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Abstract 19 

Circular RNAs (circRNAs) are evolutionarily conserved RNA species that are formed when exons ‘back-splice’ 20 

to each other. Current computational algorithms to detect these back-splicing junctions produce divergent 21 

results, and hence there is a need for a method to distinguish true positive circRNAs. To this end, we devel-22 

oped ACValidator (Assembly based CircRNA Validator) for in silico validation of circRNAs. ACValidator ex-23 

tracts reads from a user-defined window on either side of the circRNA junction and assembles them to gen-24 

erate contigs. These contigs are aligned against the circRNA sequence to find contigs spanning the back-25 

spliced junction. When evaluated on simulated datasets, ACValidator achieved over 80% sensitivity and spec-26 

ificity on datasets with an average of 10 circRNA-supporting reads and with read lengths of at least 100 bp. In 27 

experimental datasets, ACValidator produced higher validation percentages for samples treated with 28 

ribonuclease R compared to non-treated samples. Our workflow is applicable to non-polyA-selected RNAseq 29 

datasets and can also be used as a candidate selection strategy for experimental validations. All workflow 30 

scripts are freely accessible on our github page https://github.com/tgen/ACValidator along with detailed in-31 

structions to set up and run ACValidator. 32 

  33 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2019. ; https://doi.org/10.1101/556597doi: bioRxiv preprint 

https://doi.org/10.1101/556597
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

Author summary 34 

Circular RNAs (circRNAs) are a recent addition to the class of non-coding RNAs and are produced when exons 35 

‘back-splice’ and form closed circular loops. Although several computational algorithms have been devel-36 

oped to detect circRNAs from RNA sequencing (RNAseq) data, they produce divergent results. We hence de-37 

veloped the software Assembly based Circular RNA Validator (ACValidator) as an orthogonal strategy to sep-38 

arately validate predicted circRNAs in silico. ACValidator takes as input a sequence alignment mapping (SAM) 39 

file and the circRNA coordinate(s) to be validated. Reads surrounding the circRNA junction are extracted 40 

from the SAM file and assembled to generate contigs. These contigs are then aligned against the circRNA 41 

sequence to identify contigs that span the back-spliced junction. We evaluated our workflow on simulated as 42 

well as experimental datasets to demonstrate the utility of our approach. ACValidator is implemented in py-43 

thon and is highly computationally efficient, with a run time of less than 2 minutes for an 8 GB SAM file. This 44 

workflow is applicable to non-polyA-selected RNAseq datasets and can also be used as a candidate selection 45 

strategy for experimental validations.  46 
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Introduction  47 

Circular RNAs (circRNAs) represent a large class of ubiquitously expressed non-coding RNAs that are formed 48 

when exons ‘back-splice’ to each other. The advent of high throughput RNA sequencing (RNAseq) technolo-49 

gies and bioinformatics algorithms has facilitated the identification of thousands of circRNAs in multiple cell 50 

and tissue types [1-4]. These studies have found that circRNAs are highly abundant and evolutionarily con-51 

served, as well as exhibit cell type- and developmental stage-specific expression. CircRNAs are also more sta-52 

ble than linear RNAs since they are covalently closed loops without 5’/3’ termini or a polyadenylated tail. 53 

Furthermore, studies investigating their functional relevance have revealed that circRNAs can act as miRNA 54 

regulators [3, 5-7], decoys to RNA binding proteins [8], and regulators of parental gene transcription [9].  55 

Several computational tools have been developed to identify these back-splicing events in RNAseq data. 56 

Strategies employed by these computational tools to identify circRNAs include: 1) a pseudo-reference-based 57 

strategy, which is used by KNIFE [10]; and 2) a fragment-based strategy, which is used by find_circ [3], 58 

