. All experiments were performed

under an approved protocol and in accordance with the guidelines set forth by the Animal Care

and Use Committee at St. Jude Children’s Research Hospital.

Infectious agents

All experiments were done using the mouse adapted influenza A/Puerto Rico/8/34 (H1N1)

(PR8).
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Infection experiments

The viral infectious dose (TCID50) was determined by interpolation using the method of Reed

and Muench [97] using serial dilutions of virus on Madin-Darby canine kidney (MDCK) cells.

Mice were intranasally inoculated with 75 TCID50 PR8 diluted in 100µl of sterile PBS. Mice

were weighed at the onset of infection and each subsequent day to monitor illness and mortality.

Mice were euthanized if they became moribund or lost 30% of their starting body weight. For

viral load and CD8
+

T cell quantification, experiments were repeated three times to ensure

reproducibility and two complete experiments (10 animals per time point) were used for these

studies. Histomorphometry was performed on five animals per time point.

Lung harvesting for viral and cellular dynamics

Mice were euthanized by CO2 asphyxiation. Lungs were aseptically harvested, washed three

times in PBS, and placed in 500µl sterile PBS. Whole lungs were digested with collagenase

(1mg/ml, Sigma C0130), and physically homogenized by syringe plunger against a 40µm cell

strainer. Cell suspensions were centrifuged at 4
◦
C, 500xg for 7 min. The supernatants were used

to determine the viral titers (TCID50) by serial dilutions on MDCK monolayers. Following red

blood cell lysis, cells were washed in MACS buffer (PBS, 0.1M EDTA, 0.01M HEPES, 5mM

EDTA and 5% heat-inactivated FBS). Cells were then counted with trypan blue exclusion using

a Cell Countess System (Invitrogen, Grand Island, NY) and prepared for flow cytometric analysis

as indicated below.

Lung titers

For each animal, viral titers were obtained using serial dilutions on MDCK monolayers and

normalized to the total volume of lung homogenate supernatant. The resulting viral loads

are shown in Fig 1B and were previously published and utilized for calibration of the density-

dependent model (Eq (1)–(4); see below) [15].

Flow cytometric analysis

Flow cytometry (LSRII Fortessa; Becton Dickinson, San Jose, CA) was performed on the cell

pellets after incubation with 200µl of a 1:2 dilution of Fc block (human-γ globulin) on ice for

30 min, followed by surface marker staining with anti-mouse antibodies: CD11c (eFluor450,

eBioscience), CD11b (Alexa700, BD Biosciences), Ly6G (PerCp-Cy5.5, Biolegend), Ly6C (APC,
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eBioscience), F4/80 (PE, eBioscience), CD3e (PE-Cy7, BD Biosciences or BV785, Biolegend),

CD4 (PE-Cy5, BD Biosciences), CD8α (BV605, BD Biosciences), DX5 (APC-Cy7, Biolegend or

APC-e780, Affymetrix, Inc) and MHC-II (FITC, eBioscience). The data were analyzed using

FlowJo 10.4.2 (Tree Star, Ashland, OR) where viable cells were gated from a forward scatter/side

scatter plot and singlet inclusion. Following neutrophil (Ly6G
hi

) and subsequent macrophage

(CD11c
hi

F4/80
hi

) exclusion, CD8
+

T cells were gated as CD3e
+

CD8α
+

CD4
−

DX5
−

. The absolute

numbers of CD8
+

T cells was calculated based on viable events analyzed by flow cytometry as

related to the total number of viable cells per sample. The gating strategy is shown in Fig S7.

