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Abstract 
Hearing loss is associated with ~8100 mutations in 152 genes, and within the coding 

regions of these genes are over 60,000 missense variants. The majority of these variants are 

classified as ‘variants of uncertain significance’ to reflect our inability to ascribe a phenotypic 

effect to the observed amino acid change. A promising source of pathogenicity information are 

atomic resolution simulations, although input protein structures often contain defects due to 

limitations in experimental data and/or only distant homology to a template. Here we combine the 

polarizable AMOEBA force field, many-body optimization theory and GPU acceleration to repack 

all deafness-associated proteins and thereby improve average structure resolution from 2.2 Å to 

1.0 Å based on assessment with MolProbity. We incorporate these data into the Deafness Variation 

Database to inform deafness pathogenicity prediction, and show that advanced polarizable force 

fields could now be used to repack the entire human proteome using the Force Field X software. 
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Introduction 
As the most common human sensory deficit, deafness impacts an estimated 360 million 

people globally (WHO data, http://www.who.int/pbd/deafness/estimates/en/index.html). Its cause 

is multifactorial, and with recent advances in the application of targeted genetic sequencing 

technology to clinical medicine, our understanding of genetic contributions to deafness has greatly 

advanced. The use of deafness-specific gene panels has changed the clinical paradigm in the 

evaluation of the deaf patient and is laying the foundation for personalized gene therapy to treat 

hearing loss.   

The targeted genetic sequencing panel developed by our group, which we refer to as 

OtoSCOPE, includes 152 deafness-associated genes (1, 2). Its use enables us to identify an average 

of 545 variants per patient, which are curated in the publicly available deafness-specific database 

we purpose built called the Deafness Variation Database (DVD, Figure 1, Table S1 

http://deafnessvariationdatabase.org) (3, 4). The DVD collates data from major public databases 

and uses criteria recommended by the American College of Medical Genetics and Genomics 

(ACMG) to classify every genetic variant as benign (B), likely benign (LB), variant of uncertain 

significance (VUS), likely pathogenic (LP) or pathogenic (P) based on collected evidence and 

curation by experts in genetic hearing loss. Of the ~800,000 variants in the genes included on 

OtoSCOPE that are listed in the DVD, more than 60,000 missense variations exist. Of these 

variants, ~4,000 are LP/P, ~38,000 are VUSs and ~18,000 are LB/B.  

Many of the missense variations labeled as VUSs will ultimately be classified as LP/P, but 

we are currently relegated to classifying them as VUSs as a reflection of our inability to predict 

the phenotypic consequences of most genetic variations. We often lack variant-specific wet-lab-

based functional evidence (5), and insights derived from simulations founded on protein structures 

must continue to mature to reliably make meaningful genotype-phenotype correlations. 
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Figure 1. Incorporating Structural Insights into Variant Classification. a) OtoSCOPE sequencing 
technology discovers 545 variants per patient on average, 71 of which are non-synonymous 
coding, splice site variants or indel variants. b) Protein structural coverage for OtoScope genes is 
an important step toward identifying the molecular causation of disease-causing variants along 
with classifying VUSs. c) Variants collected through OtoSCOPE sequencing are curated in the 
Deafness Variation Database (DVD). The DVD combines minor allele frequency, experimental 
results, pathogenicity predictions from sequence conservation-based classifiers and now insights 
from protein structures (i.e. OtoProtein) for each variant. Nearly 80% of variants in the DVD 
remain unclassified and are assigned a pathogenicity of Variant of Uncertain Significance (VUS). 

 

Atomic resolution simulation techniques like molecular dynamics (MD) provide a 

promising first-principles approach for computationally predicting the potential impact of 

missense variants. However, its success is dependent on accurate protein structures.  These 

c)
Deafness Variation Database: Variant Curation and Classification

Data from OtoSCOPE, OtoProtein 
and sequence conservation-based 
algorithms are curated in the 
Deafness Variation Database to 
classify pathogenicity.

a)
OtoSCOPE:
Parallel Targeted Sequencing 

Patient genetic variations are 
sequenced across 152 genes 
through OtoSCOPE.

b)
OtoProtein:
Mechanistic Structural Biology 

OtoProtein structural information 
from 473 models provide insight on 
more than 60,000 DVD missense 
variants.