CIRCexplorer [11], Mapsplice [12] and DCC [13]. While KNIFE constructs a pseudo-reference of all possible 59 

out-of-order exons to align reads against, fragment-based strategies detect circRNAs based on the mapping 60 

information of a split read’s alignment to the reference genome [14]. When segments of a split read align to 61 

the reference in a non-colinear order, they are marked as potential circRNA candidates. Apart from these 62 

strategies, CIRI uses CIGAR (concise idiosyncratic gapped alignment report) signatures in the alignment file to 63 

identify circRNAs [15].  64 

Tool comparison studies have revealed that existing circRNA detection algorithms produce divergent re-65 

sults due to the use of different aligners, heuristics and filtering criteria [16, 17]. Hence, there is a need for an 66 

in silico validation approach that can distinguish true versus false positive circRNAs identified using these al-67 

gorithms. To this end, we developed ACValidator (Assembly based Circular RNA Validator), which can be 68 

used as an in silico validation strategy as well as a candidate selection tool for experimental validation. While 69 

existing approaches focus on detection of circRNAs, our approach performs in silico validation of circRNAs 70 
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detected using these existing approaches. ACValidator first extracts reads from a fixed window on either side 71 

of the circRNA junction of interest from the alignment file and assembles them to generate contigs. These 72 

contigs are then evaluated for alignment against the circRNA junction sequence. We defined four different 73 

stringency criteria, ranging from 10 to 60 base pairs (bp) overlap across the junction, to capture as many val-74 

idations as possible. When evaluated on simulated as well as experimental datasets, ACValidator achieves 75 

higher precision and sensitivity in datasets with higher circRNA coverage compared to ones with lower cov-76 

erage. 77 

Design and Implementation 78 

ACValidator takes as input a sequence alignment mapping (SAM) file and the circRNA coordinate(s) to be 79 

validated (Fig 1). ACValidator operates in three phases: (1) extraction and assembly of reads from the SAM 80 

file to generate contigs (2) generation of a pseudo-reference file, and (3) alignment of contigs from phase 1 81 

against the pseudo-reference from phase 2. First, reads are extracted from a user-defined window w on ei-82 

ther side of the given SAM file [(start-coordinate + w) and (end-coordinate - w); where start-coordinate is the 83 

splice acceptor and end-coordinate is the splice donor of the circRNA junction]. Our datasets were run using 84 

two different window sizes, where w = insert size or w = 2 * insert size, in order to capture as many reads 85 

overlapping the circRNA junction as possible, and to understand the effect of window size on the results. Us-86 

ers can adjust this parameter based on their library insert size or read length. The tool thus extracts aligned 87 

reads within w bp on either side of the junction from the SAM file using SAMtools [18]. The extracted reads 88 

are then converted into FASTQs and assembled using the Trinity assembler [19] to generate contigs (FASTA 89 

file). In the second phase, a pseudo-reference of the sequence surrounding the circRNA junction of interest is 90 

generated. This is performed by also extracting w bp from the end and start of the circRNA junction from the 91 

genome reference FASTA file (GRCh37) and concatenating the two sequences from end to end to capture the 92 

sequence on either side of the circular junction. Lastly, the assembled contigs from phase 1 are aligned to 93 

the pseudo-reference from phase 2 using the widely adapted BWA-MEM [20] aligner. Each resulting align-94 
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ment record is then examined to check whether it overlaps with the circRNA junction sequence using four 95 

different stringency criteria. The criteria require the following minimum lengths of alignment on both sides 96 

of the circRNA junction: high-stringency—30 bp (total 60 bp overlap); medium-stringency—20 bp (total 40 97 

bp overlap); low-stringency—10 bp (total 20 bp overlap); and very-low-stringency—5 bp (total 10 bp over-98 

lap). These stringency cut-offs were defined in order to capture as many validations as possible while still 99 

accounting for the extent of overlap between the contig and the circRNA junction sequence, as well as to 100 

assess whether we observe differences in the sensitivity measurements across these cut-offs. 101 

 102 

Fig 1. ACValidator workflow. ACValidator takes as input the sequence alignment mapping (SAM) file and the 103 

circRNA junction coordinate(s) to be validated. In phase 1, reads from either side of the junction within a us-104 

er-defined window (w) are extracted and assembled using Trinity. A pseudo-reference containing the 105 

circRNA sequence of interest is generated from the reference genome in phase 2. The pseudo-reference 106 

consists of w bp from either side of the circRNA junction of interest (solid blue and pink blocks in phase 2). 107 

The broken blue and pink segments represent the remaining portions of the exons that constitute the 108 

circRNA but they are not part of the pseudo-reference.  Lastly, in phase 3, the assembled contigs are aligned 109 

to this pseudo-reference and checked for overlap with the sequence of the junction to be validated. 110 

