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Abstract— Species richness varies considerably among the tree of life which can only be explained by het-1

erogeneous rates of diversification (speciation and extinction). Previous approaches use phylogenetic trees to2

estimate branch-specific diversification rates. However, all previous approaches disregard diversification-rate3

shifts on extinct lineages although 99% of species that ever existed are now extinct. Here we describe a4

lineage-specific birth-death-shift process where lineages, both extant and extinct, may have heterogeneous5

rates of diversification. To facilitate probability computation we discretize the base distribution on speci-6

ation and extinction rates into k rate categories. The fixed number of rate categories allows us to extend7

the theory of state-dependent speciation and extinction models (e.g., BiSSE and MuSSE) to compute the8

probability of an observed phylogeny given the set of speciation and extinction rates. To estimate branch-9

specific diversification rates, we develop two independent and theoretically equivalent approaches: numerical10

integration with stochastic character mapping and data-augmentation with reversible-jump Markov chain11

Monte Carlo sampling. We validate the implementation of the two approaches in RevBayes using simulated12

data and an empirical example study of primates. In the empirical example, we show that estimates of the13

number of diversification-rate shifts are, unsurprisingly, very sensitive to the choice of prior distribution.14

Instead, branch-specific diversification rate estimates are less sensitive to the assumed prior distribution on15

the number of diversification-rate shifts and consistently infer an increased rate of diversification for Old16

World Monkeys. Additionally, we observe that as few as 10 diversification-rate categories are sufficient17

to approximate a continuous base distribution on diversification rates. In conclusion, our implementation18

of the lineage-specific birth-death-shift model in RevBayes provides biologists with a method to estimate19

branch-specific diversification rates under a mathematically consistent model.20

[Birth-Death Process; Lineage-Diversification Rates; Phylogeny; RevBayes.]21
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An inordinate fondness for beetles22

— J.B.S. Haldane, in Hutchinson (1959)23

Introduction24

Multiple lines of evidence unambiguously demonstrate that rates of diversification change over time and25

among lineages. The fossil record, for one, shows a pattern in which some groups flourish for a time, only26

to go extinct. Such a pattern cannot be explained by a constant-rate speciation and extinction model of27

cladogenesis (birth-death process). Once a group becomes reasonably speciose, it becomes almost impossible28

for it to die off unless the relative rates of speciation and extinction change. And, of course, the fossil record29

shows periods of time in which the rate of extinction dramatically increases for all lineages of the tree of life.30

But even without a fossil record, we would know that speciation and extinction rates have varied across the31

branches of the tree of life because the pattern of species richness in different groups differs so dramatically.32

How can the exceptional diversity of groups such as beetles or cichlids be explained except by an increased33

rate of diversification in those groups?34

Increasingly, questions regarding diversification-rate variation are pursued by inferring the parameters35

of explicit birth-death process models from phylogenies. For example, recent theoretical work has provided36

formal statistical phylogenetic methods that allow us to detect tree-wide changes in diversification rate,37

where the rates of all contemporaneous lineages vary either in a continuous manner (e.g., Morlon et al.38

2011; Etienne and Haegeman 2012; Condamine et al. 2013; Morlon 2014; Höhna 2014; Condamine et al.39

2018), or in an episodic manner (e.g., Stadler 2011), including episodes of mass extinction (e.g., Höhna40

2015; May et al. 2016). Similarly, formal statistical methods have been developed that allow us to infer41

state-dependent variation in diversification rates, where rates of lineage diversification are correlated with42

the state of a discrete character (e.g., Maddison et al. 2007; FitzJohn 2012; Magnuson-Ford and Otto 2012;43

Beaulieu and O’Meara 2016; Freyman and Höhna 2018), or the value of a continuous trait (FitzJohn 2010).44

In contrast to the methodological progress for studying tree-wide and state-dependent rate variation,45

efforts to develop methods for detecting variation in diversification rates across lineages have proven far46

more challenging. Rather than attempting to explicitly model shifts in diversification rates, early approaches47

for detecting among-lineage diversification-rate variation were based on summary statistics (Moore et al.48

2004; Chan and Moore 2005) that do not provide estimates of branch-specific diversification rates. More49

recent approaches are motivated by birth-death processes using phylogenies (e.g., MEDUSA by Alfaro et al.50

(2009) and BAMM by Rabosky (2014)) but contain mathematical errors (i.e., the likelihood functions are51

incorrect). The reliability and robustness for parameter estimation of these methods is hotly debated (May52

and Moore 2016; Moore et al. 2016; Rabosky et al. 2017; Meyer and Wiens 2018; Meyer et al. 2018; Rabosky53

2018; Barido-Sottani et al. 2018). The key problem is that none of the existing methods (Rabosky 2014;54

Barido-Sottani et al. 2018) take diversification-rate changes on extinct lineages into account. The omission55
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of diversification-rate changes on extinct lineages is biologically problematic because: (a) extant species56

affected by a diversification-rate change might go extinct in the future and hence the diversification-rate57

change on a currently extant lineage might be a diversification-rate change on an extinct lineage in the58

future; and (b) the majority of species that ever existed (approximately 99%) has gone extinct which means59

that more diversification-rate changes must have occurred on extinct lineages. Even if we do not consider60

extinct lineages in our phylogenies, it is still crucial to model diversification-rate changes on extinct lineages61

because the probability of extinction fundamentally depends on the (changing) diversification rates in our62

models (Kendall 1948; Nee et al. 1994b,a).63

Here, we develop a new Bayesian approach for inferring branch-specific rates of speciation and extinction.64

To this end, we first introduce the lineage-specific birth-death-shift process; a model that allows diversifi-65

cation rates to vary across the lineages of a phylogeny. Importantly, our lineage-specific birth-death-shift66

model rectifies the omission of diversification-rate changes on extinct lineages. We then extend previous67

theoretical work on inferring state-dependent diversification-rate variation to develop a numerical algorithm68

for computing the probability of the tree. We develop two theoretically equivalent approaches for estimating69

branch-specific rates of speciation and extinction; the first approach uses numerical integration together with70

stochastic character mapping and the second approach uses data augmentation together with reversible-jump71

Markov chain Monte Carlo sampling. All previous methods rely only on a data-augmentation approach which72

we show is less efficient. More importantly, we can validate our implementation and the underlying theory73

by demonstrating that estimates under the two equivalent approaches are, in fact, identical. Furthermore,74

we perform a simple simulation study which shows that our implementation behaves as one expects from75

Bayesian statistical theory. Finally, we explore the behavior of our method using an empirical example76

analysis of primates. All of the methods described in this paper have been implemented in the Bayesian77

phylogenetic inference software package RevBayes (Höhna et al. 2016).78

Methods79

The Lineage-Specific Birth-Death-Shift Process80

We define a stochastic process that generates phylogenies via three events: (1) speciation events; (2) extinc-81

tion events, and; (3) diversification-rate shift events. These events occur with rates λi, µi and η respectively,82

where the index i stands for the i-th species. When a speciation event occurs, a lineage gives rise to two83

daughter lineages that inherit the speciation and extinction rates of their parent lineage. When an extinction84

event occurs, the lineage is simply terminated. When a diversification-rate shift occurs, new speciation and85

extinction rates are drawn from the corresponding base probability distributions, fλ(·) and fµ(·), and the86

lineage continues to diversify under these new rates. This defines a stochastic branching process in which87

rates of diversification are allowed to vary across lineages. We refer to this stochastic branching process as88

the lineage-specific birth-death-shift process.89

Next, we explain how to simulate under the lineage-specific birth-death-shift process. This explanation90
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has two purposes: (a) to clarify how the process works, and (b) to show that one can obtain realizations91

under the process which is sufficient to show that the process is in itself coherent. We imagine maintaining92

a list of ‘active’ lineages in computer memory. Under this stochastic branching process, the i-th active93

lineage can either speciate (with rate λi) or go extinct (with rate µi), and all active lineages can experience94

a diversification-rate shift (with a common rate η). We simulate the process over an interval, T , starting95

with one active lineage at time t = T in the past. The waiting times between events are exponentially96

distributed (because the probability of an event happening at a given time is equal if the rates are equal).97