Lung histomorphometry and immunohistochemistry

The lungs from IAV infected mice were fixed via intratracheal infusion and then immersion in

10% buffered formalin solution. Tissues were paraffin embedded, sectioned, and stained for

influenza virus using a primary goat polyclonal antibody (US Biological, Swampscott, MA)

against influenza A, USSR (H1N1) at 1:1000 and a secondary biotinylated donkey anti-goat

antibody (sc-2042; Santa Cruz Biotechnology, Santa Cruz, CA) at 1:200 on tissue sections

subjected to antigen retrieval for 30 minutes at 98
◦
C. The extent of virus spread was quantified

by capturing digital images of whole-lung sections stained for viral antigen using an Aperio

ScanScope XT Slide Scanner (Aperio Technologies, Vista, CA) then manually outlining defined

fields. Alveolar areas containing virus antigen-positive pneumocytes were highlighted in red

(defined as “active” infection), whereas lesioned areas containing minimal or no virus antigen-

positive debris were highlighted in green (defined as “inactive” infection). Lesions containing

a mix of virus antigen-positive and antigen-negative pneumocytes were highlighted in orange

(defined as “mixed” infection). The percentage of each defined lung field was calculated using

the Aperio ImageScope software. Representative images and quantitative analyses of viral spread

and lung pathology during IAV infection are shown in Fig 4A–C.

Mathematical models

Density-dependent model

We previously developed a density-dependent (DD) viral kinetic model that describes the biphasic

decline of viral loads [15]. This model tracks 4 populations: susceptible epithelial (“target”) cells

(T ), two classes of infected cells (I1 and I2), and virus (V ) [15].
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dT

dt
= −βTV (1)

dI1
dt

= βTV − kI1 (2)

dI2
dt

= kI1 − δd(I2)I2 (3)

dV

dt
= pI2 − cV (4)

In this model, target cells become infected with virus at rate βV per day. Once infected, target

cells enter an eclipse phase (I1) before transitioning at rate k per day to a productively-infected

state (I2). These infected cells produce virus at rate p TCID50 per infected cell per day. Virus

is cleared at rate c per day and virus-producing infected cells (I2) are cleared according to

the function δd(I2) = δd/(Kδ + I2), where δd/Kδ is the maximum per day rate of infected cell

clearance and Kδ is the half-saturation constant. This model provides a close fit to the viral

load data in Fig 1B and replicates the biphasic viral load decline [15].

CD8
+
T cell model

To examine the contribution of CD8
+

T cells to the biphasic viral load decay, we expanded

the DD model (Eq (1)–(4)) to include two mechanisms of infected cell clearance (non-specific

clearance (δ) and CD8
+

T cell-mediated clearance (δE(I2, E))) and two CD8
+

T cell populations:

effector (E, denoted CD8E) and memory (EM , denoted CD8M) CD8
+

T cells. The model is

given by Eq (5)–(10).

dT

dt
= −βTV (5)

dI1
dt

= βTV − kI1 (6)

dI2
dt

= kI1 − δI2 − δE(I2, E)I2 (7)

dV

dt
= pI2 − cV (8)

dE

dt
= ξ(E)I2 + ηEI2(t − τE) − dEE (9)

dEM
dt

= ζE(t − τM) (10)

In this model, virus-producing infected cells (I2) are cleared by non-specific mechanisms
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(e.g. apoptosis and innate immune responses) at a constant rate δ per day and by CD8E at

rate δE(I2, E) = δEE/(KδE + I2) per day, where the rate of infected cell clearance is δE/KδE

per CD8E per day and KδE is the half-saturation constant. The CD8E-mediated clearance

rate (δE(I2, E)) is dependent on the density of infected cells and is similar to the infected cell

clearance term in the DD model (see Eq (3)) [15]. Similar density-dependent forms have also

been used in models that describe the CD8
+

T cell response to other virus infections [31, 59].

Models that exclude this density-dependence were examined, but these models resulted in a poor

fit to the data. The model assumes that CD8E infiltrate the lung proportional to infected cells at

rate ξ(E) = ξ/(KE + E) CD8E per cell per day, which is down-regulated by the CD8E already

present in the lung. The associated half-saturation constant is KE . Similar terms for CD8E

regulation have been used in modeling HIV infections [31, 98] and in models that examine CD8
+

T cell proliferation mechanisms [99]. In our model, CD8E expansion occurs at rate η per infected

cell per day with time delay τE . The delay may signify activation by antigen presenting cells,

differentiation, and/or proliferation in lymphoid organs outside of the lung. However, the model

does not define the site of proliferation (i.e., lung, lymph node, or spleen [20, 100–104]). The

lung CD8E population declines due to cell death and/or migration at rate dE per day. These

cells transition to CD8M (EM ) at rate ζ CD8M per CD8E per day after τM days. The model

schematic and fit to the viral load and CD8
+

T cell data are in Fig 1.