Datasets used for evaluation 111 

Simulated datasets. We used CIRI-simulator [15] to generate nine synthetic RNAseq datasets that had var-112 

iable average number of supporting reads for circular and linear RNAs (2-10), as well as three different read 113 

lengths (50, 100, 150bp) to evaluate the performance of our workflow (Table 1). CIRI-simulator takes a 114 

FASTA-formatted reference file and a GTF annotation file as input, and generates circular and linear RNA se-115 

quences. Recently, Zeng et al. [17] re-designed this tool to generate synthetic reads for circRNAs deposited in 116 

circBase [21]. We generated simulated datasets with minimum circRNA size of at least 50 bp and insert size 117 

of 300 bp.  Overall, an average of 89,293 circRNAs were generated across these nine simulated datasets. 118 

CIRI-simulator ensures these circRNAs map to locations distributed across the entire genome, thereby elimi-119 

nating any bias associated with genomic location (Fig 2). The generated true positive simulation datasets are 120 
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named using the convention pos_<circRNA_coverage>_<linearRNA_coverage>_ <read_length> (pos: posi-121 

tive; Table 1). 122 

 123 

Table 1. Simulation dataset parameters. All simulation datasets based on data generated from human cere-124 

bellum and diencephalon, SH-SY5Y cells, Hs68 cells, HeLa cells and HEK293 cells. Columns 3, 5, 6 and 7 are 125 

user-defined parameters supplied to CIRI-simulator. Minimum circRNA size used in simulation: 50 bp.  126 

 127 

Simulation 

set 

Simulation  

dataset name 

Average 

# of 

circRNA 

support-

ing reads 

Range of 

# of 

circRNA 

support-

ing reads 

Average # 

of linear 

RNA sup-

porting 

reads 

Read 

length 

(bp) 

Insert 

size 

(bp) 

# of reads 

generated 

Window 

lengths 

tested 

(bp) 

Overlapping 

base  

thresholds 

tested (bp) 

1 pos_10_2_150 10 3 to 27 2 150 300  18,768,200  300, 600 60, 40, 20, 10

2 pos_10_2_100 10 2 to 25 2 100 300  28,024,890  300, 600 60, 40, 20, 10

3 pos_10_2_50 10 2 to 26 2 50 300  55,794,356  300, 600 60, 40, 20, 10

4 pos_5_5_150 5 2 to 17 5 150 300  10,867,166  300, 600 60, 40, 20, 10

5 pos_5_5_100 5 2 to 16 5 100 300  16,173,002  300, 600 60, 40, 20, 10

6 pos_5_5_50 5 2 to 17 5 50 300  32,090,962  300, 600 60, 40, 20, 10

7 pos_2_10_150 2 2 to 10 10 150 300  7,209,692  300, 600 60, 40, 20, 10

8 pos_2_10_100 2 2 to 12 10 100 300  10,688,368  300, 600 60, 40, 20, 10

9 pos_2_10_50 2 2 to 11 10 50 300  21,121,578  300, 600 60, 40, 20, 10

Pos: positive 128 

 129 

Fig 2. Chromosomal distribution of simulated datasets. Simulation datasets were generated using CIRI-130 

simulator, which ensures circRNAs are simulated across all chromosomes. The distribution of generated 131 

circRNAs across the different chromosomes is similar to the chromosomal size distribution. 132 

 133 

 134 
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Experimental datasets. To test ACValidator on experimental data, we analyzed six pairs of ribonuclease R 135 

(RNase R)-treated and non-treated samples (N = 12, Table 2). RNase R is an exoribonuclease that selectively 136 

digests linear RNA but leaves behind circular structures, and it is hence widely used for circRNA enrichment. 137 

Three of these sample pairs were downloaded from the sequence read archive (SRA) [22] and were generat-138 

ed from HeLa and Hs68 cell lines treated or not treated with RNase R. The remaining three sample pairs were 139 

generated in-house from total RNA extracted from the middle temporal gyrus (MG) of three human healthy 140 

elderly control brains (manuscript under preparation). All data generated through this study are accessible 141 

through the European Genome Archive (EGA; accession EGAS00001003128). 142 

 143 

Table 2. Summary of experimental, non-simulated datasets used in this study.  144 

 145 

Data 

source Dataset 

Cell line/tissue 

type 

RNase R 

treated? 

