1	Influence of Organic Matrix and Cations on Bio-
2	Methane Yield with Anthracite Methanogenic
3	Consortium
4	Dong Xiao ¹ *, Enyuan Wang ² , Yidong Zhang ¹
5	¹ State Key Laboratory of Coal Resources and Safe Mining, China University of Mining
6	and Technology, Xuzhou, Jiangsu, China
7	² School of Safety Engineering, China University of Mining and Technology, Xuzhou,
8	Jiangsu, China
9	* Corresponding author
10	Email: <u>xd@cumt.edu.cn</u>
11	Abstract
12	Organic compounds fermentation of coal has been used to generate secondary
13	biogenic gas and enhance gas reservoirs in coalbed. To enhance the bio-degradation

14 process, culture nutrition plays an important role in remediating the nutritional deficiency

15 of the coal seam. The influence of bio-methane yield with organic inputs and cations

16 concentrations was examined. Research of organic matrix influence revealed that the

- 17 traditional organic material except yeast extract should forbid, and the input of yeast extract
- 18 should limit at 1.00g/L also. Further, the study demonstrated that the ion concentration of

sodium, potassium, magnesium, calcium and ammonia nitrogen also influenced methane and carbon dioxide yields. And the optimize concentrations for Ca^{2+} , K^+ , Na^+ , Mg^{2+} were 5.1, 1.7, 23 and 1.3 mmol/L. The Mg^{2+} was particularly sensitive in inhibiting CH₄ metabolism processes largely for gas-coal methanogenic consortium.

23 Keywords: Anaerobic bacteria; Culture media; Organic matrix; Coal; Bio-methane.

24 **1.** INTRODUCTION

The demand for gas has seen a tremendous increase in the last 10 years [1]. In particular, coal-bed methane enhance with biotechnology represents an ideal method to increase methane productivity from oil deposits and coal seams using underground anaerobic digestion processing [2,3]. With the addition of adequate nutrient supplements, methanogenic consortium has the potential to degrade organic compounds in coal into methane. In this way, gas reserves and productivity could be enhanced along with secondary biogenic gas generation [4–6].

32 Previous studies involved with the methanogenic microbial traits and fermentation

33 characteristics for bio-methane generation have focused on the processes of bio-

degradation by microbial communities in coal seam [2,7,8] Anion research identified that

35 methane biosynthesis process could active where coalbed waters exhibit relatively low

36 salinities (<2 mol/L Cl⁻) and low SO_4^{2-} concentrations (<10 mmol/L) [9]. Nutrients

37 supply by meteoric water plays an important role in methanogenic microbial metabolism

38	[10,11]. However, nutritional deficiency exists in most coal seam. Most organic
39	compounds in coal cannot be readily used as nutrients for methanogenic microbes. In
40	addition to the inherent elements present in coal beds, supplemental nutrients are
41	important to remediate the nutritional deficiency and promote microbial growth [12,13].
42	If concentrations of supplemental nutrients are excessive, the methanogenic consortium
43	will be adversely influenced [14]. The goal of this report is to identify the optimal
44	nutrient dose for microbial community culture. Methane and carbon dioxide yield rate
45	were the indicators used to assess the results of experiments.

46 **2. Materials and methods**

47 **2.1 Materials**

The coal and coalbed water samples used in this study were collected from Laohutai 48 Fm 103[#] coalbed located in Shenyang province of China (GPS coordinates 41.830256, 49 123.957639). The depth of the Fm $103^{\#}$ gas-coal sample was 550 meters and the 50 51 thickness of the coal seam was 6-18 meters. Laohutai Mine, in the east part of Fushun near Shenyang, Liaoning province, opened in 1901. The mine has 55.6 million tons of 52 recoverable coal reserves until 2004[15]. The samples were collected by the State Key 53 Laboratory of Coal Resources and Safety Mining. The field studies did not involve 54 endangered or protected species, and only small sample quantities were used. And no 55 specific permissions were required for these locations sample collection and research. 56