COCH protein domain residues 27-125 
with benign (blue) and pathogenic (red) 
variants shown. 
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structures are typically determined from an experimental method (i.e. X-ray crystallography, 

NMR, CryoEM, etc.) or from homology modeling. The latter leverages existing protein 

structure(s) as a template from which to create the model of a homologous amino acid sequence, 

and is most reliable when homologous sequences have at least 30% sequence identity as overall 

protein folding is typically conserved when this threshold is met (6, 7). To complement and 

enhance models available in databases such as ModBase (8) and SwissProt (9), dramatic 

improvements are possible by global optimization (i.e. repacking) of amino acid side-chains using 

more advanced molecular physics than was originally available (or could be computationally 

afforded) at the time of their creation. 

 For example, most protein structures found on both the Protein Databank (PDB) (10) and 

homology modeling databases (8, 9) are based on refinement with pairwise potential energy 

functions (i.e. force fields) such as the fixed charge Amber (11, 12), CHARMM (13, 14) and 

OPLS-AA (15, 16) models (17). Over the past decade, more accurate polarizable force fields have 

emerged that overcome limitations in previous generation pairwise models (18), including both 

the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force 

field (19, 20) and the CHARMM Drude (21) model. Structural optimization with these state-of-

the-art energy functions, when used with continuum representations of solvation (22-24), can 

compensate for limitations in experimental data and improve homology models. However, 

multiple challenges must be overcome to realize the benefits of polarizable force fields, including 

mitigating their increased computational expense and overcoming the loss of convenient pairwise 

approximations that are widespread in structural biology software such as Modeller (25), Phenix 

(26) and Rosetta (27).   

 Here we address these challenges to generate a family of deafness related protein structures 

called OtoProtein. Our approach combines the AMOEBA potential energy function (19, 20), 
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many-body optimization theory (28), and GPU acceleration (29, 30) to optimize all available 

deafness-associated protein models. To assess the resulting structures objectively, we evaluated 

overall quality with the MolProbity (31, 32) algorithm. MolProbity identifies high-energy atomic 

clashes, unfavorable side-chain conformations and polypeptide backbone conformations 

inconsistent with low-energy secondary structure. The algorithm is widely used by 

crystallographers to aid refinement of models by reporting structural features that are known to be 

unphysical. Lower MolProbity scores are consistent with higher quality X-ray diffraction data (i.e. 

a score of 1.0 is calibrated to reflect 1.0 Å resolution data). Correcting rotamer outliers often 

improves other metrics and permits further relaxation of the structure with local minimization, 

resulting in more realistic, lower-energy structures for downstream analysis (e.g. molecular 

dynamics, alchemical free energy simulations, or feature extraction for bioinformatics analysis). 

As described in the Results, our post-optimization OtoProtein dataset is near atomic 

resolution. These high-quality structures have been integrated with the DVD and are being used to 

define the structural impacts of deafness-related genetic variations as an aid to predicting variant 

effect and pathogenicity. Our polarizable protein repacking algorithm is freely available in the 

open source software Force Field X (FFX, http://ffx.biochem.uiowa.edu), and may be useful to 

others in the community that are integrating structural biophysics into variant classification. 

Methods 
A. Many-Body Energy Expansion Parallelization Across GPUs 

Under a many-body potential, the total energy of a protein 𝐸(𝐫) can be defined to arbitrary 

precision using the expansion 

𝐸(r) = 𝐸env +(𝐸self(𝑟*)
*

+((𝐸2+𝑟*, 𝑟-.
-/**

+(((𝐸3+𝑟*, 𝑟-, 𝑟0.
0/--/**

+ ⋯ 
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Equation 1. 

where 𝐸env is the energy of the environment (i.e. the protein backbone and residues that are not 

being optimized), 𝐸self(𝑟*) is the self-energy of residue 𝑖 including its intra-molecular bonded 

energy terms and non-bonded interactions with the backbone, 𝐸2+𝑟*, 𝑟-. is the 2-body non-bonded 

interaction energy between residues i and j with other residues turned off, and 𝐸3+𝑟*, 𝑟-, 𝑟0. is the 

3-body non-bonded interaction energy between residues i, j, and k with other residues turned off. 

The self, 2-body, and 3-body energy terms are calculated as follows, where 𝐸33/56  is the total 

energy of the backbone with the sidechain(s) of the selected residue(s) included (shown graphically 

in Figure 2a). 