Parameter estimation

Given a parameter set θ, the cost C(θ) was minimized across parameter ranges using an Adap-

tive Simulated Annealing (ASA) global optimization algorithm [15] to compare experimental

and predicted values of log10 TCID50/lung virus (V ) and of log10 total CD8
+

T cells/lung

(Ê = E +EM + Ê0, where Ê0 is the initial number of CD8
+

T cells at 0 d pi). The cost function

is defined by

C(θ) =∑
i,j

(V (θ, ti) − vi,j)2 + sE [∑
i,j

(Ê(θ, ti) − ei,j)2+

∑
i

√
γi (

Ê(θ, ti+1) − Ê(θ, ti−1)
ti+1 − ti−1

−
1
γi

∑
j

ei+1,j − ei−1,j
ti+1 − ti−1

)
2⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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where (ti, vi,j) is the viral load data, (ti, ei,j) is the CD8
+

T cell data, and V (θ, ti) and

Ê(θ, ti) are the corresponding model predictions. Here, sE = (vmax − vmin)/(emax − emin) is a

scaling factor, and γi = Ji+1Ji−1 where Ji is the number of observations at time ti. Errors of

the log10 data were assumed to be normally distributed. To explore and visualize the regions

of parameters consistent with the model, we fit Eq (5)–(10) to 2000 bootstrap replicates of

the data. If the fit was within χ
2
= 0.05 of the best-fit, then the bootstrap was considered

successful [15, 89, 105]. For each best-fit estimate, we provide 95% confidence intervals (CI)

obtained from the bootstrap replicates (Table 1). All calculations were performed in Python

using the simanneal package [106] followed by a L-BFGS-B [107,108] deterministic minimization

through SciPy’s minimize function. SciPy integrate.ode using lsoda and PyDDE [109] were used

as the ODE and DDE solvers.

Estimated parameters included the rates of virus infection (β), virus production (p), virus

clearance (c), eclipse phase transition (k), non-specific infected cell clearance (δ), CD8E-mediated

infected cell clearance (δE), half-saturation constants (KδE and KE), CD8E infiltration (ξ), CD8E

expansion (η), delay in CD8E expansion (τE), CD8E clearance (dE), CD8M generation (ζ), delay

in CD8M generation (τM ), and the baseline number of CD8
+

T cells (Ê0). Bounds were placed

on the parameters to constrain them to physically realistic values. Because biological estimates

are not available for all parameters, ranges were set reasonably large based on preliminary

results and previous estimates [15]. The rate of infection (β) was allowed to vary between

10
−6−10

−1
TCID

−1
50 d

−1
, and the rate of virus production (p) between 10

−1−10
3

TCID50 cell
−1

d
−1

.

Bounds for the virus clearance rate (c) were 1 d
−1

(t1/2 = 16.7 h) and 10
3

d
−1

(t1/2 = 1 min). To

insure biological feasibility, the lower and upper bounds for the eclipse phase transition rate (k)

were 4 − 6 d
−1

as done previously [15].

