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Abstract 15 

Functional ecology has increasingly focused on describing ecological communities based on 16 

their traits (measurable features affecting individuals fitness and performance). Analyzing trait 17 

distributions within and among forests could significantly improve understanding of community 18 

composition and ecosystem function. Historically, data on trait distributions are generated by (1) 19 

collecting a small number of leaves from a small number of trees, which suffers from limited 20 

sampling but produces information at the fundamental ecological unit (the individual); or (2) 21 

using remote sensing images to infer traits, producing information continuously across large 22 

regions, but as plots (containing multiple trees of different species) or pixels, not individuals. 23 

Remote sensing methods that identify individual trees and estimate their traits would provide the 24 

benefits of both approaches, producing continuous large-scale data linked to biological 25 

individuals. We used data from the National Ecological Observatory Network (NEON) to 26 

develop a method to scale up functional traits from 160 trees to the millions of trees within the 27 

spatial extent of two NEON sites. The pipeline consists of three stages: 1) image segmentation, 28 

to identify individual trees and estimate structural traits; 2) ensemble of models to infer leaf mass 29 

area (LMA), nitrogen, carbon, and phosphorus content using hyperspectral signatures, and DBH 30 

from allometry; and 3) predictions for segmented crowns for the full remote sensing footprint at 31 

the NEON sites. 32 

The R2 values on held out test data ranged from 0.41 to 0.75 on held out test data. The ensemble 33 

approach performed better than single partial least squares models. Carbon performed poorly 34 

compared to other traits (R2 of 0.41). The crown segmentation step contributed the most 35 

uncertainty in the pipeline, due to over-segmentation. The pipeline produced good estimates of 36 

DBH (R2 of 0.62 on held out data). Trait predictions for crowns performed significantly better 37 
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than comparable predictions on pixels, resulting in improvement of R2 on test data of between 38 

0.07 to 0.26. We used the pipeline to produce individual level trait data for ~5 million individual 39 

crowns, covering a total extent of ~360 km2. This large dataset allows testing ecological 40 

questions on landscape scales, revealing that foliar traits are correlated with structural traits and 41 

environmental conditions. 42 

 43 

Keywords: Plant traits, Foliar, Structural, NEON, Hyperspectral, LiDAR, Individual Tree Crown 44 

 45 

1. Introduction 46 

Functional traits are biochemical, physiological and structural characters that influence organism 47 

performance or fitness (Nock et al., 2016). They are central to how organisms perform under 48 

different environmental conditions, interact with other species, and influence the ecosystems to 49 

which they belong (McGill 2006, Dwyer et al., 2017, Collalti et al., 2019). For individual 50 

organisms, traits influence core demographic parameters including survival and reproduction. At 51 

the species level, traits influence species distributions and how species respond to changes in 52 

land use and climate (Pollock et al., 2012). At the ecosystem level, organismal traits influence 53 

biogeochemical cycles and habitat availability for other species (e.g., Fisichelli et al., 2015). 54 

Given their central importance across multiple levels of organization, understanding how traits 55 

vary within and among species, across environmental gradients, and through time is essential to 56 

understanding many areas of ecology and predicting how ecological systems will change in the 57 

future (McGill 2006, Lawler et al. 2010, Valladares et al., 2014, Diaz et al., 2016).  58 
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In trees, two commonly studied groups of traits are specific to (1) properties of leaves (e.g. , leaf 59 

mass per area, nitrogen and phosphorus concentration) and (2) the size structure of the full tree  60 

(e.g. height, dbh, canopy size).  These characters hold different information about tree properties 61 

and how they link to forest functions. Nitrogen and phosphorus, for example, are fundamental 62 

proxies of leaf productivity because of their fundamental role in photosynthesis (Tang et al., 63 

2018); LMA is a widely used indicator of different leaf anatomy and foliar structure strategies 64 

(Poorter et al., 2008); and tree height and dbh are indicators of tree structure and growth.  Having 65 

access to measures of both leaf and structural (or physiognomic) traits for individual trees across 66 

the landscape potentially unlocks the ability to explore different dimensions of biodiversity 67 

together, investigate how these properties influence each other and affect competition among 68 

neighboring trees, and link to tree functions like growth and carbon exchange. However, 69 

exploring the links between leaf and structural traits across landscape is challenging, in part 70 

because of the differences in the design of their sampling approach.  71 

Historically, structural traits are collected for thousands of trees in targeted areas via programs 72 

such as the US Forest Inventory and Analysis, whereas studies of leaf chemical traits have relied 73 

on collecting samples of a few leaves from a small number of individuals. These values are used 74 

to estimate the average trait values for each species and to explore how ecosystem level leaf 75 

traits vary biogeographically or through time by assuming that all individuals of a species in a 76 

region share the same trait value (Swenson et al., 2010, Clark et al., 2016). This approach is 77 

necessary because it is expensive and time consuming to collect individual level leaf trait data, 78 

but it fails to describe trait variation within species driven by evolution and plastic responses to 79 

the conditions an individual or population experiences (Messier et al., 2017, Niinemets et al, 80 

2017, Muller et al. 2010, Nicotra et al. 2010, Albert et al. 2010, Callaway et al. 2003). Moreover, 81 
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since the number of leaf trait records is often orders of magnitude smaller than tree structural 82 

trait records, discrepancy in their sample size may affect the generality of relationships observed 83 

between leaf and structural traits at landscape scales. This limitation is magnified when studying 84 

changing environments (across space or time) because of bias in where the data for each species 85 

is collected. Data are typically collected in small subsets of the full range of conditions that 86 

species experience and are often selected in a biased manner that fits the purpose of the original 87 

studies (e.g., selecting individuals of a particular health status, size or species). Measuring traits 88 

systematically across geographic gradients would address this limitation, but is not feasible with 89 

traditional field methods (Anderson-Teixeira 2015). 90 

An alternative approach that allows continuous estimation of traits across the landscape is to use 91 

remote sensing data (Kerr & Ostrovsky, 2003, Homolova et al. 2013, Houborg et al., 2015). For 92 

example, (a) hyperspectral remote sensing imagery is used to estimate the chemical composition 93 

of sunlit leaves by measuring light absorption and reflectance in the visible and near-infrared 94 

spectrum (Asner et al., 2017), and (b) light detection and ranging (LiDAR) is used to measure 95 

vertical and horizontal vegetation structure (Andersen et al., 2005). Leveraging remote sensing 96 

approaches allows for measuring trait information continuously at landscape scales. Together, 97 