Number of 

reads 

Number of 

mapped reads 

SRA SRR1636985  HeLa Yes 26,619,490 24,370,337 

SRR1637089 HeLa No 89,866,900 63,842,205 

SRR1636986 HeLa Yes 47,011,426 42,027,801 

SRR1637090 HeLa No 71,370,620 53,957,685 

SRR444974 Hs68 Yes 316,611,710 271,345,091 

SRR444655 Hs68 No 314,106,316 109,706,923 

In-house  MG_1 MTG Yes 107,609,934 96,300,242 

generated MG_5 MTG No 96,215,516 86,315,844 

MG_2 MTG Yes 96,840,790 86,560,619 

MG_6 MTG No 101,609,754 90,750,108 

MG_3 MTG Yes 111,576,344 100,264,691 

  MG_7 MTG No 111,314,114 98,894,498 

 146 

SRA: Sequence Read Archive 147 
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Polymerase chain reaction validation  148 

Polymerase chain reaction (PCR) was performed to experimentally validate the presence of five most highly 149 

expressed circRNA candidates that were in silico validated by ACValidator. cDNA was synthesized from 500 150 

ng of RNA isolated from the MG of the three tissue samples of interest using SuperScript II reverse transcrip-151 

tase (ThermoFisher Scientific, Waltham, MA). Primers were designed to target the flanking exons of selected 152 

circRNA junction sites using Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/). PCR conditions were optimized for 153 

each primer set and product sizes were assessed on a TapeStation 4200 instrument (Agilent technologies, 154 

Santa Clara, CA).  155 

Software requirements/dependencies 156 

ACValidator can be implemented on a Linux-based high-performance computing cluster and has minimal re-157 

quirements and dependencies. These requirements include the following: (a) Trinity v2.3.1 or above; (b) Py-158 

thon v2.7.13 or higher with the pysam package installed; (c) Bowtie2 v2.3.0 [23] or above; (d) SAMtools v1.4 159 

or above and (e) BWA v0.7.12 or above.  160 

Results and discussion 161 

Performance evaluation of ACValidator using simulated data 162 

To evaluate ACValidator, we generated nine simulation datasets with varying circular, linear RNA coverages 163 

and read lengths (Table 1). Since highly expressed circRNAs are more often of interest, we evaluated the top 164 

100 most highly expressed circRNAs from each dataset, similar to a previous study [16].  We also selected 165 

100 random non-circRNA coordinates as false positive candidates from each dataset (S1 Table). We replicat-166 

ed our analysis using two different window sizes: 1) w = insert size (300 bp) 2) w = 2 * insert size (600 bp) 167 

(section: Design and implementation).  168 
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We observed that simulations with higher circRNA coverages and longer read lengths achieved higher sen-169 

sitivity (Fig 3). Specifically, when using w = 300 and overlap cut-off of 10 bp between the contig and pseudo-170 

reference, simulations 1 and 2, which have the highest circRNA coverage (10) and read lengths (150 bp, 100 171 

bp) achieved the highest sensitivity of 90% and 89%, respectively. However, for simulation 3 where the read 172 

length was only 50 bp, the sensitivity fell to 38%. As the circRNA coverage decreases, the sensitivity also 173 

gradually reduces to 81% and below, with a further reduction in sensitivity to 46% and 28% observed for da-174 

tasets with shorter read lengths (simulations 6 and 9). In datasets with lower circRNA coverage and/or short-175 

er read length, this reduction in sensitivity was because Trinity did not find sufficient reads to assemble 176 

across these regions and hence was not able to generate contigs. We detect a similar pattern when using w = 177 

600 and did not observe a drastic difference in sensitivity between the two window sizes (S1 Table). Further, 178 

we calculated the F1 score [F1 = (2 * Precision * Sensitivity)/ (Precision + Sensitivity)], a measure of accuracy, 179 

which indicates how well a tool achieves sensitivity and precision simultaneously (Fig 3). We found the re-180 

sults to be consistent with sensitivity measurements, indicating that higher circRNA coverage coupled with 181 

longer read length yields better performance of our approach. 182 

 183 

Fig 3. ACValidator performance on top 100 circRNAs and 100 non-circRNA candidates from simulated da-184 

tasets. The 100 candidate circRNA junctions with the highest number of supporting reads were considered 185 

true positive (TP) and 100 randomly selected non-circRNA junction coordinates were considered true nega-186 

tive (TN). The simulation datasets are described in Table 1 and each simulation dataset (x-axis) is named us-187 

ing the naming convention: pos_<circRNA_coverage>_<linearRNA_coverage>_<read_length> (pos: positive). 188 