57	The coal samples were obtained from a newly exposed coal seam in the heading face
58	by the channel sampling method following ASTM D 4596-86 with nitrogen protection.
59	Two sample points were selected from the Fm $103^{\#}$ coal seam. These samples were
60	sealed in gas-tight steel canisters and set with gas-tight valves (manufactured by J&D
61	Technologies) which enabled inert gas to flush the canister and protected with nitrogen
62	immediately. The coal to be used for the microbe community source was crushed into
63	small pieces (10-15 mm in diameter) at an aseptic bench (manufactured by JingXue
64	Technologies). Nitrogen protection was used to maintain the coal in a continuous
65	anaerobic environment. The sample was sealed in a sterilized gas desorption canister
66	(manufactured by J&D Technologies) to desorb the absorbed gas until no gas desorbed in
67	atmospheric pressure at 25 °C[16].
68	The formation of water samples from the Fm $103^{\#}$ coalbed were collected in the
69	same coal-bed in sterile glass bottles (manufactured by Fisher Scientific) which were
70	filled to overflow to prevent oxygen ingress. Coalbed water (\leq 24 hours after collection)
71	was autoclaved at 121 °C for 45 minutes and sealed in sterile glass bottles. Argon was
72	infused to seal the top space of the bottles. The coalbed water samples were stored at 4 $^{\circ}$ C
73	for no more than 3 days.

74 **2.2 Culture**

75 Five different nutrition culture media were tested in these experiments: MAC-1,

76 MAC-2, MAC-3, MAC-4, MAC-5 [4,17] (MAC is the abbreviation of "the influence test

of organic matrix and cations"). The final concentrations of the compounds (g/L) were as

⁷⁸ list in table 1, and 0.1 mL/L of resazurin was added as an oxygen indicator. Yeast

rextract was produced by Fisher BioReagents, and other chemicals were supplied by

80 Acros Organics.

Table 1. The MAC1-MAC5 nutrition culture media concentrations (g/L)

Culture Media	Sodium Acetate	Glucose	Beef Extract	Yeast Extract	Common Concentrations
MAC-1	2.00	3.00	3.00	2.00	
MAC-2	2.00	1.00	1.50	1.00	NH ₄ Cl, 1.00; MgCl•7H ₂ O, 1.00;
MAC-3	0.00	1.00	1.50	1.00	KH ₂ PO ₄ , 0.40; KCl, 0.50;
MAC-4	0.00	0.00	0.00	1.00	NaHCO ₃ , 1.00; L-Cysteine Hydrochloride Monohydrate, 0.45
MAC-5	0.00	0.00	0.00	0.00	

The distilled water was autoclaved at 121 °C for 45 minutes with dissolved oxygen removed. Nutrition medium was prepared in a 500 mL flask with distilled water. The medium was mixed using a magnetic stirrer for 2 hours at 60 °C at an aseptic bench and then combined with an equal volume of coalbed water (volume ratio 1:1) for another hour at room temperature. Nitrogen protection was used to maintain nutrition in a continuous anaerobic environment throughout the entire experiment. The final pH was maintained at 6.0 for all nutrition cultures. Control samples of 100 ml MAC-1, MAC-2, MAC-3, MAC-

4, and MAC-5 were sealed in separate sterile glass bottles and stored at -40 °C. Argon
was infused to seal the top space of bottles.

91	Anaerobic conditions were ensured in flasks using a gas-replacement method. This
92	gas replacing process was monitored in real time with a carbon dioxide monitor system
93	(manufactured by E2V). For each experiment 50.00 ± 1 g of the coal sample and 500.00
94	mL of medium were used. Nitrogen was used to seal the upper space of the flask at the
95	beginning of the experiment. The flasks were placed in an incubation shaker at 35 °C and
96	were agitated at 80 rpm to maximize the coal-liquid mass transfer rates. Twelve parallel
97	tests were designed for each nutrition group which were cultured for 40 days under
98	identical conditions.
99	The control experiments were performed without coal sample, which named MAC-
100	1*, MAC-2*, MAC-3*, MAC-4*, MAC-5*, to identify whether exogenous organic has
101	the possibility to supply extra carbon to enhance the bio-methane yield. For each control
102	experiment of each nutrition group 100 mL of cultured medium and 400 mL new medium

103 was used. And cultured for 40 days in the same condition as above.

104

2.3 The cation orthogonal analysis

The cation orthogonal analysis was based on consumption of cation elements in biodegradation processes, according to the $L_{16}(4^5)$ orthogonal table which includes Na⁺, K⁺, Ca²⁺, Mg²⁺. The lowest ion level was based on the MAC-4 medium while the highest ion

108	level was based upon that of the East China Sea ion concentration. A quantity of 50.00±1
109	g of Fm $103^{\#}$ gas-coal sample was used in each experiment. The upper space of the flasks
110	was sealed with nitrogen. The flasks were placed on an incubation shaker at 35 $^{\circ}$ C and
111	agitated at 80 rpm to maximize coal-liquid mass transfer rates. Cation orthogonal
112	experiments were of 40 days of culture.