LiDAR and hyperspectral data can be used to estimate many of the standard leaf and structural 98 

tree traits for trees (Serbin et al., 2014, Singh et al., 2015, Asner et al., 2017, Barbosa et al., 99 

2017). 100 

Traditionally, remote sensing applications use either the pixel (the smallest resolution component 101 

of the image, Audebert et al., 2019) or the plot (a region of space typically containing multiple 102 

individuals, Singh et al., 2015, ) as the fundamental unit. This is a natural result of the structure 103 

of the remote sensing data combined with the difficulty of linking individual crowns in remote 104 
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sensing images to field data, especially for small crowns harder to detect with airborne 105 

technology  (Jakubowski et al., 2013). However, pixel or plot-based output results in a 106 

disconnect between the remote sensing analysis and one of the fundamental biological units: the 107 

individual (Liu et al., 2016, De Angelis, 2018, Marconi et al. 2019).  Individual plants reproduce, 108 

interact with their neighbors, and exhibit plastic responses to environmental conditions at the 109 

individual scale. Populations of individuals evolve in response to natural selection. As a result, 110 

our understanding of many biological processes is grounded in the individual and many field-111 

based survey methods focus on collecting data with individual trees as the primary unit of 112 

measurement. While forest inventories hold information of the individual trees ineach plot 113 

(Newnham et al., 2015), plot level estimates from remote sensing typically do not include 114 

information about the relative distribution of individuals and their traits within the plot, thus 115 

reducing the amount of information about community structure. To fully understand how traits 116 

vary across space and time, and are determined by biological processes, it is important to 117 

develop approaches linking these fundamental characteristics to individual trees in ways that can 118 

be applied at scales of hundreds of km2. 119 

Despite its importance for biological research, few studies have attempted to model both leaf and 120 

structural traits using remote sensing at the individual level over landscape scales (but see 121 

Chadwick & Asner 2016, Martin et al., 2018). Even when crown level models are developed, the 122 

resulting leaf trait predictions are made for pixels, not crowns, due to the challenges in crown 123 

segmentation, poor spatial resolution of hyperspectral data, or misalignment between LiDAR and 124 

hyperspectral data (Blaschke, 2010). Similarly, there are few studies estimating structural traits 125 

(like crown height and area) at crown level, with traditional methods predicting tree height and 126 

cover at the plot level (Kaartinen et al., 2012). Perhaps as a result of these differences, structural 127 
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and chemical leaf traits are not currently predicted together at large scales. Consequently, 128 

ecology lacks the large scale individual level trait estimates that are necessary to fully understand 129 

tradeoffs between leaf and tree structural traits, and to explore how trait variability relates to 130 

species and the environment. Data from NEON Airborne Observatory Platform NEON (AOP) 131 

provide co-registered, georeferenced, and atmospherically corrected high resolution 132 

hyperspectral data and LiDAR, whose integration represents a great opportunity to circumvent 133 

these challenges.  134 

To address this gap, we developed a pipeline for making crown level trait predictions at scales of 135 

~400 km2 with associated uncertainties on both crown segmentation and trait estimation. 136 

Building on Chadwick & Asner (2016) and Martin et al. (2018), we: (1) identify individual 137 

crowns in remote sensing imagery that are associated with field-based trait measurements; (2) 138 

build models relating the remote sensing data to the field-based trait measurements; and (3) 139 

apply those models to estimate trait values and examine patterns of tree structural and chemical 140 

traits from individual to landscape scales. We advance the state of the art (Chadwick & Asner 141 

2016, Martin et al. 2018) in this pipeline by using crown-level models and comparing them to 142 

pixel- and crown average-level models, directly estimating uncertainty in trait predictions using 143 

likelihoods, and predicting traits at the crown-level. Finally, derived data products on the 144 

location, size, shape, and leaf traits of millions of individual trees distributed over tens of 145 

thousands of hectares. 146 

2. Methods 147 

In our pipeline for predicting crown level leaf and structural traits from remote sensing we used: 148 

1) field measurements of traits for building and evaluating models; 2) data on the shape and 149 
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location of individual tree crowns (ITCs) for building accurate models and assessing uncertainty 150 

in crown segmentation algorithms; and 3) high resolution remote sensing LiDAR (for crown 151 

segmentation and estimation of structural traits) and hyperspectral data (for estimation of leaf 152 

chemical traits). To obtain these components, we combined National Ecological Observatory 153 

Network’s (NEON)  airborne observatory data with field data we collected at NEON sites on leaf 154 

traits as well the location and shape of individual tree crowns.  155 

2.1. Site descriptions  156 

The study was conducted at two core terrestrial NEON sites; Ordway Swisher Biological Station 157 

in Florida (OSBS, NEON Domain 03) and the Oakmulgee Management District of Talladega 158 

National Forest in Alabama (TALL, NEON Doman 08). The two sites (Appendix S1: Figure S.1) 159 

have a mix of deciduous, evergreen, and mixed forest types (Homer et al., 2012). Upland areas at 160 

both sites are dominated by fire-tolerant oaks and pine species, primarily longleaf pine (Pinus 161 

palustris). The longleaf pine at OSBS forms open stands whereas the longleaf pine canopy at 162 

TALL is more closed. Lowland areas near lakes or wetlands (OSBS), and riparian areas (TALL) 163 

are dominated by closed canopy hardwood forests (Beckett and Golden 1982, Cox and Hart 164 

2015).  165 

2.2. Remote sensing data 166 

All aerial remote sensing data products were provided by the NEON Airborne Observation 167 

Platform (NEON-AOP, Table 1). We used data from the May 2014 flight for OSBS, and the 168 

June 2015 flight for TALL. We used the raw L1 data products: (1) “classified LiDAR point 169 

cloud”, and (2) “hyperspectral surface reflectance” data, orthorectified and atmospherically 170 
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corrected (details in data.neonscience.org/api/v0/documents/NEON.DOC.001288vA). To 171 

reduce the effects of non-lambertian diffuse scattering, we applied the topographic and 172 

bidirectional reflectance distribution function (BRDF) corrections by adapting scripts from the 173 

HyTools repository (https://github.com/EnSpec/HyTools-sandbox) to our dataset.  The LiDAR 174 

data consist of 3D spatial point coordinates (4-6 points/m2) which provides high resolution 175 

information about crown shape and height. These data are released in 1 km x 1 km tiles. 176 