𝐸self(𝑟*) = 𝐸33/56(𝑟*) − 𝐸env 

Equation 2. 

𝐸2+𝑟*, 𝑟-. = 𝐸33/56+𝑟*, 𝑟-. − 𝐸self(𝑟*) − 𝐸self+𝑟-. − 𝐸env 
Equation 3. 

𝐸3+𝑟*, 𝑟-, 𝑟0. = 𝐸33/56+𝑟*, 𝑟-, 𝑟0. − 𝐸self(𝑟*) − 𝐸self+𝑟-. − 𝐸self(𝑟0) − 𝐸2+𝑟*, 𝑟-. − 𝐸2(𝑟*, 𝑟0)
− 𝐸2+𝑟-, 𝑟0. − 𝐸env 

Equation 4. 

 

Individual energy evaluations are calculated on graphical processing units (GPUs) via the CUDA 

kernels of OpenMM (30), and the evaluations are distributed over many GPUs, potentially over 

multiple nodes, using the Parallel Java library (33) (Figure 2b). Side-chain rotamer conformations 

that are not part of the optimum structure can be rigorously eliminated using mathematical 

expressions (28, 34, 35) (Figure 2c). 

Computing the self, 2-body and 3-body energy terms as a function of rotamer conformation 

is computationally expensive. To address this challenge, our Force Field X (FFX) program (36) 

utilizes two complementary parallelization approaches, including 1) use of the Parallel Java (33) 
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(PJ) message passing interface (MPI) library to distribute terms among multiple processes, and 2) 

use of the OpenMM API (30) to perform force field energy evaluations on NVIDIA GPUs via 

CUDA kernels. FFX uses PJ to divide each shared memory node of a multiple node compute 

cluster into one or more processes (Figure 2b). Energy terms are then assigned to processes, 

evaluated and globally communicated across all processes using PJ message passing, with 

synchronization steps between calculation of the self, 2-body, and 3-body energy terms (i.e. 2-

body terms depend on self-terms as shown in Equation 3, and thus must be calculated after self-

energies are completed and before 3-body energies). The FFX-OpenMM interface (based on Java 

Native Access wrappers to the OpenMM C++ API) can be used to offload energy evaluations from 

FFX, which executes on CPUs, to OpenMM on a GPU. Once all energy terms are calculated, side-

chain rotamers and rotamer pairs are eliminated by lower energy alternatives based on rigorous 

mathematical inequalities that have been described for pairwise force fields (e.g. dead-end 

elimination (34) and Goldstein elimination (28, 35)) and more recently generalized to include 3-

body terms for use with many-body force fields (28) such as the polarizable atomic multipole 

AMOEBA model (20, 37).  The many-body Goldstein criteria for rotamer elimination (28), 

truncated at 3-body terms, is given by 

𝐸self(𝑟*8) − 𝐸self9𝑟*
:;

+(min
?
@𝐸A+𝑟*8, 𝑟-

?. − 𝐸A9𝑟*
:, 𝑟-

?;
-B

+(min
C
D𝐸E+𝑟*8, 𝑟-

?, 𝑟0C. − 𝐸E9𝑟*
:, 𝑟-

?, 𝑟0C;… G
0B

H > 0 

 
Equation 5 
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and if satisfied indicates rotamer 𝛼 of residue i is eliminated by rotamer 𝛽 (the ellipses signify the 

presence of further higher-order terms). The expression for rotamer pair elimination is given by 

𝐸pair9𝑟*8, 𝑟-
:; − 𝐸pair+𝑟*

?, 𝑟-C.

+(min
M
@𝐸2(𝑟*8, 𝑟0M) + 𝐸29𝑟-

:, 𝑟0M; + 𝐸39𝑟*8, 𝑟-
:, 𝑟0M; − 𝐸2+𝑟*

?, 𝑟0M. − 𝐸2+𝑟-C, 𝑟0M.
0N

− 𝐸3+𝑟*
?, 𝑟-C, 𝑟0M.