The rate of non-specific infected cell clearance (δ) was given limits of 0.05 − 1 d
−1

. The

CD8E-mediated infected cell clearance rate (δE) varied between 0.01−2 cells CD8
−1
E d

−1
, and the

associated half-saturation constant (KδE ) was bounded between 10
2−10

6
cells. The upper bound

of δE was chosen to maintain the convergence of δ to nonzero values. Bounds for the rate of CD8E

infiltration (ξ) were 10
2−10

6
CD8

2
E cell

−1
d
−1

, and bounds for the half-saturation constant (KE)

were 10
3 − 10

6
CD8E. The CD8E expansion rate (η) varied between 10

−8 − 10
−6

cell
−1

d
−1

, and

the delay in CD8E expansion (τE) between 2–6 d. The rate of CD8E clearance (dE) had limits

of 0.05 − 2 d
−1

. The rate of CD8M generation (ζ) varied between 0.01 − 1 CD8M CD8
−1
E d

−1
,

and the delay in CD8M generation (τM ) varied between 3–4 d. Larger bounds were examined for

this parameter, however, the parameter is non-identifiable and a small range was required for
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convergence. Bounds for the baseline number of CD8
+

T cells (Ê0) were set to the upper and

lower values of the data at 0 d pi (3.0 × 10
5 − 5.3 × 10

5
CD8).

The initial number of target cells (T (0)) was set to 10
7

cells [15, 89, 105]. The initial number

of infected cells I1(0) was set to 75 cells to reflect an initial dose of 75 TCID50 [15]. We previously

found that estimating I1(0), fixing V (0) = 75 TCID50, or estimating V (0) did not improve the

fit and could not be statistically justified [15]. The initial number of productively infected cells

(I2(0)), the initial free virus (V (0)), and the initial number of CD8E (E(0)) and CD8M (EM(0))

were set to 0.

Linear regression

The function polyfit in MATLAB was used to perform linear regression on the percent active

lesioned area, the percent inactive lesioned area, and the CD8
+

T cells during the expansion

phase (5–8 d pi) and the contraction phase (9–10 d pi). Linear fits are shown in Figure S6.

Area under the curve

The function cumtrapz in MATLAB was used to estimate the cumulative area under the curve

(CAUC) for the infected cells (I2) for the best-fit model solution.
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Supporting Information

The Supporting Information contains additional parameter ensembles, sensitivity of the CD8
+

T

cell model, comparison of the DD model and the CD8
+

T cell model, linear regression analysis

of the whole lung histomorphometry, and the flow gating strategy.
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Figures

Fig 1: Schematic and fit of the CD8
+
T cell viral kinetic model. (A) Schematic of the CD8

+
T cell

model in Eq (5)–(10). In the model, target cells (T ) are infected at rate βV . Infected cells (I1) undergo an
eclipse phase and transition to become productively-infected cells (I2) at rate k. Virus (V ) is produced by
infected cells at rate p and is cleared at rate c. Infected cells are cleared at rate δ by non-specific mechanisms
and at rate δE(I2, E) by effector CD8

+
T cells (E; denoted CD8E). The dashed lines represent interactions

between infected cells and CD8E. CD8E infiltration (ξ(E) = ξ/(KE +E)) is proportional to infected cells and
is limited by CD8E with half-saturation constant KE . CD8E expansion (η) occurs proportional to infected
cells τE days ago. Memory CD8

+
T cell (EM ; denoted CD8M) generation occurs at rate ζ and proportional

to CD8E τM days ago. (B) Fit of the CD8
+

T cell model (Eq (5)–(10)) to virus and CD8
+

T cells from the
lungs of mice infected with 75 TCID50 PR8 (10 mice per time point). The total number of CD8

+
T cells is

Ê = E + EM + Ê0. The solid black line is the optimal solution and the gray shading is the minimum and
maximum of the model solution using parameter sets within the 95% CIs. Parameters are given in Table 1.
Data are shown as mean ± standard deviation.
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Fig 2: Parameter ensembles and histograms. Parameter ensembles (Panels A-C) and histograms (Panel
D) resulting from fitting the density-dependent (DD) model (Eq (1)–(4)) [15] or the CD8

+
T cell viral kinetic

model (Eq (5)–(10)) to viral titers and CD8
+

T cell counts from mice infected with 75 TCID50 PR8. (A)
Comparison of parameters that were consistent between the DD model (red) and the CD8