Hyperspectral reflectance data consist of 1m2 spatial resolution images with 426 channels (or 177 

bands), each one collecting the magnitude of reflectance in 5 nm wide interval of wavelengths, 178 

ranging from visible to near infrared light (from 350 to 2500 nm). These images were provided 179 

as multiple ~15 km x 0.8 km flight lines with a total area of ~215 km2 in OSBS, and ~145 km2 in 180 

TALL. The hyperspectral images were provided as “prototype” data, pre-processed differently 181 

than post 2017 data, and delivered on hard drives. Prototype airborne data showed misalignments 182 

between LiDAR and hyperspectral products, (as well as across hyperspectral flightpaths), on the 183 

scale of 1-2 meters (Marconi et al. 2019, Appendix S1: Figure S.6), primarily affecting pixels at 184 

crown borders. Despite the prototype data being potentially of lower quality than the newer 185 

NEON AOP data, we used it to match the collection dates of the field data. The only difference 186 

with current L1 and L3 data is in the nomenclature of the .h5 data structure, making the methods 187 

presented here suitable with more recent NEON data.  188 

 189 

2.3. Field Data 190 

During this project, leaf trait data collected by the NEON Terrestrial Observation System (TOS) 191 

were not available. Instead, we used a dataset of leaf samples collected for 157 trees, many of 192 
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which were near NEON inventory plots that are randomly located across the study site and 193 

stratified by land cover type. The sampled trees were located away from major roads, had crowns 194 

visible from airborne aircraft and identifiable in the image, and had sunlit branches that were 195 

accessible for leaf collection. Trees were not sampled within NEON plots to avoid disturbing 196 

NEON’s long-term monitoring efforts.  As wide a range of species as possible were collected, 197 

including some rarer species that occured far from NEON plots (Appendix S1: Figure S.2). 198 

Trait data were collected in the early part of the peak growing season in 2015. Specifically, 81 199 

individual trees (of 17 species) were sampled from OSBS in May-June 2015, and 78 individuals 200 

(26 species) in July 2015 from TALL. Leaves were sampled from the sunlit portion of the 201 

canopy with a shotgun. Immediately after collection, the leaves were placed in a labeled plastic 202 

bag and stored in a cooler until they could be processed in the field lab within 2-4 hours of 203 

collection. The collected leaves were randomly sampled for further processing in two ways. 204 

First, a sample of leaves (at least 20 grams of fresh leaves) was analyzed for nitrogen (%N), 205 

carbon (%C), phosphorus (%P) by weight, according to standard protocols, with the exception 206 

that petioles were removed (Murphy and Riley 1962; Cornelissen et al. 2003). Second, a sample 207 

was processed for LMA using the Carnegie Institute for Science spectronomics protocol 208 

(https://gao.asu.edu/spectranomics, Asner et al., 2011).  Whole leaves were weighed then 209 

scanned on a flatbed scanner to determine leaf area. The leaves were then dried at 60 C for at 210 

least 72 hours and reweighed to get the dry leaf mass. For needle-leaf species, a sample of 211 

individual needles (at least 3 fascicles per sample) was scanned and weighed. The needled 212 

dimensions of a subset of the samples were also measured with calipers to calculate total surface 213 

area. These measurements showed good agreement with the projected surface area from the 214 
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scans (R2 > 0.75). This data and complete metadata will be added to TRY database v.6 (Kattge et 215 

al., 2020). 216 

Individual trees were mapped in the remote sensing images using a field tablet and GIS software. 217 

Mapping was done on 2014 imagery for OSBS, and on 2015 imagery for TALL. This process 218 

involved mapping individual tree crowns on the hyperspectral image in the field to ensure the 219 

sampled trees matched directly with image pixels (Graves et al., 2018). This individual tree 220 

crown (ITC) data provides the most accurate link of field measurements with pixels from remote 221 

sensing spectral data and was used to quantify uncertainty in crown segmentation algorithms.  222 

2.4. The algorithm pipeline 223 

We developed a modular pipeline based on three steps: (1) build and evaluate crown 224 

segmentations from LiDAR data (section 2.6); (2) develop an ensemble of statistical models to 225 

infer leaf mass per area (LMA, g m-2), nitrogen (%N), phosphorus (%P), and carbon (%C) per 226 

tree from hyperspectral data (section 2.5), and models to estimate structural traits [diameter at 227 

breast height, DBH (cm), crown area, CA (m2) and stem height, H (m)] from LiDAR data; (3) 228 

make predictions for every individual tree crown in both NEON sites. For each crown, we also 229 

extracted values of elevation, slope and aspect provided as NEON AOP data products (Table 1), 230 

aiming to build a comprehensive dataset including topographic, leaf chemical and tree structural 231 

traits for any tree detected within the AOP footprint. We limited our analysis to individual tree 232 

crowns taller than 2 meters and wider than 1m2. Since the field traits dataset was for sunlit 233 

foliage, we  predicted traits only from the upper portion of the canopy. The structure of the 234 

pipeline presented in this paper is summarized in Figure 1.  235 
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2.5. Leaf chemistry model 236 

After correcting the hyperspectral data with the bidirectional reflectance distribution function 237 

and topographic correction, we extracted all pixels within the boundaries of the field-delineated 238 

ITCs. Shadowed or low vegetation pixels within the ITCs were removed using thresholds for 239 

both a near infrared band (reflectance in 860 nm < 0.3) and the Normalized Difference 240 

Vegetation Index (NDVI < 0.7) (Appendix S1: Figure S.3) Colgan et al., 2012, Graves et al., 241 

2016). We normalized the spectral values for each pixel by dividing each spectral vector by its 242 

root sum of squares. We used this method to further reduce the effect of peripheral light and 243 

shadows within each crown (Singh et al., 2015, Feilhauer et al., 2010).  244 

Field data were split at the tree level, and stratified by species, into training (n = 115), validation 245 

(n = 18), and test sets (n = 24). Since the two sites have similar species composition, we 246 

aggregated the two datasets to build a joint model. As is common for trait studies, our field data 247 

on foliar traits was averaged to a single value for each individual tree. Most algorithms require 248 

associating a single vector of predictor variables (i.e. the spectra) to a single  response value (e.g. 249 

tree crown or plot). However, individual crowns contain multiple pixels, and crowns vary in the 250 

number and quality of these pixels. In each crown, some pixels will be better for linking traits to 251 

hyperspectral signatures because they reflect light primarily from leaves, whereas other pixels 252 

include reflectance from branches, understory, or ground. To address this, we used a bagging 253 

approach (Song et al., 2013) that takes advantage of different pixel characteristics by training, 254 

weighting, and ensembling models fit to different subsets of pixels. This approach weights the 255 

predictions from models fit to different pixels to produce a more generalizable and accurate 256 

representation of the relationship between foliar traits and their spectral signatures. To capture 257 

the range of possible models from different subsets of  pixels in each crown, we randomly 258 
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sampled one pixel from each training crown 1000 times, and used the resulting 1000 vectors of 259 

pixels (one pixel for each crown in the dataset) to build 1000 independent partial least squares 260 

generalized linear regression (PLS-GLR) models (Bastien et al., 2005, Bertrand et al, 2014). 261 