113 **2.4 Gas analysis**

114 Gas samples were obtained with a 50-µL gas syrin	nge. Methane and carbon dioxide
--	---------------------------------

analyses were performed using an Agilent 7890A gas chromatograph (manufactured by

116 Agilent). The nitrogen (carrier gas) flow rate was set at 1.00 mL/min. The injection port

117 was maintained at 150°C with the oven temperature set at 25°C and the Thermal

118 Conductivity Detector (TCD) at 200°C. Retention times for methane were 3.76 minutes

and 5.0 minutes for carbon dioxide. Calibration standards consisted of 40% methane,

120 20% carbon dioxide, 10% hydrogen and 30% nitrogen, which were injected at

121 atmospheric pressure to generate the calibration plot.

122 **2.5 Nutrient Metabolism Analysis**

123 Nutrient ion concentrations were analyzed using an HC-800 ionization analyzer

124 (manufactured by Histrong Technologies). The main indicators included fluoride,

- 125 chloride, nitrate and nitrite nitrogen, phosphate, sulfate, carbonate, bicarbonate, ammonia
- 126 nitrogen, sodium, potassium, magnesium, calcium, pH, water hardness and total

127 alkalinity.

128 **3. Results**

129 **3.1** The nutrient abundance influence for bio-degradation of coal

130	Five different organic compound nutrient concentrations designated as MAC-1,
131	MAC-2, MAC-3, MAC-4, and MAC-5 were assessed in this study. In these medium,
132	Sodium Acetate is a collective medium, as carbon resource, for methanogenic normally
133	[18]. Glucose is the medium for hydrogen-producing acetogens. Beef Extract is a mixture
134	of peptides and amino acids, nucleotide fractions, organic acids, minerals, and some
135	vitamins. It is often used to supply carbon and nitrogen sources. Yeast extract contains a
136	mixture of amino acids, peptides, water soluble vitamins, and carbohydrates. And it is
137	often used in culture media [19]. The rank order of organic concentrations were MAC-1 >
138	MAC-2 > MAC-3 > MAC-4 > MAC-5.
139	Coalbed methanogenic groups are comprised of a variety of microbial types. With
140	regard to <i>methanogens</i> , only a limited number of simple carbon compounds such as CO ₂
141	or acetate can serve as substrates. For the conversion of complex organic compounds to
142	methane, fermentative and acetogenic bacteria are required. Thus they group an

143 interactive methanogenic consortium [20]. In the process of gas-coal bio-degradation, the

- 144 capacity for fermentative bacteria to hydrolyze and ferment the organic compounds of
- 145 coal plays an important role, and CO₂ is the main compound of gas productions. Beef

146	extract in medium supplied the extra carbon and nitrogen for bacteria. For the acetogenic
147	bacteria fermentation process, the long chain fatty acids and sugar degrade to form
148	acetate, CO ₂ and H ₂ [18]. Glucose is the medium to enhance the <i>acetogenic bacteria</i>
149	fermentation. And methanogens yield CH4 with CO2 and H2 or acetate. Sodium Acetate
150	was introduced to raise the acetate supply for methanogens [21].

151	If consortia in a good banlance, most CO ₂ and H ₂ will be used to format CH ₄ . And
152	the concentration of CH_4 should be high, meanwhile, the concentration of CO_2 and H_2
153	should keep in low. So the yield gas concentration with microbial fermentation process
154	could reflect the bacteria balance conditions. The presence of sufficient organic nutrients
155	in the medium could promote fermentative and acetogenic bacteria flourish and improve
156	methanogen nutrient generation. However, if excessive amounts of organic nutrients are
157	contained within the medium, which like beef extract and glucose, the high propagation
158	of fermentative or acetogenic bacteria would break the microbial balance, and carbon
159	dioxide yield rate could be enhanced, meanwhile, methanogenesis could be inhibited.
160	This phenomenon showed in MAC-1, MAC-2 and MAC-3 culture experiments (Figure
161	1).