Thus, we simulate forward in time by drawing an exponentially distributed waiting time for each active98

lineage. The parameter of the exponential distribution is the sum of the three event rates, (λi +µi + η). We99

pick the lineage with the shortest waiting time for the next event. We randomly choose the type of event for100

this lineage, which will be a speciation event with probability λi/(λi + µi + η), or an extinction event with101

probability µi/(λi + µi + η), or a diversification-rate shift event with probability η/(λi + µi + η).102

When a lineage speciates, it is removed from the active list and replaced with its two daughter lineages,103

where each daughter lineage inherits the same speciation and extinction rates of their parent lineage. When104

a lineage experiences extinction, it is simply removed from the list of active lineages. When a diversification-105

rate shift occurs, the new speciation and extinction rates are drawn from the corresponding base probability106

distributions, fλ(·) and fµ(·), such that diversification rates are lineage specific. The simulation continues107

until the next event occurs after the present (i.e., t ≤ 0), or until all lineages have gone extinct before time108

t = 0.109

Computing the Probability of an Observed Tree Under the Lineage-Specific110

Birth-Death-Shift Model111

In outline, our method to compute the probability of an “observed” tree under the lineage-specific birth-112

death-shift model involves two components: (1) discretization of the speciation- and extinction-rate base113

probability distributions into k categories, to approximate the underlying continuous distributions; (2) a114

backwards algorithm that traverses the tree from the tips to the root in small time steps, ∆t. In each115

interval, we solve a pair of ordinary differential equations (ODEs) that compute the change in probability116

associated with all of the possible events (speciation, extinction, and diversification-rate shifts among the k117

diversification-rate categories) that could occur within each interval. Upon reaching the root, this algorithm118

has computed the probability of realizing the observed tree under each of the k discrete rate categories.119

Below, we detail each of these two components.120

Discretization of the diversification-rate distributions— The probability calculations for the lineage-specific121

birth-death-shift model are impractical if we have to integrate over continuous base distributions for the122

diversification-rate parameters. Accordingly, we adopt an approach that provides an approximation of these123

integrals. Under this approach, we first divide the continuous probability distributions for the diversification-124

rate parameters into a finite number of k bins. The width of each bin (or diversification-rate category) is125
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Figure 1: Approximation of the continuous base distributions for the diversification-rate parameters using
discrete rate categories. Our approach for computing the probability of the data under the lineage-specific birth-death-
shift model specifies k quantiles of the continuous base distributions for the speciation and extinction rates. We compute
probabilities by marginalizing (averaging) over the k discrete rate categories, where the diversification rate for a given category
is the median of the corresponding quantile (colored dots). This approach provides an efficient alternative to computing the
continuous integral, and will provide a reliable approximation of the continuous integral when the number of categories k is
sufficiently large to resemble the underlying continuous distribution.

defined such that each category contains equal probability (i.e., using the k quantiles of the underlying126

continuous probability distribution). Thus, the diversification rate for i-th discrete category is the median127

value of the corresponding quantile. As detailed in the following sections, our probability calculations involve128

summing over these k discrete diversification-rate categories.129

As in the case of the discrete-gamma model for accommodating among-site variation in substitution130

rates (Yang 1994), the number of categories, k, is not a parameter of our model (i.e., it is an assumption131

of the analysis rather than an estimate from the data). The choice of k categories represents a compromise:132

the resemblance to the underlying continuous probability distribution improves as the number of discrete133

categories increases (Figure 1). However, the computational burden also scales with the number of discrete134

categories. Thus, the value of k is only of interest to the extent that it must be sufficiently large to avoid135

discretization bias, while remaining small enough to allow practical computation. We will explore the impact136

of different numbers of diversification-rate categories in a later section.137

Backwards algorithm to compute the probability of the observed phylogeny— The second part of our approach138

involves discretizing the tree into tiny time steps, and then numerically integrating over these time slices139

to compute the probability of the observed data under the lineage-specific birth-death-shift process. This140

aspect of our approach draws heavily on the algorithm developed by Maddison et al. (2007) and FitzJohn141

(2012) in the context of exploring a state-dependent birth-death process (their BiSSE and MuSSE model).142

Following Maddison et al. (2007), our numerical algorithm begins at the tips of the tree where t = 0 (i.e.,143

the present). We need to consider two probability terms at each point in time: D(t) and E(t). D(t) is the144

probability of the observed lineage between time t and the present, and E(t) is the probability that a lineage145

at time t goes extinct before the present. For each tip, we must initialize D(t) and E(t) and also consider the146

state of the process. Under the BiSSE model, the diversification process depends on the state of the binary147

character (0 or 1). Thus, for a species with the observed state 0, we initialize D0(0) = 1 and D1(0) = 0.148

Conversely, for a species with the observed state 1, we initialize D0(0) = 0 and D1(0) = 1. Under our model,149
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no speciation,
no rate shift

(i)

† †

no rate shift,
speciation,
extinction of
left branch

(ii) no rate shift,
speciation,
extinction of
right branch

(iii) no speciation,
rate shift

(iv)

Figure 2: Possible scenarios that could occur over the interval ∆t along a lineage that is observed at time t.
To compute the probability under the lineage-specific birth-death-shift process, we traverse the tree from the tips to the root
in small time steps, ∆t. For each step into the past, from time t to time (t+∆t), we compute the change in probability of
the observed lineage by enumerating all of the possible scenarios that could occur over the interval ∆t: (i) nothing happens,
(ii) a speciation event occurs, where the right descendant survives and the left descendant goes extinct before the present,
or (iii) a speciation event occurs, where the left descendant survives but the right goes extinct before the present, or (iv) a
diversification-rate shift from category i to j occurs. Color key: segment(s) of the tree within the interval ∆t are colored blue
for state i and/or orange for state j to reflect the conditioning of the corresponding scenarios, segment(s) of the tree between t
and the present are colored gray because we have integrated over the k discrete rate categories (no specific assignment of rate
categories), and segments of the tree between t+∆t and the root are colored gray because we will integrated over the k discrete
rate categories.

the state of the diversification process is not observed. Thus, for each species at time t = 0, we initialize150

Di(0) = 1 for each of the i ∈ (1, . . . , k) discrete diversification-rate categories. In fact, this is equivalent to151

the case under the BiSSE model when the state of a given species is unknown (i.e., coded as ‘?’), in which152

case we would initialize D0(0) = 1 and D1(0) = 1. Finally, we initialize the extinction probability for each153

species as Ei(0) = 0 for each of the i ∈ (1, . . . , k) discrete diversification-rate categories. Note that if we have154

an incomplete (but random/uniform) sample of species, then we would initialize Di(0) = ρ and Ei(0) = 1−ρ155

for each of the i ∈ (1, . . . , k), where ρ is the proportion of randomly sampled species (FitzJohn et al. 2009).156

Next, we begin our traversal of the tree from each tip (where t = 0) to the root in tiny time steps, ∆t. For157

each time step into the past, we calculate the change in probability of the observed lineage over the interval158

(t+∆t) by enumerating all of the events that could occur within the interval ∆t. If we assume that ∆t is159

small, then the probability of any two events occurring in the same interval is negligible. In the interval ∆t160

there are four possible scenarios that could occur (see Equation 1 and Figure 2): (i) nothing happens (no161

speciation event or diversification-rate shift), or (ii) no diversification-rate shift but a speciation event occurs162

and the left descendant subsequently goes extinct before the present, or (iii) no diversification-rate shift but163

a speciation event occurs and the right descendant subsequently goes extinct before the present, or (iv) no164

speciation event occurs but there is a diversification-rate shift to any of the other (k−1) rate categories. Now165
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we can compute Di(t+∆t) by writing the set of k difference equations D1(t+∆t), D2(t+∆t), . . . , Dk(t+∆t):166

Di(t+∆t) = (1)

(1− µi∆t)× In all cases, the lineage survives over the interval, and
󰀥
(1− λi∆t)× (1− η∆t)Di(t) (i) nothing happens,

+ (1− η∆t)λi∆tDi(t)Ei(t) or (ii) no rate shift, speciation, left extinction,

+ (1− η∆t)λi∆tDi(t)Ei(t) or (iii) no rate shift, speciation, right extinction,

+ (1− λi∆t)

k󰁛

j ∕=i

η∆t

k − 1
Dj(t)

󰀦
or (iv) no speciation, but shift to rate j.