Instead of the regular PLS regressions used in most trait modeling (e.g., Singh et al., 2015, Wang 262 

et al., 2020, Chadwick et al., 2018) we used PLS-GLR because it uses maximum likelihood 263 

estimation to calculate the regression parameters. This is an improvement over current 264 

approaches because it: (1) allows the calculation of AIC  for model averaging (Burnham & 265 

Anderson 2002); (2) provides a robust measure of uncertainty in the form of a prediction interval 266 

(Christoffersen, 1998), which allows estimating the range of out of sample predictions rather 267 

than the range of mean response; and (3) does not require bootstrapping, making the method 268 

more scalable. We used a log-normal link function for all models to reflect the fact that all traits 269 

are positive numbers. We treated site (OSBS versus TALL) as a one hot encoder fixed effect 270 

(Harris & Harris, 2010) to account for site specific ancillary conditions. The number of 271 

components included in each model were determined using 5-fold cross-validation (CV) using 272 

the PRESS statistic (Tapley, 2000) on the training set. Models for each leaf trait were trained 273 

independently.  274 

We compared four modeling strategies that varied in how the models were developed and how 275 

the models were applied for testing (Appendix S1: Table S.1).  The models are labelled based on 276 

how the model was applied as “pixel based” (applied to individual pixels) or “crown based” 277 

(applied to segmented crowns).  The models were built as follows: 1) a pixel-based approach 278 

with the spectra of a single pixel randomly extracted from each crown (SPM). This approach 279 

represents the case in which only the coordinates of the leaf sample are available, and spectral 280 

information can be extracted by sampling from a pixel corresponding to the stem or leaf location; 281 
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2) A pixel based approach (hereafter referred as the “ensemble pixel based model” (or EPBM) 282 

that included information on crown identity by labelling each pixel with an individual crown 283 

identifier and using it to ensemble a selection of 100 SPM models using multi-model averaging 284 

based on delta AIC (Burnham & Anderson 2002). In this step, we selected the 100 models for 285 

each trait that best performed on the independent validation dataset (n =15). This step was 286 

fundamental to: (a) drop models that performed worse than chance (R2 < 0) and therefore held 287 

not meaningful relationships; (b) massively reduce the computational resources required to scale 288 

predictions to hundreds of km2.This approach requires crown boundaries information for training 289 

but not for application, since it applies to individual pixels; 3) a simple crown average approach, 290 

hereafter “Crown Average Spectra” (CAS), where each individual tree was represented by the 291 

average of the spectra across all green pixels (i.e. pixels with NDVI >0.7 and NIR > 0.3) within 292 

the crown polygon;  4) A crown average approach, that we refer to as the “Crown Ensemble 293 

Aggregation Model” (CEAM), consisting on averaging predictions from the EPBM for all sunlit 294 

pixels belonging to individual tree crown polygons.  We tested the performance of each approach 295 

in two ways, on pixels extracted from (1) ground delineated crowns (Graves et al., 2018), and (2) 296 

algorithmically delineated crowns (Silva et al., 2016). This step was fundamental to quantify the 297 

effect of uncertainty in crown detection and segmentation on predicting leaf traits at crown level 298 

across the landscape where no field delineated crowns are available.  299 

All models were tested on the 24 crowns withheld in the test dataset. The test data were not used 300 

at any phase of the fitting or the ensemble process. Accuracy was evaluated using the predictive 301 

coefficient of determination (R2) and the root-mean-square error (RMSE). The coefficient of 302 

determination produces values between 1 and negative infinity, where negative values indicate 303 

that the model predictability is lower than the sample average. As such, negative R2 values 304 
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indicate that the statistical model did not learn any meaningful information from the data. A 305 

value of 1 indicates that predicted values perfectly match observations. We evaluated the 306 

uncertainty of predictions for each model using the coverage of the 95% prediction interval 307 

(95PI). The prediction interval is the range of values that is expected to contain 95% of the 308 

observed data points, and therefore a model with good estimates of uncertainty should have 309 

approximately 95% of the test data falling within this range. Since the CEAM was generated by 310 

the ensemble of the 100 best SPMs, we estimated the 95PI for CEAM predictions by averaging 311 

the error functions for the same 100 SPMs. We used the same data split, data transformation and 312 

PLS-GLR parameterization for all models. For pixel-based estimations (SPM and EPBM), we 313 

compared ground measures of LMA, N, C, and P with predictions from each pixel in the test 314 

dataset. For crown-based estimations (CAS and CEAM), we averaged pixel-based predictions 315 

belonging to all of the pixels in the crown. The same rationale was used for comparing pixel and 316 

crown-based uncertainty.  317 

2.6. Tree structural traits and crown segmentation 318 

We used the lidR R package (Roussel & Auty, 2017) to process point cloud LiDAR data to 319 

create a 0.5 m2 resolution canopy height model (CHM) and produce algorithmically delineated 320 

crowns. Despite there was little difference to the 1m2 resolution of NEON CHM, we chose an 321 

higher resolution CHM to produce smoother polygons and leverage the information in regions 322 

where the point cloud was more dense.  We used the CHM to determine the number of trees in 323 

the scene (i.e. tree detection) using local maxima filtering (Popesco et al., 2004). We tested three 324 

alternative methods for crown segmentation (Dalponte & Coomes 2016, Silva et al., 2016, and a 325 

watershed algorithm as in Barnes et al., 2014) and chose the best performing one to generate 326 
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crown boundaries (Appendix S1: Table S.2, Appendix S1: Section 1). To evaluate accuracy of 327 

crown detection and segmentation on the targeted landscapes, we calculated: (1) an estimate of 328 

precision from all predicted crowns whose boundaries overlapped with the field ITCs; (2) 329 

pairwise Jaccard index coefficient (Real & Vargas, 1996), which represents the intersection over 330 

union between the areas of two polygons, and is the standard benchmarking metric for image 331 

analysis (Rezatofighi et al.,  The Jaccard index was calculated by comparing ITCs collected in 332 

the field with the single most overlapping predicted crown (Marconi et al.,  Field delineated 333 

crowns that do not overlap with any crown segmented by the algorithm were labelled as 334 

undetected. 2019). We estimated tree structural traits from the derived polygons and the CHM. 335 