The panels represent ACValidator performance on top 100 TP candidates when using an overlap cut-off of 10 189 

bp between the contig and pseudo-reference, and a) window size = insert size (300 bp) and b) window size = 190 

2 * insert size (600 bp). P =TP/(TP+FP); S = TP/(TP + FN); Sp = TN/(TN+FP); F1 = (2 * P * S)/ (P + S). FP, false 191 

positives; FN, false negatives; S, sensitivity; Sp, specificity; P, precision.  192 

 193 

    194 
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We extended our analysis to the top 200 most highly expressed as well as bottom 200 least expressed can-195 

didates (S2, S3 Tables respectively), and observed a similar trend in performance (Fig 4). Additionally, we 196 

evaluated sensitivity using four stringency thresholds for the number of overlapping bases (30 bp, 20 bp, 10 197 

bp and 5 bp; section: Design and implementation). For the top 200 highly expressed circRNAs, we achieved 198 

sensitivity of over 80% for simulation datasets 1 and 2, which had the highest circRNA coverage (10) and read 199 

lengths (150 and 100), using both window sizes (300 and 600). However, we did not observe a notable differ-200 

ence in the number of validations across the different thresholds for the number of overlapping bases, with 201 

an average of 86.8% validation for simulation set 1 (pos_10_2_150), 71.5% validation for simulation set 7 202 

(pos_2_10_150) and 27.3% validation for simulation set 9 (pos_2_10_50; Fig 4a, S2 Table). For the bottom 203 

200 least expressed candidates, lower stringency criteria resulted in more validations than the higher strin-204 

gency criteria, with an average of 19.3% and 10.1% validation for the very low and high stringencies respec-205 

tively. The overall validation percentages were below 45% across all the simulation datasets for these bottom 206 

200 circRNA candidates (Fig 4b, S3 Table). 207 

 208 

Fig 4. ACValidator performance on the top and bottom 200 circRNAs from simulated datasets. The (a) top 209 

and (b) bottom 200 candidates based on the number of circRNA supporting reads were evaluated using 210 

ACValidator, with two different window sizes, 300 and 600 bp. HS, high stringency; MS, medium stringency; 211 

LS, low stringency; VLS, very low stringency.  212 

 213 

Performance evaluation of ACValidator using experimental data 214 

We next evaluated ACValidator using experimental, non-simulated datasets generated from human tissues 215 

or cell lines (Table 2). Since we do not know the true positive circRNAs for these datasets, we ran ACValidator 216 

on circRNAs that were called in both the RNase R-treated and non-treated datasets using six existing circRNA 217 

detection algorithms, find_circ, CIRI, Mapsplice, KNIFE, DCC and CIRCexplorer. Each tool was run using 218 

RNAseq aligners and parameter settings as recommended by the respective developers. We considered 219 

those candidates that were called by at least three of the six tools in both the treated and non-treated sam-220 
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ples, and not depleted following RNase R enrichment, as true circRNAs (S4 Table). A circRNA candidate is de-221 

termined to be not depleted if the number of spliced reads per billion mapping (SRPBM; calculated as [num-222 

ber of circRNA supporting reads/total mapped reads] X 10
9
) [2] does not decrease following enrichment. We 223 

thus ran ACValidator on these non-depleted potential true circRNA candidates for evaluation.  224 

Overall, except for the SRR1636986-SRR1637090 pair, over 89% of the candidates that were called in both 225 

the treated and non-treated pairs were not depleted (i.e., SRPBM after RNase R treatment > SRPBM prior to 226 

treatment). Among these non-depleted candidates, ACValidator was able to construct contigs spanning the 227 

circRNA junction for more than 75% of them for the RNase R-treated samples and 47-57% of them for the 228 

non-treated samples using the medium-stringency criteria and both the window sizes (Table 3). This in-229 

creased validation rate for the treated samples is expected since RNase R treatment enriches for circRNAs 230 

and hence a higher number of back-splice junction supporting reads was observed. Further, higher numbers 231 

of validated circRNAs were detected using lower stringency cut-offs for alignment overlap between contigs 232 

and junction sequences (Table 3, S4 Table). As observed in the simulation datasets, the different window siz-233 

es did not notably affect the number of validations among these experimental datasets (Table 3). Fig 5 shows 234 

an example of a circRNA [2, 24] that was validated by ACValidator in an MG treated and non-treated pair 235 