162 The results confirmed that MAC-4 was the most effective medium for enhancing the 163 bio-methane generation rate. 1 g/L yeast extract provided the best concentration of 164 organics amino acids, peptides, and water-soluble vitamins to optimize the microbial 165 fermentation. The maximal methane concentrations of the MAC-4 culture group achieved

166	23.62% (Figure 1). It was 4 times higher than that of the MAC-2, MAC-3, MAC-5
167	groups on average. The MAC-4* control experiment and MAC-5 group verified that the
168	anthracite is important to provide carbon for bio-methane yield (Figure 1).
169	Figure 1 here
170	The high carbon dioxide and low methane concentration data obtained from MAC-1
171	and MAC-2 media demonstrate that hydrolytic bacterial had enhanced with an abundance
172	of organic substrate supplement, however, methane biosynthesis tended to inhibit in
173	culture even with additional sodium acetate. In MAC-1 and MAC-2 experiments, the
174	acetogenic bacteria inhibited also with sodium acetate influence in the medium.
175	The MAC-3 medium, which follows the same medium concentration of MAC-2
176	except sodium acetate, enhanced acetogenic bacteria, and inhibited the methanogens.
177	After 40 days of culture, the average H_2 volume concentration for the MAC-3 and MAC-
178	3* group achieved 67.2% and 59.15% as indicated by gas analysis. This amount was 33-
179	40 times greater than that of all other experimental groups. The exogenous organic
180	material played an important role in carbon supply.
181	However, organic nutrition plays an important to supply the vitamin and other
182	microelements besides organic nutrients. Without the vitamin and microelements besides
183	organic nutrients supply, the consortia would grow at a slower rate, such as that observed
184	for MAC-5.

185 **3.2** The nutritional metabolism analysis of methanogenic consortium

Changes in MAC-4 ion concentrations were analyzed in the initial and final media. 186 The data from this analysis revealed that the concentrations of sodium, potassium, 187 ammonia nitrogen and magnesium were consumed microbially. In particular, 85.78% of 188 the sodium was utilized with microbial fermentation. The medium pH changed from 6.65 189 to 7.32 over this period. In contrast, the concentrations of sulfate and bicarbonate 190 increased 1.5-7 fold (Table 2). These data indicated that sodium, nitrogen, potassium, and 191 magnesium are the key elements for methanogenic consortium fermentation. However, 192 193 the sulfate should be maintained at a low level in the medium.

194 **Table 2.** The MAC-4 medium ion concentration changes with methanogenic consortium

	рН	Fluoride	Chloride	Nitrate Nitrogen	Nitrite Nitrogen	Phosphate	Sulfate	Carbonate
Initial	6.65	3.70	81.58	-	-	44.67	195.80	-
final	7.32	5.18	95.90	-	-	38.60	478.40	-
	Bicarbonate	Sodium	Ammonia Nitrogen	Potassium	Magnesium	Calcium	Water Hardness	Total Aalkalinity
Initial	40.66	811.90	193.60	159.00	38.89	21.06	212.56	40.66
final	328.77	115.40	39.23	35.30	14.30	22.76	115.62	328.77

195 bio-degradation.

196 **3.3 The cations orthogonal analysis**

197 From the analysis of nutrient element concentrations, it is clear that sodium,

ammonia, nitrogen, potassium, and magnesium play important roles in the methanogenic

199	microbial metabolism. The orthogonal analysis experiment was designed to identify the
200	influence of cations in bio-methane yield. The orthogonal module introduced 4 cations,
201	$(Na^+, K^+, Ca^{2+}, Mg^{2+})$ as tested with 4 different concentrations. The lowest ion
202	concentration was set by MAC-4 and the highest reference level for cation analysis was
203	that of the East China Sea ion concentration. The $L_{16}(4^5)$ orthogonal table was used as an
204	orthogonal analysis module (Table 3).

Table 3. The cation orthogonal analysis table for CH₄ and CO₂. The results represent 205

volume percent units for both gases. The table shows the analysis of CH₄ and CO₂ 206

207 ranges.

Serial Number			Factors (r	nmol/L)		Resu	ılts
		Na	Mg	Ca	Κ	CH_4	CO_2
1		23	1.3	0.5	10.7	6.65	4.71
2		23	6.7	1.7	1.7	3.92	4.27
3		23	13.0	3.4	3.4	0.92	4.03
4		23	20.0	5.1	5.1	0.46	3.23
5		130	1.3	1.7	3.4	6.59	4.84
6		130	6.7	0.5	5.1	3.85	3.56
7		130	13.0	5.1	10.7	0.99	3.31
8		130	20.0	3.4	1.7	0.38	2.94
9		260	1.3	3.4	5.1	6.49	4.47
10		260	6.7	5.1	3.4	3.76	4.73
11		260	13.0	0.5	1.7	0.57	2.47
12 13 14		260	20.0	1.7	10.7	0.34	2.84
		390	1.3	5.1	1.7	7.01	4.86
		390	6.7	3.4	10.7	0.30	3.90
15		390	13.0	1.7	5.1	0.47	2.28
16		390	20.0	0.5	3.4	0.30	2.67
	\mathbf{k}_{1j}	2.99	6.69	2.84	2.97		
CH_4	k_{2j}	2.95	2.96	2.83	2.89		
	\mathbf{k}_{3j}	2.79	0.74	2.02	2.82		