+(min
O
D𝐸3+𝑟*8, 𝑟0M, 𝑟P

O. + 𝐸39𝑟-
:, 𝑟0M, 𝑟P

O; − 𝐸3+𝑟*
?, 𝑟0M, 𝑟P

O. − 𝐸3+𝑟*C, 𝑟0M, 𝑟P
O.

PN

+ ⋯ GH > 0 

 Equation 6 

and if satisfied indicates that the rotamer pair 9𝑟*8, 𝑟-
:; for residues i and j is eliminated by rotamer 

pair +𝑟*
?, 𝑟-C.. 
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Figure 2. Overview of the protein repacking algorithm. a) Depiction of rotamer self, 2-body and 
3-body energy terms.  b) Parallel computation of energy terms across processes and GPUs. 
Processes (blue boxes) are each assigned a group of self-energies to calculate, where 𝑁self =
∑ 𝑛*
Xresidues
*[\  is the sum of rotamers across all residues to give 𝑁self/𝑃 evaluations per process. 

Processes compute energy values by sending a conformation x to a GPU (green box) for evaluation 
using the OpenMM API, followed by return of the energy E(x) and its communication to all 
processes using Java MPI (red arrows). The 2-body and 3-body energies are parallelized in a 
similar fashion. c) The number of side-chain energies and conformational permutations for a 98 
residue COCH protein domain are shown as an example. After all energy terms have been 
calculated (green rectangles), the combinatorial side-chain conformational space is reduced using 
many-body Goldstein rotamer and rotamer pair elimination criteria (see Methods) to achieve a 
tractable number of permutations to evaluate. Prior to eliminations, 4.65*1074 side-chain 
permutations exist, but only 208 permutations remain to be evaluated after eliminations. 

b) Parallel Calculation of Energy Expansion Terms
Message Passing

...
≈ NEnergies/P

x E(x)

CPU

GPU/OpenMM

FFX Process P

≈ NEnergies/P

x E(x)

CPU

GPU/OpenMM

FFX Process 2

≈ NEnergies/P

x E(x)

CPU

GPU/OpenMM

FFX Process 1

c) Repacking Algorithm Example

Compute Self Energies: 947

Any rotamers eliminated?

Yes

No

Possible Permutations: 4.65E74

Minimized COCH Homology Model (Residues 27-125)

Compute 2-Body Energies: 120,855

Compute 3-Body Energies: 6,250,194

Single Rotamer Eliminations: 2.12E8  Remaining Permutations

Rotamer Pair Eliminations: 208 Remaining Permutations

Evaluate Remaining Permutations, Minimize to RMS 0.1, Evaluate With MolProbity

a) Self, 2-Body and 3-Body Energy Expansion Terms
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Four approximations to rigorous use of the many-body Goldstein inequalities given above 

were explored, each of which is summarized here and described more fully in the Results section. 

First, it was determined that the expansion could be truncated at pairwise terms, due to damping 

of 3-body and higher order terms by the generalized Kirkwood implicit solvent. However, in the 

absence of implicit solvent, previous work demonstrated that inclusion of 3-body terms is 

sometimes necessary (28). The second approximation was a distance cutoff; if the closest rotamers 

for a residue pair or triple are more than 2 Å apart, the interaction energy is set to 0. Third, pruning 

was utilized to remove rotamers with self-energies 25 kcal/mol or more above the lowest self-

energy of a residue, before calculation of 2-body energies. This criterion is based on the heuristic 

observation that rotamers with such an unfavorable self-energy (e.g. due to an atomic clash with 

backbone atoms) are unlikely to be part of a well-packed structure. However, for structures with 

significant backbone flaws, this approximation must be used with care because it can incorrectly 

eliminate the "least bad" rotamer that is actually part of the global minimum conformation. Our 

final approximation involved imposing a 3D grid over the protein, followed by optimization within 

each cube, rather than including all protein residues simultaneously. Although the repacking 

algorithm is a provable global optimizer within a single cube of the grid, it is not for the protein 

grid as a whole because coordinated changes between cubes are neglected. 

B. The OtoProtein Structure Database 

 Comparative protein modeling provides a means to predict the structure of a protein whose 

atomic coordinates have not been solved experimentally by crystallography, NMR, et cetera (38). 

Many human genes implicated in hearing loss have not been studied experimentally, so 

computational approaches are necessary to generate high quality protein structures. Comparative 

protein modeling begins from an experimental structure for an evolutionarily related protein, 

which is used as a template for the target sequence (10, 39). The percent sequence identity between 
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the homologues provides an estimate of model reliability (40). Comparative protein models are 

conducive to the study of protein function, dynamics, and interactions with other molecules such 

as ligands, DNA, RNA, or other proteins. Homology models can also be used to study missense 

variants, providing a promising basis for understanding the role of protein phenotypes in 

heterogenic diseases like hearing loss. 