+
T cell model

(black). Correlations are evident between parameters relating to the rates of virus infectivity (β), virus
production (p), and virus clearance (c). However, the strength of the correlation was significantly reduced
in the CD8

+
T cell model. The eclipse phase parameter (k) is not well-defined in either model. (B) The

rates of infected cell clearance by non-specific mechanisms (δ) and by CD8E (δE) are slightly negatively
correlated. (C) Additional correlations were present between the rates of CD8E clearance (dE), expansion
(η), and memory generation (ζ). The axes limits reflect imposed bounds. Additional ensemble plots are in
Figs S1–S2.
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Fig 3: Density-dependent infected cell clearance by CD8
+
T cells and their impact on recovery

time. (A) The rate of CD8E-mediated infected cell clearance (δE(I2, E) = δEE/(KδE + I2)) plotted as a

function of infected cells (I2) and effector CD8
+

T cells (E; CD8E). The colored markers (denoted a–g)
indicate the infected cell clearance rate that corresponds to different time points during the infection for
the best-fit solution. (B) Values of δE(I2, E) for the indicated time points associated with the markers a–g.
(C) Corresponding locations of the various δE(I2, E) values (markers a–g) on the best-fit solution of the
CD8

+
T cell model for virus (V ), infected cells (I2), and CD8E (E). (D) Solutions of the CD8

+
T cell model

(Eq (5)–(10)) for virus (V ) and total CD8
+

T cells (Ê) using the best-fit parameters (black line) and when
varying the CD8E expansion rate (η; magenta lines) to illustrate how different total CD8

+
T cell magnitudes

alter infection duration. The magenta lines are solutions from when the percent Êmax relative to Êmax from
the best-fit solution was 42% (solid line), 39.2% (dash-dotted line), 39.1% (dashed line), or 37% (dotted
line). (E) The time at which infected cells reach the half-saturation constant (I2 = KδE ; gray circles) and

the infection duration (time where log10 V = 0; black diamonds) are shown for the various CD8
+

T cell
magnitudes. The gray line between these points is the time required to eliminate KδE infected cells and
achieve complete resolution of the infection (log10 V = 0).
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Fig 4: Histomorphometry of the lung during IAV infection and its relation to weight loss and
model dynamics. (A) Whole lung sections with histomorphometry showing the areas of influenza NP-
positive “active” lesions (red), “inactive” lesions with minimal antigen-positive debris (green), or mixed active
and inactive regions (orange) throughout the infection. (B) Percent active lesion (red squares) plotted together
with the cumulative area under the curve (CAUC) of the predicted infected cell dynamics (I2) obtained
from fitting the CD8

+
T cell model. (C) Percent inactive lesion (green squares) plotted together with the

percent maximum CD8E (E/Emax) obtained from fitting the CD8
+

T cell model. (D) The combined percent
active and inactive lesion (blue squares) plotted together with the percent weight loss (black diamonds) to
illustrate their similar dynamics. (E) Fit of a saturating function (L(W ) = lmaxW

n/(Kn
w +W

n)) to the
percent total lesioned area (L) and weight loss (W ). The best-fit parameters were lmax = 39.7% total lesioned
area, Kw = 2.6% weight loss, and n = 5.2.
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Fig 5: Connection between the kinetics of virus, infected cells, CD8
+
T cells, lung pathology,

and disease severity. Viral loads and weight loss are the two most easily measured pieces of data. Our
analysis relates these through mathematical models. That is, given viral loads, the CD8

+
T cell model

(Eq (5)–(10)) can be used to predict the kinetics of infected cells and CD8
+

T cells. The cumulative area
under the curve (CAUC) of the predicted infected cell dynamics (I2) yields an estimate of the percent lung
infected (active lesion) while the predicted relative CD8E dynamics (E) yield an estimate of the percent lung
resolved (inactive lesion). The total amount of lung involved (% lung infected and % lung resolved) can then
be used to estimate weight loss through the function L(W ). These connections can be reversed and weight
loss used to predict viral load kinetics.
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