	k4j	2.02	0.37	3.06	2.07	
	\mathbf{R}_{j}	0.97	6.32	1.03	0.90	
	k _{1j}	4.06	4.72	3.35	3.64	
	k _{2j}	3.66	4.12	3.56	4.07	
CO_2	k _{3j}	3.63	3.02	3.84	3.39	
	k_{4j}	3.43	2.92	4.03	3.69	
	$\mathbf{R}_{\mathbf{j}}$	0.63	1.80	0.68	0.68	

Range analysis was used to indicate the affected order among factors. Range R_j was
calculated with module 1.

$$R_j = Max_{k_{jm}} - Min_{k_{jm}} \tag{1}$$

210

212

211 Where
$$k_{jm}$$
 is the average result of the *m* level *j* factor (module 2), (j, m = 1, 2, 3, 4).

$$k_{jm} = \sum_{i=1}^{4} y_{jmi} / 4$$
 (2)

213 Where y_{jmi} is the result of the *m* level *j* factor number i data, (j, m, i = 1, 2, 3, 4).

Range analysis confirmed that for methanogenic activity, the best ion concentrations for enhancement CH_4 yield were Na_1 , Mg_1 , Ca_4 , and K_1 , with the rank order of element effectiveness being Mg > Ca > Na > K. The most effective ion concentration for control

217 CO₂ generation were Na₄, Mg₄, Ca₁, and K₃, with its ran order being Mg > Ca = K > Na.

218 Notable differences exist regarding the influence of CH₄ and CO₂ on yield rates as a

219 function of cation concentrations. The CH₄ biosynthesis is substantially more sensitive to

220 element content. Maximal Mg^{2+} concentrations to enhance methanogen metabolism

221 processes were 1.3 mmol/L, while maximal cation concentrations for Ca²⁺, K⁺, Na⁺ were

223 Variance analysis has been used to analyze the Factor Significance (F) in this

system. F was calculated with module 3.

$$F_{j} = \frac{4\sum_{i=1}^{4}K_{ij}^{2} - (\sum_{i=1}^{16}x_{i})^{2}}{16\sum_{i=1}^{16}x_{i}^{2} - (\sum_{i=1}^{16}x_{i})^{2}} \times 5$$
(3)

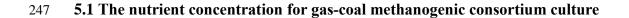
225

226

$$K_{ij} = \sum_{i=1}^{4} y_{jmi} \tag{4}$$

227 Where x_i is the experiment results for every factor and level.

Table 4. The variance analysis table for 4 factors with CH₄ and CO₂ data.


	Factor	Square of Deviance	Degree of Freedom	F Value	Significant
	Na ⁺	2.465	3	0.892	
	Mg^{2+}	100.905	3	36.533	*
CH ₄	Ca ²⁺	2.486	3	0.900	
	K^+	2.080	3	0.753	
	Error	2.762	3		
	Na ⁺	0.842	3	8.592	
	Mg^{2+}	9.120	3	93.061	**
CO ₂	Ca^{2+}	1.079	3	11.010	*
	K^+	0.954	3	9.735	
	Error	0.098	3		

Based upon the F calculation, Mg^{2+} was the significant cation factor for CH_4 and CO₂ (Table 4). This ion is particularly sensitive in inhibiting CH_4 metabolism processes largely for gas-coal methanogenic consortium.