Crown area (CA) was calculated from the polygon geometry using the geoPandas python 336 

package (https://geopandas.readthedocs.io/). Tree height (H) was extracted from the CHM as the 337 

maximum height within each ITC. Diameter at breast height (DBH) was calculated using an 338 

allometric regression model relating the log-transformed DBH taken from the NEON woody 339 

plant vegetation structure data to the log-transformed height and canopy area of the matching 340 

algorithmically delineated crowns for 566 individual stems. Delineated crowns were matched to 341 

field-mapped stems in the NEON dataset visually (Appendix S1: Table S.3).  342 

2.7. Building individual-level derived data for full flight paths 343 

Each remote sensing image was split into 1 km2 tiles to optimize computational resources and 344 

allow parallelization on hundreds of cores. We pre-processed each tile using the same filters used 345 

for developing the models. To make predictions we used the EPBMs ensemble models to 346 

produce rasters of LMA, %C, %P and %N predictions and the 95PI for each suitable pixel and 347 

averaged them to crown level by using algorithmically delineated crowns.  Crown-based 348 

predictions were achieved by averaging the values of all suitable pixels within the corresponding 349 
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predicted ITC boundaries. For those areas where the ITC overlapped with more than one flight 350 

path (flight paths overlap by ~30%), we averaged the crown-based predictions from both flight 351 

paths.  352 

We stored flight-paths level maps of traits into raster data-products. The crown level dataset was 353 

then compiled as a comma delimited file containing all the geometry information to rebuild 354 

polygon shapes and locations. The data is distributed in a Zenodo archive 355 

(http://doi.org/10.5281/zenodo.3232978).  356 

 357 

3. Results 358 

We chose the crown segmentation algorithm described in Silva et al. (2016) (Appendix S1: 359 

Table S.2) to produce algorithmically delineated crowns. The approach detected ~88% of the 360 

field crowns (Appendix S1: Table S.5), but showed lower accuracy in estimating the shape and 361 

size of the canopies for individual trees, with Jaccard Index ranging between 0 (for undetected 362 

trees) and 0.81, with an average of 0.35. Crowns identified by the algorithm were generally 363 

larger than those delineated in the field, resulting in overestimated crown areas (especially for 364 

smaller trees) and weak correlations between field data and algorithmic crown areas (Figure 2).  365 

Low goodness of fit in predicting Crown Area (CA) was exacerbated by uncertainty in alignment 366 

with field and remote sensing data. For example, field crowns were delineated on the 367 

hyperspectral images to incorporate only the pure pixels of the crown (Graves et al., 2018, 368 

Appendix S1: Figure S.4, Appendix S1: Figure S.5) leading to potentially underestimating the 369 

full extent of tree crown size. Moreover, visual assessment of paired field and algorithmically 370 

delineated crowns shows shifts by 1-2 meters that likely result from imperfect alignment 371 

between LiDAR and hyperspectral data (Appendix S1: Figure S.6; Marconi et al. 2019), further 372 
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affecting uncertainty in field to algorithmically estimated crowns. Estimates of other structural 373 

traits from the algorithmic tree crowns were better than crown area estimates. Height showed the 374 

highest correspondence between field and remotely sensed measures (R2 = 0.90 for trees higher 375 

than 3m). Despite low accuracy in its predictions, CA showed a significant effect in estimating 376 

DBH from LiDAR (Appendix S1: Table S.3). However, tree height was the most important 377 

variable in predicting DBH, which therefore resulted in good estimates for both sites (0.62 R2), 378 

in the range of other recent applications (0.59 in Dalla Corte et al., 2020, 0.62 to 0.83 from Yao 379 

et al., 2012).   380 

We compared the four methods - two applied to pixels (the single pixel methods, SPM, and 381 

ensemble pixel methods, EPBM) and two applied to crowns (the crown average, CAS and the 382 

crown based ensemble methods, CEAM) - using RMSE. When tested on pixels extracted from 383 

field delineated crowns, CEAM performed the best for %N and %P (RMSE of 0.20 and 0.026), 384 

and CEAM and EPBM performed equivalently for LMA (RMSE of 40.3 and 40.8 respectively) 385 

(Figure 3A, Appendix S1: Figure S.7).  CEAM explained 75% of the variance in LMA, 66% of 386 

the variance in %N, 46% of the variance in %P, and 41% of the variance in %C (Appendix S1: 387 

Table S.4, Appendix S1: Figure S.8). These results were comparable to those obtained by Martin 388 

et al. (2018) for trees in Borneo (71%, 46%, 44%, 48% respectively for LMA, %N, %P, %C). 389 

Despite “site” ancillary information was an important feature for all models, its influence on 390 

traits predictions was always relatively low compared to reflectance (as shown by the models’ 391 

parameters, Appendix S1: Figure S.9). The root mean squared error (normalized by traits 392 

observations range, NRMSE) was always between 8 and 16% of the range of the field 393 

observations, meeting the quality threshold recommended by Singh et al. (2015).  394 
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The ensemble approaches (CEAM and EPBM) performed better than methods based on pixels as 395 

the fundamental unit (SPM) or simple averaging of all green pixels in a crown (CAS) when the 396 

assessment was on field delineated crowns (Appendix S1: Table S.4; Figure 3A).  Few individual 397 