(reads from this sample aligning to the reference are shown in S1 Fig).  236 

 237 

Fig 5. Integrated genomics viewer (IGV) screen shot of a circRNA candidate (chr11:117,023,156-238 

117,034,608) Assembled contigs generated by ACValidator on RNase R-treated (top panel) and non-treated 239 

(bottom panel) human middle temporal gyrus (MG) samples, aligned to the corresponding pseudo-reference. 240 

This circRNA was detected in both the treated and non-treated samples by at least three of the six existing 241 

circRNA prediction algorithms, and was not depleted following RNase R treatment. The circRNA junction of 242 

interest is at 300 bp, and pink bars that span over this junction represent the contigs that validate the junc-243 

tion (colored segments at the ends of contigs represent soft-clipped bases; arrows indicate the generated 244 

contigs that overlap with the circRNA junction). Reads from these samples aligned to the reference are 245 

shown in S1 Fig. 246 
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Table 3. Summary of ACValidator results on experimental datasets. The “# overlap with pair” column lists 247 

the number of circRNAs in common between the RNase R-treated and non-treated samples; “# not deplet-248 

ed” is the number of circRNAs from the overlap whose normalized read counts, i.e., spliced reads per billion 249 

mapping (SRPBM) value does not reduce following RNase R-treatment (i.e., SRPBM after treatment > SRPBM 250 

before treatment). 251 

 Sample # overlap # not % validated when w = insert size % validated when w = 2* insert size 

with pair depleted HS MS LS VLS HS MS LS VLS 

SRR1636985  1,356 1,243 73.53 78.52 79.00 79.57 73.45 78.84 79.57 80.13 

SRR1637089 1,356 1,243 46.34 49.56 50.20 51.25 44.97 49.88 50.52 51.65 

SRR1636986 780 594 79.46 84.68 85.35 86.03 80.81 86.36 87.21 87.71 

SRR1637090 780 594 48.48 54.21 55.39 55.56 48.32 55.22 56.23 56.57 

SRR444974 953 864 91.55 93.63 93.98 94.33 89.93 92.01 92.48 92.82 

SRR444655 953 864 51.74 54.98 55.21 56.60 53.36 56.94 57.18 58.91 

MG_1 1,806 1,691 72.80 77.05 77.94 78.83 71.67 77.35 78.00 78.71 

MG_5 1,806 1,691 41.40 48.14 48.97 49.56 41.34 48.79 49.67 50.38 

MG_2 1,430 1,331 71.90 76.86 77.46 78.14 69.72 76.11 76.63 77.31 

MG_6 1,430 1,331 40.50 47.71 48.31 49.29 40.35 47.03 47.63 48.76 

MG_3 1,292 1,148 71.95 76.74 77.53 78.48 70.38 75.87 76.83 77.70 

MG_7 1,292 1,148 44.08 51.48 52.26 53.40 44.51 51.39 52.18 53.57 

 252 

HS, high stringency; MS, medium stringency; LS, low stringency; VLS, very low stringency. 253 

    254 

In order to further evaluate the utility of our approach, we next compared the results from each individual 255 

tool to those from ACValidator. For this analysis, we used the top 100 most highly expressed candidates from 256 

among those we considered as true positives for these experimental datasets (called by at least three of six 257 

tools, in both treated and non-treated samples, and SRPBM after RNase R treatment > SRPBM before treat-258 

ment; S4 Table). Among the in-house treated MG samples, we observed that except for CIRCexplorer and 259 

Mapsplice, ACValidator was able to in-silico validate a higher number of circRNAs, using the medium strin-260 

gency criteria (20 bp overlap on either side of circRNA junction), than was detected individually by the other 261 
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tools (Table 4). Among the SRA samples however, our approach validated a fewer number of circRNAs than 262 

were detected by the individual tools except find_circ. Thus, results may vary depending on which individual 263 

tool is used for circRNA detection. Notably, the goal of ACValidator is to narrow down a list of potential high-264 

confidence circRNAs and not for comprehensive and de novo detection of circRNAs. 265 