4. Discussion

233 Microbial bio-degradation of some organic compounds of coal represents a current technology available to enhance coal-bed methane. Microbial cooperation via anaerobic 234 235 digestion processes results in the implementation of secondary biogenic methane generation and gas reservoirs enhancement in mining. Based on the experiments 236 237 performed in this report, the following conclusions can be garnered: (1) The organic 238 nutrient dose should be adjusted to methanogenic consortium requirements. Excessive or deficient organic nutrient support doses adversely affecting biomethane yield; (2) MAC-4 239 240 was the most effective medium in enhancing anaerobic digestion in Fushun gas-coal seam; (3) The sodium, nitrogen, potassium, and magnesium are the key elements for 241 methanogenic consortium fermentation; (4) The cation rank order of influence Fushun 242 methanogenic consortium metabolism was Mg > Ca > Na > K, and maximal cation 243 concentrations of Mg²⁺, Ca²⁺, K⁺, Na⁺ were 1.3, 5.1, 1.7, and 23 mmol/L, respectively; 244 (5) Mg^{2+} was a particularly sensitive factor, which could inhibit methanogenic bacteria. 245

246 **5. Conclusion**

248	The biomethane generation from coal involves a complex interaction between
249	environmental factors and biotic communities. Hydrolytic fermentative bacteria,
250	syntrophic acetogenic bacteria, methanogenic bacteria, and many other bacteria comprise
251	the biotic community. The environment includes not only the physical factors but also the
252	coal, coalbed water, coal-bed gas and other complex formations which we call the
253	environment.

The medium injected into coal seam enriching nutrients of the coal seam. The series 254 of experiments of this report confirm that nutrient media require a strict concentration of 255 256 control to be effective, especially for those involving organic materials. If the organic compounds are too rich, like that modeled with our formulations of MAC-1, MAC-2, and 257 MAC-3, the excessive levels of nutrients will adversely affect the microbial community 258 259 structure. High rates growth of hydrolytic fermentative bacteria or acetogenic bacteria could inhibit methane biosynthesis. In contrast, if lack organic nutrition, such as that 260 modeled in MAC-5, the potential for enhancing methane biosynthesis is low and the yield 261 262 proceeds at a slow rate. Concentrations of nutrition required should differ as a function of: (1) the methane biosynthesis type, such as carbon dioxide reduction or acetate 263 fermentation; (2) coal maturity grade, such as gas-coal, flame coal, bituminous coal or 264 265 lignite. The exact organic nutrition required for different coal ranks needs to be identified to maximize bio-methane yield rates. 266

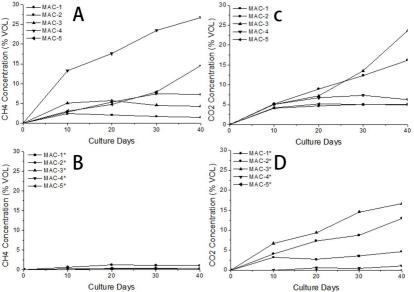
267 **5.2** Ion concentration for bio-methane yield enhancement

268	Organic biological degradation to methane is a microbial cooperation process.
269	Fermentative bacteria initially hydrolyze complex organic compounds to acetate, longer
270	chained fatty acids, carbon dioxide, hydrogen, NH4 ⁺ , and HS ⁻ . Syntrophic hydrogen-
271	producing (proton-reducing) acetogenic bacteria reduce intermediary metabolites to
272	acetate, carbon dioxide, and hydrogen. Hydrogen-utilizing acetogenic bacteria
273	demethoxylate low molecular weight ligneous compounds and ferment some
274	hydroxylated aromatic compounds. Carbon dioxide reduction methanogenic bacteria are
275	dependent on hydrogen, produced by other bacteria, to reduce carbon dioxide or
276	bicarbonate to methane. And acetate fermentation methanogen yields methane via acetate
277	bio-degradation.
277 278	bio-degradation. Different nutrients are required for different microbial activity in the community.
278	Different nutrients are required for different microbial activity in the community.
278 279	Different nutrients are required for different microbial activity in the community. Results from the cation orthogonal experiments revealed that cation concentrations
278 279 280	Different nutrients are required for different microbial activity in the community. Results from the cation orthogonal experiments revealed that cation concentrations critically influence the metabolism process of the microbial. Except for the examination
278 279 280 281	Different nutrients are required for different microbial activity in the community. Results from the cation orthogonal experiments revealed that cation concentrations critically influence the metabolism process of the microbial. Except for the examination of sodium, potassium, magnesium, calcium which analyzed in the cations orthogonal
 278 279 280 281 282 	Different nutrients are required for different microbial activity in the community. Results from the cation orthogonal experiments revealed that cation concentrations critically influence the metabolism process of the microbial. Except for the examination of sodium, potassium, magnesium, calcium which analyzed in the cations orthogonal analysis, the nitrogen, yeast extract, salinity and pH could have the potential to influence