Note that the first (unnumbered) term in Equation 1 represents the probability that the observed lineage167

does not go extinct in the interval ∆t. The probability of no extinction in the interval ∆t is included because168

if the lineage had gone extinct in this interval, then we could not have observed it.169

Equation 1 makes it clear that in order to compute Di(t), we must simultaneously compute Ei(t) (the170

probability of a lineage going extinct before the present). Again, we calculate the change in the extinction171

probability for each step into the past, from t to (t+∆t), by enumerating all of the scenarios that could172

occur within the interval ∆t (see Equation 2 and Figure 3): (i) in the first scenario, the lineage goes extinct173

in the interval, ∆t; in the remaining scenarios, the lineage does not go extinct in the interval, and (ii)174

the lineage does not speciate and does not experience a diversification-rate shift during the interval ∆t, but175

subsequently goes extinct before the present, which occurs with probability Ei(t), or (iii) the lineage speciates176

in the interval, ∆t, such that both descendent lineages must eventually go extinct before the present, which177

occurs with probability Ei(t)
2, or (iv) the lineage does not speciate in the interval, ∆t, but does experience178

no speciation,
no rate shift,
extinction

(i) no rate shift,
no speciation,
subsequent 
extinction

(ii) no rate shift,
speciation,
subsequent 
extinctions

(iii) no speciation,
rate shift,
subsequent 
extinction

(iv)

†
†

† † †

Figure 3: Possible extinction scenarios. For each step into the past, from time t to time (t+∆t), we compute the change in
the extinction probability, Ei(t) (the probability that a lineage in state i at time t goes extinct before the present) by enumerating
the scenarios that could occur in the interval ∆t: (i) the lineage goes extinct in the interval ∆t; in the remaining three scenarios,
the lineage does not go extinct in the interval, and (ii) nothing happens (no extinction, speciation or diversification-rate shift
in the interval ∆t), with subsequent extinction before the present, (iii) the lineage speciates in the interval ∆t, with subsequent
extinction of both daughter lineages before the present, or (iv) the lineage experiences a diversification-rate shift from rate
category i to j, with subsequent extinction before the present. Segments of the tree are colored as described in the key for
Figure 2.
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a diversification-rate shift from category i to category j, and subsequently goes extinct before the present,179

which occurs with probability Ej(t). As before, we can compute Ei(t+∆t) by writing the set of k difference180

equations E1(t+∆t), E2(t+∆t), . . . , Ek(t+∆t):181

Ei(t+∆t) = (2)

µi∆t (i) The lineage goes extinct within the interval,

+ (1− µ∆t)× or, no extinction within the interval and
󰀥
󰀃
1− η∆t

󰀄󰀃
1− λi∆t

󰀄
Ei(t) (ii) nothing happens, with subsequent extinction,

+
󰀃
1− η∆t

󰀄
λi∆tEi(t)

2 or, (iii) speciation and two subsequent extinctions,

+
󰀃
1− λi∆t

󰀄 k󰁛

j ∕=i

η∆t

k − 1
Ej(t)

󰀦
or, (iv) shift to rate j, with subsequent extinction.

We now derive the ordinary differential equations from the corresponding difference Equations 1 and 2.182

This requires some algebra (which includes dividing by the interval ∆t and omitting terms of order (∆t)2)183

and results in the coupled ordinary differential equations (ODEs):184

dDi(t)

dt
= −(λi + µi + η)Di(t) + 2λiDi(t)Ei(t) +

k󰁛

j ∕=i

η

k − 1
Dj(t) (3)

dEi(t)

dt
= µi − (λi + µi + η)Ei(t) + λiEi(t)

2 +

k󰁛

j ∕=i

η

k − 1
Ej(t). (4)

These differential equations are solved for each branch of the phylogeny and compute the probability of an185

observed lineage. As an aside, we note that we store the values of Di(t) and Ei(t) computed at some interval,186

∆δ. We will use these stored values for the procedure that maps diversification-rate shifts over the tree (see187

the description of the forwards algorithm, below).188

Because we are moving backward in time, each branch will end at the speciation event by which it189

originated. For a speciation event that occurs at time t while the process is in diversification-rate category190

i, we initialize the probability density of the immediately ancestral lineage, A, by taking the product of191

its two daughter species at time t (DL
i (t) and DR

i (t)) multiplied by the probability density of the observed192

speciation event at time t, λi:193

DA
i (t) = DL

i (t)×DR
i (t)× λi.

The algorithm terminates when we reach the most ancient speciation event in the tree (i.e., at the root).194

Upon reaching the root of the tree, we will have computed the vector of k probabilities, Di(T ), where195

i ∈ {1, 2, . . . , k}. Di(T ) is the probability of observing the entire tree under the lineage-specific birth-death-196

shift process given that the process was initiated in diversification-rate category i at the root. We then197

multiply each of these k probabilities by their corresponding prior probabilities, πi. The prior probability198

for rate category i specifies the probability that the diversification process started in category i at the root.199
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Recall that each of the k discrete diversification-rate categories has equal probability (i.e., they are quantiles200

of the corresponding base distributions). Therefore, we assume that all of the k diversification-rate categories201

have equal prior probability, πi = 1/k (i.e., a discrete uniform prior distribution). The product of the root202

probability for diversification-rate category i and the prior probability for diversification-rate category i gives203

the probability of rate category i. Finally, the sum of these k probabilities gives the probability of the entire204

tree under the lineage-specific birth-death-shift model205

P (T ) =

k󰁛

i

πi ×Di(T ).

We will call this probability P (T ) of the ‘observed’ phylogeny the likelihood function under the numerical206

integration approach because we perform parameter estimation in a Bayesian statistical framework.207

Estimating Branch-Specific Speciation and Extinction Rates using Stochastic Character208

Mapping (forward algorithm)209

The backwards algorithm computes the probability of the observed tree under the lineage-specific birth-death-210

shift process. In doing so, however, the numerical marginalization ‘integrates out’ the focal parameters: the211

branch-specific diversification rates. Therefore, we adopt an approach to estimate the branch-specific rates212

of speciation and extinction that is based on stochastic character mapping (Huelsenbeck et al. 2001; Nielsen213

2002; Landis et al. 2018; Freyman and Höhna 2019). Under stochastic character mapping, character histories214

are simulated in a forwards traversal of the tree (i.e., moving over the tree from the root to its tips), where215

each history specifies the number, location and magnitude of character-state changes. Here, we adopt the216

algorithm developed by Freyman and Höhna (2019) for mapping diversification histories. The objective is217

to compute the probability that the diversification process is in each of the k rate categories, Fi(t−∆t). To218

compute Fi(t−∆t) we take the product of three probability components: the initial probabilities of the i rate219

categories at the beginning of the interval, Fi(t), the forward probabilities of the process over the interval220

∆t, and the conditional likelihoods of the process between (t−∆t) and the present, D(t−∆t).221

Our algorithm starts at the root of the tree, where we initialize the diversification process by randomly222

drawing one of the k rate categories proportional to their corresponding probabilities at the root, Pi(T ).223