 However, comparative protein models from leading databases often include defects 

directly related to approximations in the methods used for their generation (e.g. pairwise force 

fields, local rather than global optimization, etc). We sought to improve comparative protein 

models from SwissProt (39) and ModBase (8) spanning 152 genes included in the OtoSCOPE 

platform. Although using homology models based on a sequence identity of 30% or greater 

generally gives confidence the protein backbone fold has been evolutionarily conserved (40), this 

work includes all publicly available models (the average sequence identity was 41.7% for all 472 

structural models). Both SwissProt and ModBase strive to provide structural coverage for the 

largest portion of the human proteome possible, however, this limits their ability to explore the use 

of advanced many-body force fields. Here we show that use of the polarizable AMOEBA force 

field in tandem with global optimization of amino acid side-chains (28) can significantly improve 

the quality of SwissProt or ModBase structures as assessed by tools like MolProbity (31, 32). High 

quality protein structural models, in turn, provide optimal starting points for downstream 

molecular dynamics algorithms that can be used to analyze missense variations. The parallelized 

repacking algorithm described here demonstrates that it is now feasible to refine large databases 

of homology models using advanced polarizable force fields. 

 All homology models were refined using the 2018 AMOEBA force field (20, 41) with 

Generalized Kirkwood implicit solvent (23). The input homology models were first locally 

optimized using the L-BFGS algorithm available in FFX that is accelerated using OpenMM on 
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GPUs to an RMS gradient convergence criterion of 0.8 kcal/mol/Å. The rationale for minimizing 

with a relatively loose convergence criterion prior to rotamer optimization was to relax the 

backbone conformation without excessively favoring the starting conformation over alternative 

rotamers. Locally optimizing to a tighter convergence criterion prior to side-chain optimization 

resulted in higher energy, less favorable structures due to over-stabilizing starting rotamers.  Next, 

the side-chain repacking algorithm was applied, followed by a final local L-BFGS minimization 

to an RMS gradient convergence criterion of 0.1 kcal/mol/Å. The resulting protein structures and 

original homology models were then evaluated and compared using both the MolProbity 

assessment tool and AMOEBA/GK energies. 

Results 

A. Polarizable Protein Repacking Algorithm Using GPUs 

To benefit fully from the emergence of polarizable force fields in the context of protein 

structure prediction and repacking, the theory that underlies established algorithms must be 

revisited in order to incorporate many-body electronic polarization and to optimize performance 

across GPUs. We examined four approximations to the polarizable protein repacking algorithm to 

enhance efficiency, while maintaining structure quality. The approximations are illustrated using 

a 98-residue homology model of the COCH protein (residues 27-125), which is based on an NMR 

template with 98% sequence identity. Previous work showed that truncating the energy expansion 

at 3-body terms resulted in accurate side-chain positions being identified in the context of real 

space X-ray refinement (28). However, when using the Native Environment Approximation 

(NEA) (42) in combination with the AMOEBA generalized Kirkwood implicit solvent (23), we 

found that the contribution of energy terms within the energy expansion decays quickly and that 

truncation at 2-body terms is sufficiently accurate for repacking in implicit solvent (Table S2). 
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Rapid decay is due to implicit solvent damping 3-body electrostatics to such an extent that they 

generally do not affect side-chain rotamer eliminations (whereas our prior work did not employ an 

implicit solvation model). Truncation at 2-body energy terms results in a nearly 52x speed-up 

(Table S3) as compared to the original rotamer optimization protocol (28) without any rotamer 

changes compared to including 3-body terms (Table 1a). In future work, we plan to additionally 

optimize the protonation states of all titratable residues, which will necessitate a fresh appraisal of 

the impact of 3-body energies due to the formal charge of residues changing.  