SPMs performed better than the EPBM ensembles (Appendix S1: Figure S.10) and when 398 

individual pixel models did outperform the ensemble, they usually were not among the best SPM 399 

models (i.e., the models with the lowest delta AIC in the validation). This suggests that EPBM 400 

provides the best method for making out-of-sample predictions at the pixel level. CEAM 401 

generally produced the best estimates of uncertainty. CEAM 95PI showed an average coverage 402 

of 95% of held out observations, CAS 94%, EPSM 91%, Plot and SBM 90%, with the ideal 403 

value being 95% (Figure 3D).  404 

The CEAM approach performed best when making predictions using pixels extracted from 405 

algorithmically delineated crowns (Figure 3). Compared to when crown boundaries are collected 406 

from the field, the accuracy of predictions using algorithmically delineated crowns was reduced 407 

due to the uncertainty associated with crown segmentation. However, CEAM showed the lowest 408 

reduction in accuracy compared to the other approaches (ΔNRMSE ~ 2%, Figure 3C), resulting 409 

in the lowest NRMSE for all traits (Figure 3B).  410 

Scaling algorithmic crown segmentation and trait estimation to the full extent of the NEON 411 

remote sensing data yielded trait predictions for approximately 5 million canopy trees for the two 412 

sites combined (Figure 4, Appendix S1: Figure S.11, S.12, S.13). Landscape patterns in traits are 413 

evident, including east-west gradients in LMA, %N, and %P at OSBS (Figure 4). At TALL, 414 

lower LMA and higher %N and %P are found in a dendritic pattern associated with the stream 415 

network (Appendix S1: Figure S.12). Some traits show a bimodal distribution at each site, which 416 

is probably related to differences in needleleaf versus broadleaf species but would need to be 417 
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further tested with trait estimation coupled with species predictions.  On average, OSBS showed 418 

higher %N and %P compared to TALL (Figure 5). Distributions of LMA, %N, and %P in OSBS 419 

shifted to higher values than TALL, following patterns observed from the field data (Figure 5, 420 

Appendix S1: Figure S.15). Assessing correlations between estimated structural traits, leaf traits, 421 

and abiotic environmental conditions showed strong correlations between LMA, %N, and %P, 422 

consistent with the leaf economic spectrum (Wright et al., 2004) (Appendix S1: Figure S.14). Of 423 

the environmental variables, elevation had the strongest relationship with leaf traits with leaf N 424 

and P decreasing and LMA increasing with elevation (Figures S.15, S.16). Leaf traits and tree 425 

structure were correlated at OSBS (e.g. LMA with tree H, figure 5B) but not TALL.   426 

4. Discussion 427 

The individual organism is one of the fundamental units of biology. As a result, studying the 428 

distribution of individuals and their traits across space and through time is central to many 429 

aspects of ecology. However, collecting individual level data at the large scales required for 430 

many ecological questions is challenging. To address this limitation we develop a fully 431 

automated modular pipeline to link remote sensing products from the National Ecological 432 

Observatory Network (NEON) to data collected in the field, convert the remote sensing data into 433 

estimates of the leaf and structural traits for all canopy trees detected at landscape scales, and 434 

estimate the traits for millions of individual trees in an open and accessible format (Cassey et al., 435 

2006, Hampton et al., 2016) for use by the broader scientific community.   436 

We found that modeling and predicting leaf traits at the individual crown level resulted in 437 

improved accuracy and uncertainty in the predictions compared to pixel based approaches 438 

(Figure 3). Linking pixels to crowns allows the ensembling of models built from the different 439 
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pixels making up the crowns. Different pixels contain different combinations of leaves, branches, 440 

understory and ground, which affects the underlying chemometric relationship between foliar 441 

traits and their spectral signature. Weighted ensembling provides one way to address this, by 442 

allowing the models to identify the best combinations of pixels for relating traits and 443 

hyperspectral signatures. Aggregating pixel predictions to the crown level may also reduce the 444 

influence of outlier pixels. Our method produced models with predictive power comparable to 445 

two other crown-based estimation methods (Barbosa and Asner, 2017; Martin et al., 2018), 446 

suggesting that the performance of these approaches may generalize beyond the current study. In 447 

addition to providing robust leaf trait estimates, crown level methods allow the simultaneous 448 

estimation of structural traits, allowing these two sets of traits to be analyzed together at large 449 

scales. 450 

2019). This is likely because height is directly measured by LIDAR and height was the most 451 

important factor in the allometric models used to predict DBH. 2018, Jucker et al. 2016). While 452 

our crown-based methods were effective for estimating a number of leaf and structural traits, 453 

there is substantial uncertainty even for the best performing traits. Quantifying this uncertainty 454 

provides information on the range of likely trait values for each individual and allows this 455 

uncertainty to be propagated when using these derived data values to test scientific hypotheses 456 

(Miller-Gulland and Shea, 2017). We used methods for leaf trait estimation that allowed us to 457 

estimate uncertainty (pls-GLR) and the crown-based method (CEAM) provided the best 458 

uncertainty estimates (Figure 3, Appendix S1: Table S.4). Current methods for delineating 459 

crowns do not include explicit measures of uncertainty (Dalponte & Coomes 2016, Silva et al., 460 

2016). It is important for future methods to address this limitation because comparisons to field 461 

data suggested high uncertainty in segmentation.  462 
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One of the challenges for crown level approaches is that they rely on crown segmentation 463 

algorithms to identify the location and size of individual trees. While we used the best 464 

performing crown segmentation the algorithm from a recent methods competition (Marconi et al. 465 

2019) and had reasonable correspondence between the presence of an algorithmic crown and 466 

each field crown, the algorithmic crowns averaged only 35% overlap in area with the most 467 

similar field delineated crown. Heterogeneity in point cloud density and misalignment between 468 

lidar and hyperspectral sensors could contribute to misalignment between field and 469 

algorithmically delineated crowns (Marconi et al, 2019, Kamoske et al., 2019, Appendix S1: 470 

Section 1). Despite this uncertainty, estimates of DBH and height were well correlated with field 471 

values.Therefore data derived from our pipeline should be useful for assessing estimates of 472 

individual tree biomass by applying allometric functions linking biomass to DBH and height 473 

(Graves et al. Crown area was more susceptible to the segmentation uncertainty, but is also more 474 

sensitive to small errors in segmentation and CHM resolution (Appendix S1: Section 1). 475 

Uncertainty in crown segmentation can also have cascading impacts on the estimation of leaf 476 

traits, which was tested by comparing results from field versus algorithmically delineated tree 477 

crowns. Prediction accuracy is generally lower when using algorithmically delineated crowns 478 

because the pixels used for making predictions both include pixels that are not in the true crown 479 

and exclude pixels that are in the true crown. However, these decreases in accuracy were 480 

generally quite small, with decreases in NRMSE of <0.05 across all methods. The crown-based 481 

ensemble method (CEAM) was particularly robust to this uncertainty, with the smallest increases 482 

in NRMSE and all traits maintaining NRMSE below Singh et al. (2015)’s threshold (Figure 3C, 483 