Next, we initialize the forward probability Fi(t) of the selected rate category with probability 1, and the224

other (k−1) rate categories have zero probability (i.e., Fi(T ) = 1 and Fj ∕=i(T ) = 0). Then, we begin our225

traversal in tiny time steps, ∆t, forward in time from time t to time (t−∆t). We calculate the probability226

Fi(t−∆t) that the diversification process is in rate category i at time (t−∆t) by enumerating all of the227

scenarios that could occur within the interval ∆t that result in the lineage being in rate category i at time228

(t−∆t), given the initial state, Fi(t) (see Equation 5). We have the same four scenarios as in Figure 2 and229

Equation 1, so we omit a repetition of the details here. The main difference is the direction of time (i.e., we230

move forwards in time) and that the surviving lineage at time (t−∆t) must evolve into the lineage observed231

at the present, which occurs with probability Di(t−∆t). We compute Fi(t−∆t) by writing the set of k232
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difference equations F1(t−∆t), F2(t−∆t), . . . , Fk(t−∆t):233

Fi(t−∆t) = (5)

Di(t−∆t)× (1− µi∆t)× No extinction, and;
󰀥
(1− λi∆t)× (1− η∆t)Fi(t) (i) nothing happens,

+ (1− η∆t)λi∆tEi(t−∆t)Fi(t) or (ii) no rate shift, speciation, left extinction,

+ (1− η∆t)λi∆tEi(t−∆t)Fi(t) or (iii) no rate shift, speciation, right extinction,

+ (1− λj∆t)

k󰁛

j ∕=i

η∆t

k − 1
Fj(t)

󰀦
or (iv) no speciation, no extinction, shift to rate i.

As previously, we derive the ordinary differential equation from its corresponding difference Equation 5234

by using some algebra and omitting terms of order (∆t)2:235

dFi(t)

dt
= −(λi + µi + η)Fi(t)Di(t) + 2λiFi(t)Di(t)Ei(t) +

k󰁛

j ∕=i

η

k − 1
Fj(t)Di(t). (6)

We compute these probabilities by solving this ODE in a forwards traversal of the tree. Specifically, at a236

given branch at time t where we just mapped the state i, we solve Fi(t) until time (t −∆δ). Note that ∆t237

is much smaller than ∆δ (∆t ≪ ∆δ) because we take the limit of ∆t → 0 in the numerical integration but238

draw character maps only after a time step of ∆δ. Then, at time t−∆δ, we draw one of the k diversification-239

rate categories proportional to their corresponding probabilities, Fi(t − ∆δ). The sampled rate category240

becomes Fi(t − ∆δ) = 1 for the next iteration of the recursive forwards algorithm. If the rate category241

sampled at time (t−∆δ) is the same as the initial rate category (at time t), we paint the interval ∆δ of the242

branch by the corresponding diversification-rate category. Conversely, if the rate category sampled at time243

(t−∆δ) differs from the initial rate category (at time t), we paint a diversification-rate shift between these244

two rate categories within the interval ∆δ. The recursive algorithm continues moving forward in time and245

terminates upon reaching the tips of the tree. Upon reaching the present, we will have mapped a complete246

diversification-rate history that specifies the number and location of diversification-rate shifts and the rate247

category for each branch of the tree.248

An Alternative Approach Using Data Augmentation249

Next, we develop a second numerical algorithm for estimating branch-specific diversification rates. Specif-250

ically, our second approach is based on data augmentation (Dempster et al. 1977; Tanner and Wong 1987;251

Gelfand and Smith 1990; Huelsenbeck et al. 2000; Landis et al. 2013; Uyeda and Harmon 2014), where we aug-252

ment the study tree (i.e., our actual data) with diversification histories (describing the number and location253

of diversification-rate shifts and the rate category for every branch of the tree). We treat these diversification254

histories as observations (i.e., they augment our data). We compute the likelihood of each ‘observed’ diver-255
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sification history using a modified version of our backwards algorithm. We then use reversible-jump MCMC256

(RJ-MCMC) to sample diversification histories in proportion to their posterior probability (see Appendix257

A).258

Consider a tree that has been augmented with a history that specifies the diversification-rate category259

for every branch of the tree. As previously, we compute the probability of the observations (the phylogeny260

and the ‘observed’ diversification history) using a backwards algorithm that moves over the tree from the261

tips to the root in tiny time steps, ∆t. For each interval, we compute the probability of the data by solving262

a pair of ODEs that account for all of the scenarios that could occur over each step into the past. We begin263

at the tips of the tree, where t = 0 (the present), where we initialize the two probability terms, D(t) and264

Ei(t). Observe that we use only a single probability term D(t) because a lineage that is in state i always265

has probability Dj(t) = 0 for all other diversification rate categories j. For all species we initialize D(0) = 1266

or in the case of incomplete sampling we initialize D(0) = ρ. Finally, we initialize the extinction probability267

for each species as Ei(0) = 0 for each of the i ∈ (1, . . . , k) diversification-rate categories (or in the case of268

incomplete sampling we initialize Ei(0) = 1− ρ).269

no rate shift,
no speciation,
no extinction

(i)

†

no rate shift,
speciation,
extinction of
right branch

(iii) rate shift,
no speciation,
no extinction

A B

no rate shift,
speciation,
extinction of
left branch

(ii)

†

Figure 4: Possible scenarios that could occur over an interval ∆t under the data-augmentation approach.
The observed phylogeny has been augmented with a diversification history (describing the number and location of rate shifts
and the discrete rate category for every branch segment of the tree), which we treat as an observation. To compute the
probability of the observed tree and the ‘observed’ history under the lineage-specific birth-death-shift process, we traverse the
tree from the tips to the root in small time steps, ∆t. For each step into the past, from time t to time (t+∆t), we compute the
probability of the observations by enumerating all of the possible scenarios that could occur over the interval ∆t. (A) When no
diversification-rate shift is ‘observed’ in the interval ∆t, there are three scenarios: (i) nothing happens, or (ii) a speciation event
occurs, where the right descendant survives and the left descendant goes extinct before the present, or (iii) a speciation event
occurs, where the left descendant survives but the right goes extinct before the present. (B) Alternatively, a diversification-rate
shift from category i to j is ‘observed’ within the interval ∆t. Color key: segments of extant lineages are colored according to
the ‘observed’ diversification history (blue segments are in rate category i, orange segments are in rate category j); segments of
the tree between t and an extinction event are colored gray because we average the extinction probabilities over the k discrete
diversification-rate categories.

Next, we calculate the probability of the observed lineage and the ‘observed’ diversification history over270

the interval (t+∆t) by enumerating all possible scenarios that could occur within the interval ∆t. When a271

diversification-rate shift is not ‘observed’ within the current interval, there are three possible scenarios that272

could occur over the interval (see Equation 7 and Figure 4A), specifically: (i) no speciation event occurs (i.e.,273

nothing happens), or (ii) a speciation event occurs and the left descendant subsequently goes extinct before274

the present, or (iii) a speciation event occurs and the right descendant subsequently goes extinct before the275
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present. Accordingly, we can compute D(t+∆t) as a difference equation:276

D(t+∆t) = (7)

(1− µi∆t)(1− η∆t)× In all cases, the lineage survives, no rate shift, and
󰀥
(1− λi∆t)D(t) (i) nothing happens,

+ λi∆tD(t)Ei(t) or (ii) speciation, left extinction,

+ λi∆tD(t)Ei(t)

󰀦
or (iii) speciation, right extinction.