The second approximation applies a distance-based cutoff between residues, which results 

in the interaction energy of two or more side-chains being set to 0 if the minimum atomic distance 

between rotamer permutations is above a defined cutoff. The minimum distance dmin between two 

residues i and j is calculated using the expression 

𝑑_*`(𝑖, 𝑗) = min
b8[\..`d,:[\..`ef

D𝑑𝑖𝑠𝑡9𝑟*8, 𝑟-
:;G 

Equation 7. 

where the min operation is over the set of all rotamer permutations (i.e. residues i and j have 𝑛* 

and 𝑛- rotamers, respectively, to give 𝑛* × 𝑛- permutations), and the distance function (dist) returns 

the minimum pairwise atomic distance given rotamer conformations 𝑟*8	and 𝑟-
:. We tested a range 

of cutoffs and found that 2 Å, when combined with truncation at 2-body energies, provides a 

144.2x speed-up compared to the original protocol while only increasing the energy relative to the 

global minimum by 0.2 kcal/mol (i.e. two solvent-exposed side-chains had different 

conformations) (Table 1b). Although 2 Å is an aggressive cutoff, evidence from our dataset of 

protein models (Table S4) suggests structures still closely approach the global minimum, but at 

much less expense. 

 The third approximation prunes rotamers and/or rotamer pairs if their conformation is 

higher than the lowest energy alternative plus a threshold  
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𝐸klPm(𝑟*8) > 	𝐸klPm9𝑟*
:; + threshold 

Equation 5. 

A pruning threshold of 25 kcal/mol results in further speed-up without compromising the quality 

of output structures (Table 1c). Although pruning inequalities are not rigorous, unlike the 

mathematically proven Goldstein eliminations (see Methods), they obviate calculating many pair 

energies to yield over a 3x speed-up. Pruning did not result in any additional changes to rotamer 

conformations as compared to the global minimum found when using a 2-body expansion and 

cutoff of 2 Å. 

The final approximation uses a series of cube-shaped domains defined by imposing a 3D 

grid over the protein followed by sequential optimization of each cube of the grid. This 

approximation is especially useful for large protein domains that have an intractable number of 

energetically closely spaced permutations even after application of elimination criteria. By varying 

cube size and cube overlap, we determined that a cube edge length of 10 Å with no overlap 

optimized performance without degrading quality (Table 1d). Cube optimization results in no 

additional change in energy relative to the global minimum found when using a 2-body expansion 

and cutoff of 2 Å (note that a 30 Å cube contains the whole COCH domain and is a global 

optimization). Combining all four optimal approximations results in a total speed-up of 

approximately 3 orders of magnitude.  
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Table 1. Adjustable repacking parameters are examined in the context of computational expense 
and structural quality. All tests used residues 27-125 of isoform 1 of the COCH protein. All 
relative potential energies (in kcal/mol) are compared to the global minimum of the COCH 
protein as calculated when using no approximations. Times are wall clock times in seconds using 
a node with 4 GPUs. For each adjustable parameter, the recommended choice for use with 
AMOEBA and the GK implicit solvent is shown in bold. The individual and overall speed-ups 
for each approximation are given.   

A) Truncation of the energy expansion at either 2-body or 3-body terms. 
Expansion Truncation Relative Energy Time Speed-Up  
2-Body 0.0 847 51.7x  
3-Body 0.0 43850 1.0x      
B) Based on truncation at 2-body terms, distance cutoffs from 1 to 6 Å are evaluated. Criteria 
for evaluating cutoffs are described in the main text. 
Distance Cutoff (Å)   Relative Energy Time Speed-Up Overall 
1 32.6 137 5.9x 320.0x 
2 0.2 304 2.7x 144.2x 
3 0.0 420 1.9x 104.4x 
6 0.0 813 1.0x 53.9x     
C) Based on truncation at 2-body terms and a 2 Å distance cutoff, pruning thresholds are 
evaluated. 
Pruning Threshold  Relative Energy  Time Speed-Up Overall 
5 0.2 43 7.1x 1019.8x 
15 0.2 113 2.7x 388.1x 
25 0.2 142 2.1x 308.8x 
No pruning 0.0 304 1.0x 144.2x     
D) Based on truncation at 2-body terms, a 2 Å distance cutoff, and 25 kcal/mol pruning 
threshold, cube edge lengths from 10 to 30 Å are evaluated for cube optimization.  
Cube Size (Å) Relative Energy  Time Speed-Up Overall 
10 0.2 40 3.6x 1096.3x 
20 0.9 94 1.5x 466.5x 
30 0.2 142 1.0x 308.8x 
    