 266 

Table 4: ACValidator and other tools results on top 100 candidates from experimental datasets. The top 267 

100 most highly expressed candidates were selected from the list of circRNAs called by at least three of six 268 

tools, in both treated and non-treated samples, and having SRPBM after RNase R treatment > SRPBM before 269 

treatment. Each <tool_name>_count column lists the number of circRNAs among the top 100 that were de-270 

tected by the tool. Similarly, HS, MS, LS and VLS_count columns list the number of circRNAs among the top 271 

100 that were validated by ACValidator using those stringency thresholds. 272 

 273 

Sample 

CIRI_ 

count 

CIRCexplorer

_count 

findCirc_

count 

Mapsplice_ 

count 

KNIFE_ 

count 

DCC_ 

count 

HS_ 

count 

MS_ 

count 

LS_ 

count 

VLS_ 

count 

SRR1636985 99 93 89 97 92 92 94 97 97 97 

SRR1637089 99 92 87 97 92 92 74 78 79 79 

SRR1636986 99 95 84 96 95 92 91 91 93 94 

SRR1637090 95 88 57 85 95 83 71 77 78 78 

SRR444974 99 97 91 97 95 95 97 98 98 98 

SRR444655 99 97 76 38 95 90 84 84 84 84 

MG_1 40 96 85 99 91 88 91 94 94 94 

MG_5 55 93 72 98 91 80 77 83 83 83 

MG_2 35 96 90 100 90 90 89 93 93 93 

MG_6 50 92 68 98 90 82 75 81 81 81 

MG_3 44 96 83 99 88 88 90 93 94 94 

MG_7 40 94 79 99 88 85 84 88 91 91 

 274 

 275 
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PCR validation of identified circRNAs 276 

We performed experimental validations for the top five most highly expressed circRNA candidates that were 277 

in silico validated by ACValidator and that were detected by all six tools in each sample. Since we were inter-278 

ested in validating the presence of the circRNA and not their abundance, we performed PCR validations on 279 

these selected candidates. Each of our treated-non-treated pair is generated from the same donor and 280 

hence, we ran validations on the non-RNase R treated cDNA from each donor. For three of the candidates, 281 

ACValidator results were experimentally validated (S2 Fig). For the candidate circRNA at chr10:116,879,948-282 

116,931,050, ACValidator validated the circRNA junction in two of three samples, while chr9:113,734,352-283 

113,735,838 and chr5:38,523,520-38,530,768 were validated in all three samples using all stringency cut-284 

offs. For the remaining two candidates, we observed evidence of validation but because differently sized PCR 285 

products were generated, we could not determine the exact product size although it is possible that multiple 286 

circRNA species may be present.  287 

 288 

Computational cost overview 289 

We ran our evaluations on a linux-based high-performance computing cluster running CentOS version 7. As 290 

expected, the computational cost of our approach directly correlates with the number of reads in the input 291 

sample. The only rate-limiting step in using ACValidator is read alignment to generate the SAM file, which is 292 

performed prior to starting the workflow. The python validation script following this step requires less than 293 

two minutes of runtime for an input SAM file of approximately 8 GB, thus making our approach highly com-294 

putationally efficient.  295 

 296 

Availability and future directions 297 

We present ACValidator, a novel bioinformatics workflow, which can be used to validate circRNA candidates 298 

of interest in silico and thus helps to identify true positive candidates. This workflow is applicable to non-299 
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polyA-selected RNAseq datasets and can be used to validate circRNAs from various sample types and diseas-300 

es. When different circRNA detection algorithms identify different circRNA candidates, ACValidator can be 301 

used to narrow down specific candidates of interest and thus serve as a circRNA candidate selection tool for 302 

experimental validations or functional studies. ACValidator is freely available on our github page: 303 

https://github.com/tgen/ACValidator, along with detailed instructions to set up and run the tool (also availa-304 

ble as S1 Text). 305 

When evaluated on simulated datasets, ACValidator demonstrates improved performance when higher 306 

numbers of circRNA supporting reads are available along with longer read lengths of the sequencing library. 307 