The first two (unnumbered) terms in Equation 7 account for the probability that the observed lineage does277

not go extinct in the interval ∆t (otherwise it could not have been observed at the more recent time, t), and278

also for the probability that the lineage does not experience a diversification-rate shift in the interval ∆t279

(because no diversification-rate shift was ‘observed’). Diversification-rate histories cannot be mapped onto280

unobserved (extinct) branches. Therefore, we compute extinction probabilities, Ei(t), in exactly the same281

way as before (see Equations 2 and 4 and Figure 3).282

As previously, we derive the ordinary differential equation from its corresponding difference Equation 7:283

dD(t)

dt
= −(µi + λi + η)Di(t) + 2λiDi(t)Ei(t) (8)

As previously, we compute the probability of the observations by solving these ODEs (i.e., by integrating284

the change in probability over each time step, ∆t, from the present to time t).285

We continue traversing the current branch toward the root of the tree (moving in small time steps, ∆t,286

further into the past, and solving the coupled ODEs for each interval) until we either reach the end of the287

branch (at a speciation event, in which case the probabilities are propagated as described previously), or288

we encounter a diversification-rate shift. When we encounter an ‘observed’ diversification-rate shift from289

category i to category j (where i ∕= j), we initialize D′(t) as:290

D′(t) = D(t)× η

k − 1
,

which is the current probability of the observed lineage multiplied by the probability density of ‘observing’291

a diversification-rate shift to one of the other (k − 1) rate categories at time t (Figure 4B). The algorithm292

terminates when we reach the root of the tree. Since we are only considering one term D(t) for the ob-293

served lineages in any state i, this probability D(t) gives us directly the probability of observing the tree294

and diversification rate history. We will call this probability of the ‘observed’ phylogeny augmented with295

diversification histories the likelihood function under the data-augmentation approach because we perform296

parameter estimation in a Bayesian statistical framework.297
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Validating the Theory and Implementation298

We performed several tests to evaluate both the underlying theory and the implementation of the lineage-299

specific birth-death-shift model in RevBayes, including: (1) comparing analytical likelihoods to those es-300

timated using the two methods under the special case where there are no diversification-rate shifts, (2)301

comparing analytical and empirical distributions of the number of diversification-rate shifts under the spe-302

cial case where all rate categories are identical, (3) comparing parameter estimates under the two theoretically303

equivalent but independent approaches, (4) assessing the computational efficiency of the two approaches,304

and (5) assessing the ability of the method to recover true parameter values under simulation. We briefly305

describe each of these experiments below (we provide further details of these analyses in the Supplementary306

Material and the scripts available online from https://github.com/hoehna/birth-death-shift-analyses).307

Comparing Analytical and Numerically Approximated Probabilities for the Special Case of a308

Constant-Rate Birth-Death Process309

Recall that there is no analytical solution for computing the likelihood under the lineage-specific birth-death-310

shift process, which motivates the development of our two numerical algorithms. However, the likelihood311

can be computed analytically for the special case when η = 0 (i.e., when the process simplifies to a constant-312

rate birth-death process). Thus, we compare the analytical likelihood to that approximated using the two313

numerical methods under the special case of a constant-rate birth-death process. If our derivation and314

implementation are correct, and we chose a sufficiently small ∆t, then the likelihoods should be exactly315

identical under the three different methods.316

For the computations, we set all of the k diversification-rate categories equal, assumed k = 4 discrete317

rate categories, and set η = 0 (the rate of diversification-rate shifts). We then computed the likelihood318

over a range of relative-extinction rates, 󰂃 = {0, . . . , 1} using the analytical solution under the constant-rate319

birth-death process, the numerical-integration and data-augmentation methods. As expected, plots of the320

analytical and numerically approximated likelihoods are identical (Figure 5), confirming both the derivation321

and implementation of the two numerical algorithms.322

Comparing Analytical and Estimated Distributions for the Number of Diversification-Rate323

Shifts324

Second, we compare the analytical and estimated probability distributions on the number of diversification-325

rate shifts. Under the lineage-specific birth-death-shift process, waiting times between diversification-rate326

shifts are exponentially distributed with rate η. If we constrain the k diversification-rate categories to327

be equal, then diversification-rate shifts among those k identical rate categories will have no impact on the328

probability of speciation or extinction. The difference in the probability of the observed phylogeny stems only329

from the probability of the number of diversification-rate shift events but not the probability of speciation330
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Figure 5: Comparing the analytical likelihoods to those approximated using the numerical algorithms when
η = 0. We can analytically compute the likelihood under the special case where the rate of diversification-rate shifts is zero. We
plot the analytical likelihood over a range of values for the relative-extinction rate, 󰂃 = µ÷ λ (shaded line), and compare these
values to those estimated using the numerical-integration method (× symbols) and the data-augmentation method (+ symbols).
The analytical and estimated likelihoods are identical, confirming the correctness of the derivation and implementation of the
independent methods.

and extinction. In this case, the number of diversification-rate shifts over the branches of the tree is Poisson331

distributed with rate η × TL where TL is the tree length (i.e., the sum of all of branch lengths in the tree).332
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Figure 6: Distribution of the number of diversification-rate shifts when all categories have an identical diver-
sification rate.
The plot depicts the analytical distribution of the number of diversification-rate shifts over a set of values for the shift-rate,
η, that specify a corresponding range of values for the expected number of diversification-rate shifts E(S) = {1, 10, 20}. We
estimated the number of diversification-rate shifts using both the numerical-integration method (× symbols) and the data-
augmentation method (+ symbols) for the same range of shift-rate priors when the diversification rate was specified to be the
same for all of the k diversification-rate categories. The analytical and estimated distributions are identical, confirming the
correctness of the derivation and implementation of the independent methods.

We first plot the analytical distribution for the number of diversification-rate shifts over a set of values for333

the shift-rate prior that specify a corresponding range of values for the expected number of diversification-334

rate shifts, E(S) = {1, 10, 20}. Next, we estimate the posterior number of diversification-rate shifts using our335

two independent implementations. The distribution for the number of diversification-rate shifts estimated336
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using either approach should follow the corresponding analytical distribution. As expected, plots of the337

analytical and estimated probability distributions for the number of diversification-rate shifts are identical338

(Figure 6), confirming that both numerical algorithms are correctly implemented in RevBayes. Moreover,339

this result does not only confirm our implementation of the probability of an observed phylogeny under the340

lineage-specific birth-death-shift model but specifically validates the MCMC algorithms to sample from the341

number of diversification-rate shift events under the prior distribution.342

Comparing Branch-Specific Parameter Estimates Between the Two Implementations343

The data-augmentation and stochastic character mapping method for estimating branch-specific speciation344

and extinction rates rely on different likelihood functions as well as different MCMC algorithms. Nevertheless,345

both methods should provide the same estimated posterior distribution of branch-specific speciation and346

extinction rates. Therefore, we estimated branch-specific speciation and extinction rates using both methods347

and compared the results over a range of values for the number of discrete diversification-rate categories,348

k = {4, 6, 8, 10, 20}. The models for both analyses were set to be exactly the same so that we expected349

that branch-specific diversification rates are the same (up to some stochasticity due to the MCMC sampling350

procedure).351

0.1 0.2 0.3 0.4 0.5 0.6 0.7

k = 4

branch−specific speciation rate

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

br
an

ch
−s

pe
ci

fic
 s

pe
ci

at
io

n 
ra

te

0.1 0.2 0.3 0.4 0.5 0.6 0.7

k = 6

branch−specific speciation rate
0.1 0.2 0.3 0.4 0.5 0.6 0.7

k = 8

branch−specific speciation rate
0.1 0.2 0.3 0.4 0.5 0.6 0.7

k = 10

branch−specific speciation rate
0.1 0.2 0.3 0.4 0.5 0.6 0.7

k = 20

branch−specific speciation rate

Figure 7: Comparison between branch-specific speciation rate estimates using data-augmentation and stochas-
tic character mapping. We estimated branch-specific speciation and extinction rates using our data-augmentation and
stochastic character mapping methods with k = {4, 6, 8, 10, 20} rate categories respectively. For each branch, we calculated the
average speciation and extinction rates, i.e., if there was a rate-shift event, then we computed the weighted average of the rates
weighted by the time spent in a rate category. This plot shows the mean posterior estimates for both methods. As we expect,
both method provide the same rate estimates.