 We next implemented a parallelization approach that combines Parallel Java with GPU 

acceleration. As the number of nodes is increased, our Parallel Java message-passing 

parallelization algorithm achieved a near linear speed-up (Tables 2 and S5). Offloading energy 

evaluations to OpenMM on a single node equipped with a GPU (two Intel Xeon E5-2680v4 CPUs 

and one NVIDIA GTX 1080 TI GPU) resulted in a 11.5-fold speed-up compared to using the same 

node with no GPU (i.e. a single GPU was 11.5x faster than parallelization over all 28 Intel CPU 

cores). Our original CPU parallelized Java implementation of the algorithm with no 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 21, 2019. ; https://doi.org/10.1101/556258doi: bioRxiv preprint 

https://doi.org/10.1101/556258


 17 

approximations (same protein domain run on two Intel Xeon E5-2680v4 CPUs, 3-body expansion, 

6Å cutoff, and no pruning) required calculation of over 6 million energy evaluations and consumed 

16.5 compute days on a node. By combining algorithm approximations, parallelization across 4 

processes on one node (i.e. PJ message passing) and GPU acceleration (1 GPU per process, 4 

GPUs total), our algorithm executes the 20,232 necessary energy evaluations in 142 seconds. 

Table 2. Energy evaluation timings for global side-chain optimization of COCH residues 27-125 
using a varying number of GPUs (each node contains two Intel Xeon E5-2680v4 CPUs and 4 
nVidia GTX 1080 TI GPUs).  

Number of 
Nodes 

Number of 
GPUs 

Time for Energies 
(sec) 

Speed-Up (Relative to Using 
all CPU Cores)  

1 0 (CPUs only) 5505 1.0x 
1 1  479 11.5x 
1 2 251 21.9x 
1 4 142 38.8x 
2 8 76 72.4x 
4 16 43 128.0x 

 

B. The OtoProtein Structure Database   

 We applied our accelerated repacking algorithm to a set of 473 deafness-associated protein 

models. For both starting homology models and refined structures, quality was assessed using the 

heuristic MolProbity algorithm that examines steric clashes, poor side-chain rotamers and amino 

acid backbone favorability (i.e. phi/psi dihedral angle combinations). The MolProbity score is 

calibrated to predict the quality of X-ray diffraction data that is expected to have produced the 

assessed structure (i.e. a MolProbity score of 1.5 corresponds to an expected X-ray resolution of 

1.5 Å, where lower values indicate higher quality). On average, we reduced steric clashes per 1000 

atoms from 25.1 to 0.03, decreased Ramachandran outliers from 2.03% to 0.94%, and decreased 

the percentage of poor side-chain rotamers from 2.3% to 1.6% (Table 3). Overall, the repacking 

protocol improved the mean MolProbity score from 2.16 Å to 1.04 Å, consistent with protein 

structural models at atomic resolution (Figure 3). The average AMOEBA force field energy for 
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the dataset when locally optimized to RMS gradient convergence criteria of 0.8 kcal/mol/Å, was -

15,342 kcal/mol. After global side-chain optimization, average AMOEBA energy for the dataset 

was reduced to -16,287 kcal/mol, a reduction of 945 kcal/mol from the structures that were 

minimized to an RMS gradient criterion of 0.8 kcal/mol/Å without rotamer optimization. Although 

local minimization without rotamer optimization dramatically reduces atomic clashes, the number 

of poor rotamers increased from 2.3% to 2.9% and motivates the need for side-chain repacking. 

The overall repacking procedure required just 71 GPU-days for all 473 OtoProtein structures. The 

complete list of statistics for each model is available in Table S6.  Based on these results, GPU-

accelerated repacking with the polarizable AMOEBA force field could potentially be used to 

improve the quality of large protein structure databases with only a modest investment in hardware. 

 
Table 3. Average refinement statistics for the OtoProtein Structure Database (473 structures). 

Database Clash 
Score 

Poor 
Rotamers 

Ramachandran 
Favored 

Ramachandran 
Outliers 

MolProbity 
Score 

Homology 25.09 2.33% 91.95% 2.03 2.16 
Minimization 2.75 2.92% 91.85% 1.87 1.66 

OtoProtein 0.03 1.60% 93.48% 0.94 1.04 
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Figure 3. Histogram of MolProbity resolutions for the OtoProtein Structure Database before and 
after optimization. Before optimization (red), the 473 structures have an average MolProbity score 
of 2.16 Å, while after optimization (blue) the dataset has an average MolProbity score of 1.04 Å 
(i.e. approaching the quality expected of atomic resolution X-ray structures). 
 