When tested on circRNA candidates that were not depleted between RNase R-treated and non-treated sam-308 

ple pairs, we observed a higher validation rate in treated samples, as expected, since those samples are en-309 

riched for circRNAs. Window size, the region from where reads are extracted for assembly, is an important 310 

parameter for our approach.  Through testing of two different window sizes, one equal to and one twice the 311 

insert size, we did not observe notable differences in the number of validations. Additionally, we applied dif-312 

ferent stringency thresholds based on the extent of contig alignment, but we did not observe notable differ-313 

ences in the number of validated candidates across the different thresholds for highly expressed candidates.  314 

Although our workflow provides a novel approach for in silico validation, we are limited by a few caveats. 315 

Primarily, since our assembly analysis relies on reads that extend across circRNA junctions, we are limited in 316 

our ability to in silico validate circRNAs whose expression may be low, especially in samples that are not en-317 

riched for circRNAs. Secondly, since we are limited by the lack of a gold standard circRNA reference dataset, 318 

we rely on simulation datasets for evaluation of our approach, which are based on informatically predicted 319 

circRNAs detected by various studies and deposited in circBase. Further, since we do not know the true posi-320 

tive events in our experimental datasets, we evaluated candidates that are not depleted by RNase R. Howev-321 

er, it is still not known whether RNase R treatment introduces any bias in circRNA detection, especially since 322 

some circRNAs are sensitive to RNase R [2, 11, 25, 26].  323 
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Future versions of ACValidator will include contig alignment visualization options built into the workflow, 324 

as well as alternative strategies to generate contigs for circRNAs with lower expression levels. As circRNAs 325 

continue to gain attention as an interesting class of non-coding RNAs, development of novel approaches, in-326 

cluding implementation of statistical tests to estimate false discovery rates in circRNA detection, are needed. 327 

Continued progress in improving our understanding of the biology of circRNAs will be necessary for such al-328 

gorithmic development. These findings will be crucial not only for functional analysis, but also for the devel-329 

opment of more accurate circRNA detection algorithms.  330 
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Supporting Information 420 

S1 Fig. Reads from the RNase R-treated (top panel) and non-treated (bottom panel) MG samples, MG_2 and 421 

MG_6 respectively, aligned to the human reference genome (hg19). 422 

S2 Fig. qPCR validation of selected circRNA candidates. The top five most highly expressed circRNA candi-423 

dates that were validated by ACValidator and detected by all the six algorithms were selected for validation. 424 

Among these, ACValidator was able to validate chr10:116,879,948-116,931,050 in two of the three samples, 425 

and chr9:113,734,352-113,735,838 and chr5:38,523,520-38,530,768 in all three samples. Left panel: qPCR of 426 

chr5:38,523,520-38,530,768 (junction 1), expected product size: 130 bp; middle panel: qPCR of 427 

chr10:116,879,948-116,931,050 (junction 2), expected product size: 679 bp; right panel: qPCR of 428 

chr9:113,734,352-113,735,838 (junction 3), expected product size: 76 bp. 429 

S1 Table: Top 100 most highly expressed circRNAs as well as 100 non-circRNA candidates used for 430 

ACValidator evaluation. The positive and negative candidates used for evaluation from each simulation set 431 

are listed in each sheet, which are labeled using the simulation dataset names given in Table 1. Columns D-K 432 

indicate whether each circRNA candidate was validated by ACValidator or not, using different stringency cri-433 

teria and the two window sizes. They are named using the convention “Validated_<stringency crite-434 

ria>_<window size>?”. IS: Insert Size, 2IS: 2 * Insert Size, HS: High stringency, MS: Medium stringency, LS: 435 

Low stringency, VLS: very low stringency 436 

S2 Table: Top 200 most highly expressed circRNAs used for ACValidator evaluation. The candidates used for 437 

evaluation from each simulation set are listed in each sheet along with ACValidator results. Naming conven-438 

tions are same as in S1 Table. 439 

S3 Table: Bottom 200 least expressed circRNAs used for ACValidator evaluation. The candidates used for 440 

evaluation from each simulation set are listed in each sheet along with ACValidator results. Naming conven-441 

tions are same as in S1 Table. 442 
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S4 Table: Non-depleted circRNA candidates in RNase R treated-non-treated pairs (experimental datasets), 443 

used for ACValidator evaluation. The candidates used for evaluation from each sample are listed in each 444 

sheet along with ACValidator results. Naming conventions are same as in S1 Table. SRPBM: Spliced reads per 445 

billion mapping 446 

S1 Text: Detailed instructions to set up and run ACValidator. 447 
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