Appendix S1: Table S.4). This robustness may result because the weighted ensembles in CEAM 484 
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provide the ability to weight pixels algorithmically, allowing it to ignore pixels from outside of 485 

the true crown. 486 

Generating derived individual level data on leaf and structural traits at the landscape scale allows 487 

trait patterns at these scales to be effectively assessed. While a complete analysis of the spatial 488 

distribution of tree traits is beyond the scope of this paper, our results showed some general 489 

patterns worth future investigations. LMA, %N, and %C showed bimodal distributions at both 490 

sites (with %N peaks particularly close in OSBS), likely because pines and oaks, the most 491 

common needleaf and broadleaf genera respectively at these two sites, occupy distinct regions of 492 

the worldwide Leaf Economic Spectrum (LES)(Wright et al., 2004). Correlation patterns 493 

between LMA and %N, %N and %P, and LMA and %P match the global scale patterns observed 494 

globally in the LES. Despite the limited number of species and geographical extent, both sites 495 

showed rangeand spread of LMA, %N and %P overlapping with most of the global range of the 496 

worldwide LES tradeoffs (Appendix S1: Figure S.14). This suggests that variation in the local 497 

environment could be driving large intra-species variability of leaf traits, while conserving the 498 

general trade-offs observed across species (Asner et al., 2016). Among the environmental 499 

variables we tested, elevation showed the strongest correlation with leaf traits (Appendix S1: 500 

Figure S.16, Appendix S1: Figure S. 17), possibly because elevation represents a proxy of 501 

different soil conditions in these sites, which can affect both species distributions and leaf traits 502 

(Walter & Gerlach, 2013). For example, small differences in elevation at OSBS often means 503 

transitioning from drained sandhill (that favor pines) to marshy and richer soils that favor the 504 

establishment of large-crowned broadleaf species, rich in foliar %N and %P  (Bodker et al., 505 

2015). 506 
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Producing derived data at the individual level also facilitates landscape scale assessments of 507 

relationships between leaf and structural traits at the level of individual organisms. For example, 508 

although the two sites have similar species composition, our results showed different 509 

correlational patterns between structural (height and DBH) and chemical traits (LMA, %N, %P, 510 

%C) (Figure 5, Appendix S1: Figure S.17), especially the relationship between height and LMA 511 

(r = 0.24 in OSBS, r = -0.08 in TALL). Possible explanations for these relationships may be 512 

related to differences in management histories across patches of the landscape that can influence 513 

species assembly, successional stages, which are important determinants of tree size and leaf 514 

traits (Sameulson and Stokes 2012; Ishida et al. 2005). Our pipeline, integrated with further 515 

remote sensing derived information (e.g. species identities) and local history (e.g. management 516 

and fire history) could be used to address how these drivers affect local distribution of plant 517 

traits, their trade-offs, and their effects on the ecosystems across a multitude of landscapes.  518 

Our crown-based approach to modeling and predicting tree traits produces individual data similar 519 

to that collected in the field. This approach has a number of benefits. First, it will make data 520 

integration with field-based forest and trait surveys easier because both derived remote sensing 521 

data and field surveys will be composed of the same fundamental unit (individual trees). Second, 522 

crown-based approaches are likely better for aligning trait data across years. The same pixel in 523 

two consecutive years could vary significantly in a trait because of small errors in spatial 524 

alignment of pixels through time, whereas large crown-level regions will be more robust to small 525 

errors at the edges of the crown. Moreover, multi-temporal and multi-sensor images can be 526 

potentially leveraged to align and improve segmentation for crown objects captured in the same 527 

scene (Bovolo & Buzzone, 2017, Sumbul et al., 2020). Finally, this approach allows a more 528 

compact representation of derived trait data in tabular formas spatial polygons instead of rasters. 529 
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While this will not be the best representation for all analyses, for individual level analyses it 530 

results in vastly reduced storage computational requirements compared to raster data.  531 

Thanks to the modular nature of our approach, crown segmentation can easily be substituted with 532 

methods based on RGB (Weinstein et al., 2020) or hyperspectral imaging (Dalponte et al., 2016) 533 

when LiDAR data is poor or not available. Yet, individual level approaches are limited by data 534 

availability and are not suitable for addressing ecological questions at continental to global scale. 535 

High resolution airborne remote sensing is still limited to relatively few sites, while the 536 

resolution of AVIRIS or satellite data is more appropriate for plot level analyses (e.g., Singh et 537 

al. 2015, Martin et al. 2018, Ma et al. 2019). However, these two approaches can be potentially 538 

integrated to scale sub-pixel properties from satellite data, and merge the gap between local, 539 

regional and global scale ecological information, and better address emergent cross-scale 540 

ecological questions related to variation of leaf traits, diversity and functions (Carmona et al., 541 

2016). 542 

The data produced by our individual level pipeline could be extended by including predictions 543 

for species identity, other leaf and structural traits, environmental variables, management, or 544 

disturbance. Moreover, our pipeline can potentially be used to extract ecological information for 545 

every tree that can be detected across all NEON AOP sites for the full life of the observatory. 546 

This will produce a publicly available, spatially explicit database of detailed ecological 547 

information for hundreds of millions of trees across the US that could be fused with other 548 

continental data (e.g. Forest Inventory and Analysis) and integrated to area based analyses from 549 

satellite data, to address cross scale functional ecological questions 550 

(http://doi.org/10.5281/zenodo.3232978). Such data could be used to further understand the 551 
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biology behind trait tradeoffs and investigate cross scale ecological processes and patterns from 552 

individual to landscape to continental scale.  553 
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Table 1. Data products and sources (National Ecological Observatory Network, 2016). 812 

Information about data products can be found on the NEON data products catalogue 813 

(http://data.neonscience.org/data-product-catalog).  814 

Name NEON data 

product ID 

Data date How it was used 

Spectrometer orthorectified at-

sensor radiance  

NEON.DP1.3000

8 

2014 and 

2015 

Hyperspectral images used to 

model foliar chemical and 

physical properties   

Discrete return LiDAR point 

cloud  

NEON.DP1.300

03.001 

2014 and 

2015 

Crown segmentation and 

calculation of tree height 

AOP L2 and L3 data products 

(Albedo, Elevation, Slope, 

Aspect) 

NEON.DP2.3001

2.001,  

DP3.30024.001,  

DP3.30025.001 

2014 and 

2015 

Link modeled tree crown 

properties with other NEON-

AOP data products 

Woody plant vegetation 

structure 

DP1.10098.001 2014-

2018 

Build allometric relationship to 

infer DBH from Crown Area and 

Tree Height 

Field ITC Graves et al. 

2018 

2017 Validate crown segmentation, 

define tree objects.  