Figure 7 shows the estimated posterior mean of the branch-specific mean speciation rates. The estimates352

of the two alternative methods are nicely correlated. This correlation demonstrates that our derivation of the353

theory and implementation are (mostly likely) correct. It would have been very unlikely that we introduced354

the same mistake in the two independent methods giving the exact same bias. Note that this validation is355

stronger than comparing two independent implementations of the same method because we show that two356

different methods using different derivations of the likelihood yield the same results if applied to the same357

model.358
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Computational Efficiency of Data-Augmentation and Stochastic Character Mapping359

The theory and derivation predicts that the data-augmentation and stochastic character mapping methods360

yield identical estimates of branch-specific diversification rates. We have established in Figure 7 that indeed361

both methods provide identical branch-specific diversification rate estimates. Until now, all implementations362

of similar methods use only a data-augmentation approach (Rabosky 2014; Barido-Sottani et al. 2018).363
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Figure 8: Comparison of MCMC performance between data augmentation and marginalization. We computed
branch-specific diversification rates using our two implementations for the primates phylogeny for different number of rate
categories (left) and different number of expected shift events (middle). Additionally, we used several different phylogenies
to asses the impact of tree size (right). We plot here the effective sample size (ESS) of the numerical integration method
normalized by the ESS of the data-augmentation method. Thus, we show the performance gain in MCMC efficiency of the
numerical integration method compared to the data-augmentation method.

Since both approaches give identical estimates, we are interested in which method is computationally364

more efficient. We performed a set of MCMC analyses under identical model settings for both methods over365

a range of datasets (providing a range of tree sizes). We assessed the impact of (a) number of diversification-366

rate categories k, (b) the expected number of diversification-rate shifts E(S), and (c) the tree size.367

The stochastic character mapping method outperforms the data-augmentation method with respect to368

higher effective sample size per CPU second (Figure 8). The main advantage of the stochastic character369

mapping method is that it does not need additional parameters such as the number, location/timing and370

magnitude of the diversification-rate shifts. Instead, the rate-shift events are directly sampled from the con-371

ditional posterior distribution, which is extremely efficient. It is therefore not surprising that the stochastic372

character mapping method is computationally superior. Indeed, we had considerable problems to obtain373

convergence using the data-augmentation method. Thus, we recommend biologists who are interested in374

estimating branch-specific diversification rates to use the stochastic character mapping method only and we375

will do so for the following sections.376
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Validation using Simulation377

Our implementation of the lineage-specific birth-death-shift process in RevBayes allows for performing pa-378

rameter inference and simulating under the process. Here we describe a small simulation study focused on379

confirming that our implementation is correct, and we leave exploring the model’s full range of statistical380

behavior under various diversification scenarios to future work. To this end, we simulated trees under the381

lineage-specific birth-death-shift process, estimated the branch-specific net-diversification rates using MCMC382

sampling, and confirmed that the credible intervals of our branch-specific net-diversification rates had the383

correct coverage.384
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Figure 9: Coverage probabilities of branch-specific net diversification rate estimates for different credible
interval widths. The coverage probabilities (y-axis) of branch-specific net-diversification rate estimates are plotted at different
highest posterior density interval widths (x-axis). The coverage probabilities were calculated as the proportion of times across
the 100 simulation replicates the credible interval contained the true simulated branch-specific net-diversification rate. If our
model and the inference machinery is implemented correctly this should correspond with the diagonal line where y = x (dashed
line).

We simulated 1000 trees under the lineage-specific birth-death-shift process using 4 rate categories con-385

ditional on having 200 surviving tips. We rather arbitrarily chose 200 surviving tips because these simulated386

datasets were not too small for reliable inference and yet still small enough to run reasonably fast. Trees were387

simulated in forward time until 201 lineages were alive. The trees were then trimmed back in time randomly388

within the interval between where there were 200 and 201 lineages. We then estimated the branch-specific389

diversification rates for each simulated tree using the numerical-integration method (more details about the390

simulation and inference settings are given in the Supplementary Material).391

If our implementation of the lineage-specific birth-death-shift process and MCMC sampling machinery is392

implemented correctly, then we should obtain coverage probabilities that are equal to the width of the credible393

interval (Huelsenbeck and Rannala 2004). Here we used coverage probabilities as the proportion of times394

across the 1000 simulation replicates the credible interval of estimated branch-specific net-diversification395

rate contained the true simulated value. Figure 9 shows that coverage probabilities are equal to their396

corresponding credible intervals. Thus, we obtained more evidence that our software implementation is397

correct.398
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Figure 10: An example replicate from the simulation study. Left: A tree simulated using RevBayes under the lineage-
specific birth-death-shift process with the branches colored to show the true mean branch-specific net diversification rates.
Center: Estimates of the branch-specific net diversification rates made by RevBayes. Diversification rate shifts in large clades
are accurately estimated, however diversification rate shifts in lineages leading to small clades were not detected due to the
small number of branches resulting in a lack of power. Right: The precision of net diversification rate estimates measured as
the relative error in the branch-specific rate estimates. The relative error is low throughout the tree except for places in which
rate shifts occurred in small clades.

Figure 10 illustrates one example of the simulation replicates used. This example demonstrates that the399

overall precision of estimated net-diversification rates is high. The method particularly has power to detect400

the location of diversification rate shifts when they lead to large clades. The method has little power to401

detect those diversification rate shifts that lead to small clades.402

Empirical Example Analysis of Primates403

Next, we complement our method-validation with an exemplary analyses of an empirical primate phylogeny404

obtained from Springer et al. (2012). Our objective is to explore several important aspects of the lineage-405

specific birth-death-shift model, including: (1) assessing the sensitivity of branch-specific diversification-rate406

estimates to the assumed number of diversification-rate categories k, (2) assessing the sensitivity of posterior407

estimates of the number of diversification-rate shifts to the choice of shift-rate prior, and (2) assessing the408

sensitivity of posterior estimates of the branch-specific diversification rates to the choice of shift-rate prior.409

We briefly describe each of these experiments below (again, we provide further details of these analyses in410

the Supplementary Material and scripts available online).411

Robustness of Branch-Specific Diversification Rate Estimates to the Number of412

Diversification-Rate Categories413

Recall that we approximate the continuous base distribution of the speciation and and extinction rate using414

discretization (Figure 1). The quality of this approximation depends on the chosen number of discrete rate415

categories. When we use a small number of categories, the estimates of the branch-specific speciation rates416

may be biased, but as the number of rate categories increases to infinity, the discretized process should417

converge toward the continuous one. Unfortunately, increasing the number of rate categories comes with418
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some cost, as the time it takes to compute the probability of a tree is proportional to the number of rate419

categories.420

Here we explored the impact of the number of diversification rate categories on branch-specific diversi-421

fication rate estimates. Specifically, we esimated the branch-specific speciation rates for different numbers422

of rate categories, k = {2, 4, 6, 8, 10, 20}. Then, we compared the branch-specific speciation rate estimates423

of adjacent numbers of diversification rate categories (i.e., 2 vs. 4, 4 vs. 6, etc.). Indeed, when the number424

of rate categories is low, branch-specific rate estimates are sensitive to the chosen number of rate categories425

(Figure 11, left panels). Encouragingly, as the number of rate categories increases, the branch-specific rate426

estimates converge toward the same values (Figure 11, right panels). These results suggest that an adequate427

approximation of the continuous distribution can be achieved with few diversification rate categories. In our428

case, 6 diversification rate categories seem to be a sufficient approximation but we choose 10 rate categories429

to be slightly conservative. As a general rule, using a k = 10 runs reasonably efficient while large values of430

k (e.g., 100 or more) become computationally infeasable.431

Prior Sensitivity of the Estimated Number of Diversification-Rate Shifts432

Previous work has shown that the inferred number of diversification-rate shifts in birth-death-shift models433

can be extremely sensitive to the prior on the rate of shifts (Moore et al. 2016). Therefore, we analyzed the434

primate phylogeny under a range of priors on η specified so that the expected number of diversification-rate435

shift events under a Poisson process was E(S) = {1, 10, 20}. For each shift-rate prior, we estimated the436

corresponding marginal posterior distribution for the number of diversification-rate shifts.437

