Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Excitatory and inhibitory intracortical circuits for orientation and direction selectivity

View ORCID ProfileL. Federico Rossi, View ORCID ProfileKenneth D. Harris, View ORCID ProfileMatteo Carandini
doi: https://doi.org/10.1101/556795
L. Federico Rossi
1UCL Institute of Ophthalmology, University College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Federico Rossi
Kenneth D. Harris
2UCL Institute of Neurology, University College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kenneth D. Harris
Matteo Carandini
1UCL Institute of Ophthalmology, University College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Matteo Carandini
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The computations performed by a neuron arise from the functional properties of the circuits providing its synaptic inputs. A prime example of these computations is the selectivity of primary visual cortex (V1) for orientation and motion direction. V1 neurons in layer 2/3 (L2/3) receive input mostly from intracortical circuits1, which involve excitation2-9 and inhibition10-12. To understand how an L2/3 neuron achieves its selectivity, therefore, one must characterize the functional organization of both its excitatory and inhibitory presynaptic ensembles. Here we establish this organization, and show how it predicts orientation selectivity and reveals a new cortical circuit for direction selectivity. We identified the presynaptic partners of pyramidal neurons in mouse V1 through rabies monosynaptic tracing1,13, and imaged the functional properties of the postsynaptic neuron and of its presynaptic ensemble. Excitatory presynaptic neurons were predominantly tuned to the postsynaptic neuron’s preferred orientation. Excitation and inhibition described an inverted Mexican hat, with inhibitory presynaptic neurons densest near the postsynaptic neuron and excitatory ones distributed more distally. Excitation and inhibition also differed in laminar origin: inhibitory presynaptic neurons concentrated in L2/3 while excitatory ones dominated in L4. The distribution of excitatory neurons in visual space was coaxial with the postsynaptic neuron’s preferred orientation and lay upstream of the neuron’s preferred direction. Inhibitory presynaptic neurons, instead, clustered more symmetrically around the postsynaptic neuron and favoured locations downstream of its preferred direction. These results demonstrate that L2/3 neurons obtain orientation selectivity from co-tuned neurons in L4 and beyond, and enhance it by contrasting an elongated excitatory input with a concentric inhibitory input. Moreover, L2/3 neurons can obtain direction selectivity through visually offset14 excitation and inhibition. These circuit motifs resemble those seen in the thalamocortical pathway15-20 and in direction selective cells in the retina21,22, suggesting that they are canonical across brain regions.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted February 21, 2019.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Excitatory and inhibitory intracortical circuits for orientation and direction selectivity
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Excitatory and inhibitory intracortical circuits for orientation and direction selectivity
L. Federico Rossi, Kenneth D. Harris, Matteo Carandini
bioRxiv 556795; doi: https://doi.org/10.1101/556795
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Excitatory and inhibitory intracortical circuits for orientation and direction selectivity
L. Federico Rossi, Kenneth D. Harris, Matteo Carandini
bioRxiv 556795; doi: https://doi.org/10.1101/556795

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (3482)
  • Biochemistry (7329)
  • Bioengineering (5301)
  • Bioinformatics (20212)
  • Biophysics (9985)
  • Cancer Biology (7706)
  • Cell Biology (11273)
  • Clinical Trials (138)
  • Developmental Biology (6425)
  • Ecology (9923)
  • Epidemiology (2065)
  • Evolutionary Biology (13292)
  • Genetics (9353)
  • Genomics (12559)
  • Immunology (7681)
  • Microbiology (18964)
  • Molecular Biology (7421)
  • Neuroscience (40915)
  • Paleontology (298)
  • Pathology (1226)
  • Pharmacology and Toxicology (2130)
  • Physiology (3145)
  • Plant Biology (6842)
  • Scientific Communication and Education (1271)
  • Synthetic Biology (1893)
  • Systems Biology (5299)
  • Zoology (1086)