Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Calculating the maximum capacity of intracellular transport vesicles

View ORCID ProfileErick Martins Ratamero, View ORCID ProfileStephen J. Royle
doi: https://doi.org/10.1101/555813
Erick Martins Ratamero
1Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry, CV4 7AL, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Erick Martins Ratamero
Stephen J. Royle
1Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry, CV4 7AL, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Stephen J. Royle
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

In eukaryotic cells, vesicles transport protein cargo to various destinations in the cell. As part of an effort to count the number of cargo molecules in vesicles in cells, we asked a simple question: what is the maximum number of cargo molecules that can be packed into a vesicle? The answer to this question lies in the Tammes Problem, which seeks to determine the packing of circles on a spherical surface. The solution to this problem depends on the sizes of the vesicle and the cargo. We present here the computational results that determine the maximum theoretical capacity of a range of biologically relevant cargo in a variety of meaningful vesicle sizes. Our results could be generalized in order to describe an equation that allows the calculation of the approximate maximum capacity of any vesicle, whatever the size; provided that the size and geometry of the cargo is known.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted February 20, 2019.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Calculating the maximum capacity of intracellular transport vesicles
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Calculating the maximum capacity of intracellular transport vesicles
Erick Martins Ratamero, Stephen J. Royle
bioRxiv 555813; doi: https://doi.org/10.1101/555813
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Calculating the maximum capacity of intracellular transport vesicles
Erick Martins Ratamero, Stephen J. Royle
bioRxiv 555813; doi: https://doi.org/10.1101/555813

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cell Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3707)
  • Biochemistry (7835)
  • Bioengineering (5709)
  • Bioinformatics (21372)
  • Biophysics (10616)
  • Cancer Biology (8218)
  • Cell Biology (11990)
  • Clinical Trials (138)
  • Developmental Biology (6794)
  • Ecology (10435)
  • Epidemiology (2065)
  • Evolutionary Biology (13920)
  • Genetics (9736)
  • Genomics (13119)
  • Immunology (8183)
  • Microbiology (20092)
  • Molecular Biology (7886)
  • Neuroscience (43219)
  • Paleontology (322)
  • Pathology (1285)
  • Pharmacology and Toxicology (2270)
  • Physiology (3367)
  • Plant Biology (7263)
  • Scientific Communication and Education (1317)
  • Synthetic Biology (2012)
  • Systems Biology (5554)
  • Zoology (1136)