While the posterior number of diversification-rate shifts (slightly) departed from their respective prior438

distributions, they nevertheless are (very) sensitive to the prior (Figure 12). This results implies that439

estimates of the number of rate-shift events have to be treated carefully and are only meaningful in the440

context of their corresponding prior distribution. More work is needed to evaluate how robust estimates of441

the number of rate-shift events are and how much power there is to detect such events. In the meantime,442

we strongly recommend that researchers perform inference under a range of prior choices for the expected443
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Figure 11: Comparison of branch-specific rate estimates for different numbers of diversification-rate categories.
We estimated the posterior mean branch-specific speciation rate for each branch of the primate tree where the number of rate
categories was set to k = {2, 4, 6, 8, 10, 20}. We then compared the mean estimates of the rates between adjacent pairs of
the number of diversification-rate categories. For small numbers of diversification-rate categories, the branch-rate estimates are
quite different between adjacent settings. However, as the number of categories increases, the branch-specific diversification-rate
estimates converge toward stable estimates.
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number of rate-shift events.444

Robustness of Branch-Specific Diversification-Rate Estimates to the Prior on the Expected445

Number of Diversification-Rate Shifts446

Posterior estimates of the number of diversification-rate shifts are quite sensitive to the choice of shift-rate447

prior (Figure 12). However, it remains unclear whether other parameters (e.g., branch-specific speciation448

rates) may also be similarly sensitive to the choice of shift-rate prior. To understand the robustness of449

branch-specific speciation-rate estimates to the prior on η, we compared the posterior means of branch-450

specific average speciation-rate parameters estimated under different prior values of E(S).451

In contrast to the estimated number of diversification-rate shifts, the branch-specific diversification rate452

estimates are less sensitive to the prior on η (Figure 13). For example, in all cases we infer increased speciation453

rates in a subclade of the Old World Monkeys (Figure 14). We therefore recommend that biologists focus on454

the branch-specific diversification rate estimates as the the parameter of interest because we can estimate455

them more robustly.456

Discussion457

Model Parameterization and Prior Specification458

Our lineage-specific birth-death-shift process consists of three event types (speciation, extinction, and rate-459

shifts) which are governed by their respective rates. The speciation and extinction rates are drawn from460
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Figure 12: Comparison between the prior number of diversification-rate shifts and the posterior number of
diversification-rate shifts for different shift-rate priors. We estimated the posterior number of diversification-rate shifts
(shaded bars) in the primate phylogeny under three different shift-rate priors, with the prior on η specified so that the prior
expected number of shifts under a Poisson process, E(S), was 1, 10, or 20 (solid lines). The posterior number of diversification-
rate shifts is very sensitive to these prior settings although not exactly matching the prior distributions.
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Figure 13: Comparison of branch-specific speciation-rate estimates between different priors on the expected
number of diversification-rate shifts. We estimated the posterior mean speciation rate for each branch of the primate
tree under different shift-rate priors, with the prior on η specified so that the prior expected number of rate-shift events under
a Poisson process, E(S), was 1, 10, 20, 50 or 100. Despite the estimated number of diversification-rate shifts being prior
sensitive (Figure 7), the branch-specific speciation-rate estimates are relatively robust to the prior on the expected number of
diversification- rate shifts.
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Figure 14: Branch-specific speciation-rate estimates for the primate tree under different shift-rate priors.
We performed lineage-specific birth-death-shift analyses to estimate the posterior mean speciation rate for each branch of the
primate tree under three different shift-rate priors, specified such that the expected number of diversification-rate shifts, E(S),
was 1, 10, or 20. Branch colors reflect the branch-specific speciation-rate estimates; the scale bar is the same for all prior
settings.

some base distribution whereas the shift-rate is constant (i.e., homogeneous) over the entire phylogeny. In461

this study we have taken a first step to explore the robustness of parameter estimates (i.e., branch-specific462

diversification rates and the number of diversification-rate shifts).463

In our analyses on simulated and empirical data we observed that the estimated number of diversification-464

rate shifts is sensitive to the choice of shift-rate prior (Figure 12). We have not explored the impact of the465

21

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2019. ; https://doi.org/10.1101/555805doi: bioRxiv preprint 

https://doi.org/10.1101/555805
http://creativecommons.org/licenses/by-nc/4.0/


shape of the base distributions on the speciation and extinction rates. Instead, we emphasize that our466

implementation in RevBayes allows flexible parameterization of the lineage-specific birth-death-shift model.467

Here, we provide the foundation for further model exploration. We elaborate on the full flexibility of the468

model specification below.469

Model parameterization— The lineage-specific birth-death-shift process defines a family of models that make470

different assumptions regarding the nature of diversification-rate variation across lineages. For example, the471

most general parameterization allows both speciation and extinction rates to vary independently across the472

tree. Under this model, a diversification-rate shift involves a change to new speciation and extinction rates473

that are independently drawn from their corresponding base distributions. From this model, two nested474

models can be specified: (1) a model that allows speciation rates to vary across the tree, but assumes a475

shared extinction rate for all branches (i.e., diversification-rate shifts involve changes to the speciation rate),476

and (2) a second model that allows extinction rates to vary across the tree, but assumes a shared speciation477

rate for all branches (i.e., diversification-rate shifts involve changes to the extinction rate). These models478

may also be parameterized using composite diversification-rate parameters, where diversification-rate shifts479

involve changes to the net-diversification rate, r = (λ− µ) and/or the relative-extinction rate, 󰂃 = (µ÷ λ).480

Finally, we could parametrize the lineage-specific birth-death-shift model where speciation and extinction481

rates are assumed to vary dependently across the tree. Under this model, a diversification-rate shift involves482

a change from one pair of rates (λi, µi), (where i corresponds to the same discrete rate category of both base483

distributions) to a new pair of speciation and extinction rates (λj , µj). For example, a diversification-rate484

shift might involve a change from paired rates (λ3, µ3) to (λ5, µ5) (reflecting a shift from the third to the485

fifth discrete categories of the speciation- and extinction-rate base probability distributions).486

In RevBayes we provide full flexibility of applying any variant of how diversification rates change across487

lineages. It remains open to the biologist and further studies which type of diversification-rate variation is488

most prevalent and robust.489

Prior distribution on the diversification rates— We adopt a Bayesian statistical approach to estimate the490

parameters of the lineage-specific birth-death-shift model. Therefore, we must specify a prior probability491

distribution for each parameter. Parameters of the lineage-specific birth-death-shift model are the speciation492

rate, λ, the extinction rate, µ, and the rate of diversification-rate shifts, η. Our implementation in RevBayes493

provides tremendous flexibility in the choice of priors for each parameter. For example, we might specify a494

lognormal, gamma, or exponential probability distribution as the prior on the speciation rate. Additionally,495

for a given choice of prior, RevBayes allows the user to either specify fixed values for the parameters of496

the chosen prior probability distribution (the ‘hyperparameters’), or to specify a more hierarchical Bayesian497

model by treating these hyperparameters as random variables (in which case we would specify a hyperprior498

for each hyperparameter). For example, if we chose a lognormal prior for the speciation rate, we could either499

specify fixed values for the parameters of this distribution (i.e., the mean and standard deviation of the500

lognormal distribution), or we could specify hyperprior distributions for the mean and standard deviation501

hyperparameters. Thus, our implementation in RevBayes provides much more flexibility in specifying models502
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compared with similar implementations (e.g., BAMM only allows an exponential prior distribution with a fixed503

mean parameter for the speciation and extinction rate).504
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Figure 15: Estimation of hyperparameters under the hierarchical lineage-specific birth-death-shift model.
We estimated the mean (mλ) and standard deviation (sdλ) of the lognormal base distribution for the speciation rate (left
and middle panels). Additionally, we estimated the shift-rate η (right panel; showing the expected number of shifts, E(S),
for an intuitive interpretation). We used the following prior distributions: mλ ∼ Unif(0, 100), sdλ ∼ Exp(1.0/0.587405),
and E(S) ∼ Unif(0, 100). The posterior distributions (black solid lines) show clear deviations from the corresponding prior
distributions (light-gray dashed lines).