 
 The OtoProtein Structure Database has been incorporated into the DVD to provide public 

availability of the models in combination with the exhaustive DVD genetic information. The 

combination of OtoProtein structural information with existing DVD data (e.g. minor allele 

frequency, pathogenicity assessment, etc.) provides a powerful platform for the auditory research 

community. For example, it is now possible to visualize and gain insight on the clustering of 

pathogenic variations in specific domains of a protein and to examine structural features that 

correlate with pathogenicity (Figure 4). 
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Figure 4. Incorporation of OtoProtein into the Deafness Variation Database (DVD). All models 
developed with the GPU-accelerated polarizable protein repacking algorithm are publicly 
available in the DVD, where they can be viewed in combination with genomic and variant data.  

Discussion 

Structural coverage of the human proteome has increased rapidly since the early 1990s, 

with ~40% of the human proteome now having comparative models based on templates with a 

sequence identity of at least 30% (9). Here we applied a GPU accelerated polarizable protein 

repacking algorithm to the deafness-associated proteome defined by homology models of any 

sequence identity (average sequence identity of the dataset is 41.7%). We found that 38.8% of the 

deafness-associated proteome could be modeled structurally, comparable to structural coverage of 

the entire human proteome. The 473 structural models we collected and optimized span 145 

deafness-associated genes. These structures had an initial average MolProbity score of 2.16 Å, but 

after repacking, the average score improved to approximately atomic resolution at 1.04 Å. These 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Incorporation of high-resolution models in the Deafness Variation Database (DVD). 
All models developed with the GPU-accelerated rotamer optimization are publicly available in 
the DVD where they can be viewed in combination with the genomic and variant data that the 
DVD provides. 
 

OtoProtein 
Structure 

Genetic 
Variant Data  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 21, 2019. ; https://doi.org/10.1101/556258doi: bioRxiv preprint 

https://doi.org/10.1101/556258


 21 

calculations required just 71 GPU-days. In addition to covering nearly 40% of OtoSCOPE with 

atomic resolution structural models, our OtoProtein database provides structural coverage for 

22,809 of the 61,971 missense variations in the DVD (16,203 are VUSs, 1,931 are LP/P, and 4,675 

are B/LB). These models are publicly available in the DVD through the NGL protein viewer (43). 

When integrated with information on patient missense variations available through the DVD, the 

OtoProtein database represents a unique tool for understanding deafness genetics from a structural 

perspective. Building on the OtoProtein structural platform, future work will model missense 

variations using thermodynamic free energy simulations to provide insights on how variants 

disrupt protein folding and/or protein-protein interactions.  

The GPU-accelerated protein repacking algorithm is freely available to the research 

community through the Force Field X program, which may be useful to refine other structural 

datasets outside of the deafness domain. The algorithm is designed for use with advanced 

polarizable force fields and features an energy expansion up to 3-body interactions. Computational 

speed is achieved using an architecture based on parallelization across an arbitrary number of 

compute nodes and GPUs, and together with repacking algorithm optimizations provides multiple 

orders of magnitude speed-up without compromising structural quality. Although polarizable 

repacking algorithms were previously not efficient enough to apply to large-scale datasets, this 

work opens the door to their application to all models of the human proteome. The Swiss Model 

Repository (SMR), for example, lists 45,083 homology models with an average residue length of 

232 amino acids (9). Structures of this size (i.e. ~230 residues) require only ~260 seconds to repack 

using our algorithm on a node with 4 GPUs (e.g. repacking our DSPP 88-318 model of 230 

residues took 262 seconds of wall clock time). Based on the average model size in the SMR, we 

estimate that repacking all SMR human proteins would require only ~140 days on a node equipped 

with 4 GPUs (i.e. ~2 weeks on our compute cluster that has 10 such nodes). 
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Finally, a limitation to the current repacking algorithm is its reliance on existing homology 

models to serve as initial coordinates. While it can greatly improve the quality of existing structural 

models, it does not provide coverage of proteins through ab initio or de novo techniques. This 

limitation is the subject of on-going work based on GPU-accelerated biased sampling methods, 

which we are using to expand structural coverage of the OtoSCOPE proteome. Despite this 

limitation, the OtoProtein structural information is already being used to gain insight into the 

protein phenotype of more than 20,000 missense variants associated with deafness. 
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