6. Competing interests

286 The authors declare that they have no competing financial interests.

287 7. Acknowledgments


288		The authors' acknowledge the contributions of the following companies for allowing
289	acces	ss to coal samples and other information used in this paper: Laohutai Mining. We
290	thanl	k, Ke Li, Yumei Jia's assistance in this work.
291		This work was supported by the State Key Laboratory of Coal Resources and Safe
292	Mini	ng Subject (grant number SKLCRSM17KFA08 and SKLCRSM19X012), the
293	Fund	amental Research Funds for Central Universities (grant number 2014QNB41).
294	8. 2	References
295	1.	Lv Y, Tang D, Xu H, Luo H. Production characteristics and the key factors in high-rank
296		coalbed methane fields: A case study on the Fanzhuang Block, Southern Qinshui Basin,
297		China. Int J Coal Geol. 2012; doi:10.1016/j.coal.2012.03.009
298	2.	Park SY, Liang Y. Biogenic methane production from coal: A review on recent research
299		and development on microbially enhanced coalbed methane (MECBM). Fuel. 2016.
300		doi:10.1016/j.fuel.2015.10.121
301	3.	Scott AR. Improving Coal Gas Recovery with Microbially Enhanced Coalbed Methane.
302		Coalbed Methane: Scientific, Environmental and Economic Evaluation. 1999.
303		doi:10.1007/978-94-017-1062-6_7
304	4.	Green MS, Flanegan KC, Gilcrease PC. Characterization of a methanogenic consortium
305		enriched from a coalbed methane well in the Powder River Basin, U.S.A. Int J Coal Geol.
306		2008; doi:10.1016/j.coal.2008.05.001
307	5.	Penner TJ, Foght JM, Budwill K. Microbial diversity of western Canadian subsurface coal

308		beds and methanogenic coal enrichment cultures. Int J Coal Geol. 2010;
309		doi:10.1016/j.coal.2010.02.002
310	6.	Strapoć D, Picardal FW, Turich C, Schaperdoth I, Macalady JL, Lipp JS, et al. Methane-
311		producing microbial community in a coal bed of the Illinois Basin. Appl Environ
312		Microbiol. 2008;74: 2424–2432. doi:10.1128/AEM.02341-07
313	7.	Li D, Hendry P, Faiz M. A survey of the microbial populations in some Australian
314		coalbed methane reservoirs. Int J Coal Geol. 2008; doi:10.1016/j.coal.2008.04.007
315	8.	McIntosh J, Martini A, Petsch S, Huang R, Nüsslein K. Biogeochemistry of the Forest
316		City Basin coalbed methane play. Int J Coal Geol. 2008; doi:10.1016/j.coal.2008.03.004
317	9.	Hall RO, Tank JL, Baker MA, Rosi-Marshall EJ, Hotchkiss ER. Metabolism, Gas
318		Exchange, and Carbon Spiraling in Rivers. Ecosystems. 2016; doi:10.1007/s10021-015-
319		9918-1
320	10.	Beckmann S, Luk AWS, Gutierrez-Zamora ML, Chong NHH, Thomas T, Lee M, et al.
320 321	10.	Beckmann S, Luk AWS, Gutierrez-Zamora ML, Chong NHH, Thomas T, Lee M, et al. Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-
	10.	
321	10. 11.	Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-
321 322		Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed- methane generation. ISME Journal. 2018. doi:10.1038/s41396-018-0296-5
321 322 323		Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed- methane generation. ISME Journal. 2018. doi:10.1038/s41396-018-0296-5 Chen T, Zheng H, Hamilton S, Rodrigues S, Golding SD, Rudolph V. Characterisation of
321322323324		Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed- methane generation. ISME Journal. 2018. doi:10.1038/s41396-018-0296-5 Chen T, Zheng H, Hamilton S, Rodrigues S, Golding SD, Rudolph V. Characterisation of bioavailability of Surat Basin Walloon coals for biogenic methane production using
 321 322 323 324 325 	11.	Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed- methane generation. ISME Journal. 2018. doi:10.1038/s41396-018-0296-5 Chen T, Zheng H, Hamilton S, Rodrigues S, Golding SD, Rudolph V. Characterisation of bioavailability of Surat Basin Walloon coals for biogenic methane production using environmental microbial consortia. Int J Coal Geol. 2017; doi:10.1016/j.coal.2017.05.017
 321 322 323 324 325 326 	11.	Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed- methane generation. ISME Journal. 2018. doi:10.1038/s41396-018-0296-5 Chen T, Zheng H, Hamilton S, Rodrigues S, Golding SD, Rudolph V. Characterisation of bioavailability of Surat Basin Walloon coals for biogenic methane production using environmental microbial consortia. Int J Coal Geol. 2017; doi:10.1016/j.coal.2017.05.017 Xiao D, Wang E-Y, Peng S-P, Wu J-Y. Responses of coal anaerobic fermentation
 321 322 323 324 325 326 327 	11.	Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed- methane generation. ISME Journal. 2018. doi:10.1038/s41396-018-0296-5 Chen T, Zheng H, Hamilton S, Rodrigues S, Golding SD, Rudolph V. Characterisation of bioavailability of Surat Basin Walloon coals for biogenic methane production using environmental microbial consortia. Int J Coal Geol. 2017; doi:10.1016/j.coal.2017.05.017 Xiao D, Wang E-Y, Peng S-P, Wu J-Y. Responses of coal anaerobic fermentation fractures development. Meitan Xuebao/Journal China Coal Soc. 2017;42.
 321 322 323 324 325 326 327 328 	11.	Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed- methane generation. ISME Journal. 2018. doi:10.1038/s41396-018-0296-5 Chen T, Zheng H, Hamilton S, Rodrigues S, Golding SD, Rudolph V. Characterisation of bioavailability of Surat Basin Walloon coals for biogenic methane production using environmental microbial consortia. Int J Coal Geol. 2017; doi:10.1016/j.coal.2017.05.017 Xiao D, Wang E-Y, Peng S-P, Wu J-Y. Responses of coal anaerobic fermentation fractures development. Meitan Xuebao/Journal China Coal Soc. 2017;42. doi:10.13225/j.cnki.jccs.2016.1109