As a demonstration, we analyzed the primates phylogeny using a hierarchical model for the lognormal505

base distribution of the diversification rates. We assumed a uniform prior distribution between 0 and 100 for506

the mean of the lognormal base distribution and an exponential prior distribution with a mean of 0.587405507

(we expect that 95% of the lognormal base distribution spans one order of magnitude; Höhna et al. 2017).508

Our example analysis shows that the hyperprior parameters of the base distribution can indeed be estimated509

(Figure 15). That is, the phylogeny appears to have sufficient information about the mean and variation510

branch-specific speciation rates. The hyperparameter estimates are not driven by their choices of prior511

distributions. Furthermore, the hierarchical approach reduces the prior sensitivity. Thus, we recommend to512

use such a hierarchical model for empirical analyses because it is difficult, if not impossible, to know which513

mean and standard deviation to assume for the base distribution of the diversification rates.514

Prior Sensitivity and Estimating the Number of Rate Shifts— Our analyses have shown that the estimated515

number of diversification-rate shifts is very sensitive to the assumed prior distribution on the shift-rate516

(Figure 12). This prior sensitivity is actually expected because many small diversification-rate changes can517

have a similar effect as few large diversification-rate changes (Huelsenbeck et al. 2000). Our results do518

not imply that the shift-rate (and the number of diversification-rate shifts) is not identifiable. Specifically,519

Figure 12 shows that there is a (weak) signal for at least one diversification-rate shift but fewer than 20.520

In practice, a biologist might have a good idea what number of diversification-rate shifts to expect for a521

given study group. However, we caution researchers to over-interpret the estimated number of diversification-522

rate shifts. We emphasize that in every empirical analysis either a set of prior assumptions should be applied523

(e.g., by setting the number of a priori expected diversification-rate shifts to 1, 10 and 20), or a hyperprior524

distribution on the shift-rate η should be used. In our primate example analysis we observe that there is525

some signal for the shift-rate η (Figure 15; right panel). Moreover, the hyperprior analysis (Figure 15; right526
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panel) confirms the results about the expected number of diversification-rate shifts of the fixed-prior analyses527

(Figure 12).528

Future directions and applications529

In the present study we have focused on estimating branch-specific diversification rates. Nevertheless, our530

lineage-specific birth-death-shift model can be extended and applied in several different ways. Here we531

provide some thoughts to stimulate further ideas and research.532

Correlation of diversification rates to other model components— We can extend the lineage-specific birth-533

death-shift model to analyses where other parts of the model (e.g., rates of molecular or morphological534

evolution) are correlated with the speciation and extinction rates. Let us consider as an example an analysis535

where the rates of speciation correlate with the rate of molecular evolution by r̃i = α × λ̃i where r̃i is the536

average rate of molecular evolution on branch i and λ̃i is the average rate of speciation on branch i. Then,537

we compute the average rate of speciation per branch λ̃i and deterministically transform these average538

speciation rates into average rates of molecular evolution r̃i. Thus, for this type of analyses we have to539

use the data-augmentation method because it adds the diversification-rate shifts onto the phylogeny. In540

such a situation, the rates of molecular evolution also have an impact on the number, location/timing and541

magnitude of the diversification-rate shifts. It is the joint posterior probability of the diversification-rate542

shifts, the speciation and extinction rates, and the rates of molecular evolution that we will estimate. Since543

the stochastic character mapping draws the diversification-rate shifts only from the lineage-specific birth-544

death-shift process without any information about other parts of the model depending on these events and545

rates, the stochastic character mapping method is not applicable in these types of analyses. However, the546

stochastic character mapping can be used as a proposal distribution in the MCMC algorithm. In RevBayes,547

such applications to linked models are readily available.548

Cladogenetic and anagenetic diversification-rate shifts— The lineage-specific birth-death-shift process de-549

scribed here permits for shifts in speciation and extinction rates along the branches of a phylogeny (i.e.,550

anagenetic diversification rate shifts). However, many biological explanations for diversification-rate shifts551

have been hypothesized to correspond with speciation events (i.e., cladogenetic diversification-rate shifts).552

Diversification-rate shifts have been modeled as occurring simultaneously with, for example, allopatric spe-553

ciation events (Goldberg et al. 2011), cladogenetic changes in life history traits such as breeding system554

(Goldberg and Igić 2012), and cladogenetic changes in chromosome number or ploidy (Freyman and Höhna555

2019). In contrast to those models, the lineage-specific birth-death-shift process tests for diversification rate556

shifts unassociated with an observed character. However, a biologist may want to use the lineage-specific557

birth-death-shift process to explore the possibility of diversification-rate shifts occurring at speciation events.558

Our stochastic character mapping approach for the lineage-specific birth-death-shift process is described pri-559

marily by Equations 3, 4, and 6, which represent a special case of the backward- and forward-time ODEs in560
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Freyman and Höhna (2019) that enable both anagenetic and cladogenetic diversification-rate shifts. These561

general equations are implemented in RevBayes and could be used along with our approach discretizing562

the speciation- and extinction-rate base probability distributions into k categories to test a lineage-specific563

birth-death-shift process with both cladogenetic and anagenetic diversification-rate shifts. We mention this564

aspect of our implementation to highlight its flexibility for testing different diversification scenarios, however,565

we leave further exploration of cladogenetic diversification rate shifts to future work.566

The lineage-specific birth-death-shift process as a prior distribution on divergence times— The primary goal567

of our development of the lineage-specific birth-death-shift process was to estimate branch-specific speciation568

and extinction rates. However, in RevBayes one can use the lineage-specific birth-death-shift process as a569

prior distribution on the phylogeny, i.e., divergence times and tree topology. Recent studies have shown the570

impact of prior distributions on divergence times, although the overall importance is not fully understood571

(Condamine et al. 2015; Foster et al. 2016; Donoghue and Yang 2016). Allowing for rate variation among572

lineages is likely a more biologically realistic model and thus should be preferred. Using our lineage-specific573

birth-death-shift process in RevBayes it is now possible to estimate divergence time using this biologically574

more realistic model.575

If the purpose of such an analysis is only to estimate the phylogeny and divergence times, then the576

lineage-specific birth-death-shift implementation integrating over all rate categories should be preferred (the577

stochastic character mapping step can be omitted). If instead the goal of the analysis is to estimate branch-578

specific speciation and extinction rates, as well as the phylogeny and divergence times, then the stochastic579

character mapping method should be used. The data-augmentation method has the fundamental problem580

that changes in the tree topology could consequently lead to changes in the the assignment of branches to581

rate categories. This problem also occurs if we would take phylogenetic uncertainty into account by using a582

sample of phylogenies from the posterior distribution (also available in RevBayes).583

A major open issue is how to summarize branch-specific speciation and extinction rates for different584

phylogenies. Specifically, branches may have a different meaning for different phylogenies. More research is585

needed on how to interpret diversification-rate changes for different phylogenies.586

Conclusions587

In the present paper we have introduced the lineage-specific birth-death-shift process, a stochastic branch-588

ing process to model diversification rate variation among lineages. We described two different methods589

for estimating branch-specific speciation and extinction rates: data-augmentation and stochastic character590

mapping. We presented a validation of our implementation of the two methods in RevBayes and discussed591

potential applications and pitfalls. Most importantly, we provide researchers with a consistent model and592

correct implementation for estimating branch-specific speciation and extinction rates.593
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