 815 
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Figures captions 816 

Figure 1. Workflow of the pipeline following Unified Modeling Language (UML). Left side 817 

shows the method to build and test three modeling approaches: PBM (pixel-based model), EPBS 818 

(ensemble of pixel-based models), CEAM (crown ensemble averaged model). Right side 819 

represents the part of the pipeline dealing with scaling, fusion, and public distribution of derived 820 

data. NEON L3 products fused to the derived traits data are: Aspect (DP3.30025.001), Elevation 821 

(DP3.30024.001), and Slope (DP3.30025.001). 822 

 823 
Figure 2. Comparison between observed and predicted tree structural traits for algorithmically 824 

delineated crowns corresponding to ground delineated ITCs: (A) tree crown height (m), (B) tree 825 

diameter at breast height (cm), and (C) tree crown area (m2). Yellow and blue points represent 826 

OSBS and TALL site data points respectively. Black diagonal is the 1:1 line. 827 

 828 

Figure 3. Model evaluation and comparison of pixel based (SPM, red), ensemble pixels (EPBM, 829 

grey), crown spectra average (CAS, yellow), and crown ensemble average (CEAM, blue) 830 

predictions on an independent test set of 24 observed crowns for %P, LMA, %N and %C. (A) 831 

Evaluation and comparison of RMSE from models built on pixels extracted from ground 832 

delineated crowns; (B) Evaluation and comparison of RMSE from models built on pixels 833 

extracted from algorithmically delineated crowns; (C) difference in performance (RMSE) 834 

between models tested on pixels extracted from field and algorithmically delineated crowns. 835 

Positive values mean that for that comparison model built on automatically delineated crowns 836 

performed better. (D) Coverage of the 95 predictions intervals on held out data for the four 837 
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models (LMA, N, P and C). Dash-dotted line represent the ideal coverage value of 95%. 838 

Figure 4. Example of predictions at the landscape scale for individual tree crowns (ITC) at 839 

Ordway Swisher Biological Station (OSBS). In the center, predictions of tree height for ~2.5 840 

million trees within NEON AOP footprint (215 km2),  plotted in a quantile scale using the viridis 841 

color palette. Cropped images represent a ~1 km2 detail of LMA, %N, %C, and %P predictions 842 

at scale. Expected values are presented on a quantile scale using a spectral color palette (with 843 

lower values in red, and higher values in blue). Range of the 95% probability intervals for the 844 

same area are presented on the intensity scale of blues (with lower values in white, and higher 845 

values in deep blue). 846 

 847 
Figure 5. Leaf chemical distributions and relationship with tree height on a random sample of 848 

100,000 derived individual tree crowns (ITCs). On the top row, comparison between 849 

distributions of C, LMA, %P, and %N for the two sites, OSBS (blue), and TALL (yellow). 850 

Vertical dotted lines represent the average for the site. Rug plots on the x-axis represent the 851 

marginal distribution of OSBS and TALL data between the minimum and maximum range of 852 

derived observations. On the lower row, example of relationship between tree height and the 853 

same three leaf chemical traits: from left to right, LMA, %N, %P. Linear trends and 95CI 854 

ellipses are represented for each relationship and site, following the same color scheme as 855 

above.  856 
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 859 

860 

Figure 1. Workflow of the pipeline following Unified Modeling Language (UML). Left side 861 

shows the method to build and test three modeling approaches: PBM (pixel-based model), EPBS 862 

(ensemble of pixel-based models), CEAM (crown ensemble averaged model). Right side 863 

represents the part of the pipeline dealing with scaling, fusion, and public distribution of derived 864 

data. NEON L3 products fused to the derived traits data are: Aspect (DP3.30025.001), Elevation 865 

(DP3.30024.001), and Slope (DP3.30025.001). 866 
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869 

Figure 2. Comparison between observed and predicted tree structural traits for algorithmically 870 

delineated crowns corresponding to ground delineated ITCs: (A) tree crown height (m), (B) tree 871 

diameter at breast height (cm), and (C) tree crown area (m2). Yellow and blue points represent 872 

OSBS and TALL site data points respectively. Black diagonal is the 1:1 line. 873 
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 877 
Figure 3. Model evaluation and comparison of pixel based (SPM, red), ensemble pixels (EPBM, 878 

grey), crown spectra average (CAS, yellow), and crown ensemble average (CEAM, blue) 879 

predictions on an independent test set of 24 observed crowns for %P, LMA, %N and %C. (A) 880 

Evaluation and comparison of RMSE from models built on pixels extracted from ground 881 

delineated crowns; (B) Evaluation and comparison of RMSE from models built on pixels 882 

extracted from algorithmically delineated crowns; (C) difference in performance (RMSE) 883 

between models tested on pixels extracted from field and algorithmically delineated crowns. 884 

Positive values mean that for that comparison model built on automatically delineated crowns 885 

performed better. (D) Coverage of the 95 predictions intervals on held out data for the four 886 

models (LMA, N, P and C). Dash-dotted line represent the ideal coverage value of 95%. 887 

 888 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2020. ; https://doi.org/10.1101/556472doi: bioRxiv preprint 

https://doi.org/10.1101/556472
http://creativecommons.org/licenses/by-nc/4.0/


 

45
 

889 
 890 

Figure 4. Example of predictions at the landscape scale for individual tree crowns (ITC) at 891 

Ordway Swisher Biological Station (OSBS). In the center, predictions of tree height for ~2.5 892 

million trees within NEON AOP footprint (215 km2), plotted in a quantile scale using the viridis 893 

color palette. Cropped images represent a ~1 km2 detail of LMA, %N, %C, and %P predictions 894 

at scale. Expected values are presented on a quantile scale using a spectral color palette (with 895 

lower values in red, and higher values in blue). Range of the 95% probability intervals for the 896 

same area are presented on the intensity scale of blues (with lower values in white, and higher 897 

values in deep blue). 898 
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900 

Figure 5. Leaf chemical distributions and relationship with tree height on a random sample of 901 

100,000 derived individual tree crowns (ITCs). On the top row, comparison between 902 

distributions of C, LMA, %P, and %N for the two sites, OSBS (blue), and TALL (yellow). 903 

Vertical dotted lines represent the average for the site. Rug plots on the x-axis represent the 904 

marginal distribution of OSBS and TALL data between the minimum and maximum range of 905 

derived observations. On the lower row, example of relationship between tree height and the 906 

same three leaf chemical traits: from left to right, LMA, %N, %P. Linear trends and 95CI 907 

ellipses are represented for each relationship and site, following the same color scheme as 908 

above.  909 
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