332		genome of M. acetivorans reveals extensive metabolic and physiological diversity.
333		Genome Res. 2002; doi:10.1101/gr.223902
334	15.	Wang E, Chen P, Li Z, Shen R, Xu J, Zhu Y. Resistivity response in complete stress-strain
335		process of loaded coal. Meitan Xuebao/Journal China Coal Soc. 2014;39.
336		doi:10.13225/j.cnki.jccs.2013.1070
337	16.	Ali Shah F, Mahmood Q, Maroof Shah M, Pervez A, Ahmad Asad S. Microbial ecology
338		of anaerobic digesters: The key players of anaerobiosis. The Scientific World Journal.
339		2014. doi:10.1155/2014/183752
340	17.	Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A
341		standardized bacterial taxonomy based on genome phylogeny substantially revises the tree
342		of life. Nat Biotechnol. 2018; doi:10.1038/nbt.4229
343	18.	Zinder SH. Physiological Ecology of Methanogens. Methanogenesis. 1993.
344		doi:10.1007/978-1-4615-2391-8_4
345	19.	Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G. Microalgal lipids
346		biochemistry and biotechnological perspectives. Biotechnology Advances. 2014.
347		doi:10.1016/j.biotechadv.2014.10.003
348	20.	Gerritsen J, Fuentes S, Grievink W, van Niftrik L, Tindall BJ, Timmerman HM, et al.
349		Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-
350		intestinal tract of a rat, and proposal for the reclassification of five closely related
351		members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinib. Int J
352		Syst Evol Microbiol. 2014; doi:10.1099/ijs.0.059543-0
353	21.	Kwietniewska E, Tys J. Process characteristics, inhibition factors and methane yields of
354		anaerobic digestion process, with particular focus on microalgal biomass fermentation.
355		Renew Sustain Energy Rev. 2014; doi:10.1016/j.rser.2014.03.041

357 Figure Legends

358	Figure 1. Changes in methane and carbon dioxide production as a function of media
359	nutrition and time in culture. Figure A is the methane concentration changes with
360	culture days. And figure B is the control experiment without coal sample supply in
361	experiment. Figure C is the carbon dioxide concentration changes with culture days. And
362	figure D is the control experiment without coal sample supply in experiment. Methane is
363	the main factor to identify the methanogens activity. And carbon dioxide is an important
364	factor to identify the fermentative and acetogenic bacteria activity. The methane yield
365	rate would high, only if the fermentative and acetogenic bacteria activity in a limited
366	condition. Organic material could enhance the fermentative and acetogenic bacteria.
367	However, if the activity of fermentative and acetogenic bacteria is too high, it would
368	inhibit the <i>methanogens</i> . The microbial group will in a good balance when achieved the
369	highest methane yield and the best ratio of methane and carbon dioxide. Thus the MAC-4
370	medium culture group fit for the requirements.

