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Abstract 

Fast and slow decisions exhibit distinct behavioral properties, such as the presence of decision 

bias in faster but not slower responses. This dichotomy is currently explained by assuming that 

distinct cognitive processes map to separate brain mechanisms. Here, we suggest an alternative, 

single-process account based on the stochastic properties of decision processes. Our 

experimental results show perceptual biases in a variety of tasks (specifically: learned priors, tilt 

illusion, and tilt aftereffect) that were much reduced with increasing reaction time. To account 

for this, we consider a simple yet general explanation: prior and noisy decision-related evidence 

are integrated serially, with evidence and noise accumulating over time (as in the standard drift 

diffusion model). With time, owing to noise accumulation, the prior effect is predicted to 

diminish. This illustrates that a clear behavioral separation – presence vs. absence of bias – may 

reflect a simple stochastic mechanism. 

 

Highlights 

 Perceptual and decisional biases are reduced in slower decisions. 

 Simple mechanistic single-process account for slow bias-free decisions. 

 Signal detection theory criterion is ~zero in decision times>median. 
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Introduction 

A powerful idea in the neurosciences is that decision makers, brains included, integrate evidence 

over time to reduce error (Gold & Shadlen, 2007; Ratcliff, Smith, Brown, & McKoon, 2016). 

Theories adhering to this principle, such as drift diffusion models (DDM, Ratcliff, 1978), offer 

remarkable explanatory power, notably predicting human reaction-time on decision tasks 

(Ratcliff & McKoon, 2008), and accounting for neuronal activity in brain regions correlated with 

decision making (Gold & Shadlen, 2007). In such integrators, the initial state of accumulation is 

set by prior evidence favoring (biasing) one decision outcome over others (Summerfield & De 

Lange, 2014), implementing an approximation of Bayes’ rule (Moran, 2015). The prediction 

observed and investigated here is that this initial bias, strong with fast decisions, is much 

reduced, in some cases eliminated, with slow decisions. 

Prior-dependent bias 

When faced with a difficult visual discrimination task in which one of the objects is more 

probable, observers tend to choose the more frequent alternative. For example, consider a task 

involving a fine discrimination between the orientations -0.5° and +0.5°, using briefly presented 

stimuli. This is a challenging task, in the sense that our observers could not always provide the 

correct “+” response for the “+” stimulus, showing P(answer | ) 0.73   , and also occasionally 

providing the “+” response incorrectly, showing P(answer | ) 0.35    (mean, SEM ≤0.04; N=7 

observers). The response bias in the task, which is the overall preference for responding “+” over 

“-“, can be quantified by comparing the average of these two conditional probabilities to 0.5. 

Here the average shows 0.54, slightly above 0.5, indicating a small bias in favor of the “+” 

response. (This bias may reflect a small non-significant deviation between the perceived and 

physical orientation in the average observer; t(6)=1.59, p=0.16.) Importantly, manipulating the 

proportion of +0.5° to be higher than that of -0.5° (75% of trials) leads observers to being more 

likely to provide the “+” response for both alternatives, which showed P( | ) 0.80    and 

P( | ) 0.44   , whereas a low proportion of +0.5° (25% of trials) leads to an opposite bias, 

which showed P( | ) 0.65    and P( | ) 0.30    (mean, SEM ≤0.04; an average change from 

25% to 75% of M=0.15 with t(6)=5.10, p=0.002, two-tailed paired t-test). Overall, these results 
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illustrate the classic finding that decision bias is shifted in accordance with learned task priors 

(Gorea & Sagi, 2000; Green & Swets, 1966). 

Next, we split the decision data into two equal-quantity bins, around the median reaction time 

(RT, reflecting the time it took the observer to provide a response; this was done separately for 

each experimental block and for each observer). The results showed that the overall bias 

measured across all trials reflects a strong bias in the faster trials (M=0.31, t(6)=7.91, p=0.0002, 

Fig. 1A) and remarkably no bias in the slower trials (M=-0.02, t(6)=-0.63, p=0.55, Fig. 1B). To 

better quantify this observation, we used a probit scale for the probability measurements, i.e., 

probabilities were transformed using z( ) , the inverse cumulative distribution function of the 

standard normal distribution (using four equal-quantity bins, Fig. 1C). This description of 

behavioral data permits convenient visualization in terms of measures motivated by signal 

detection theory (SDT) for bias and accuracy (Green & Swets, 1966): 

(Eq. 1)       1 2Bias z P | ;prior z P | ;priors s     

(Eq. 2)       ' z P | z P |d        

 

Fig. 1 – Prior-dependent bias disappears with decision time. In the experiments reported here, 

observers performed a visual discrimination task in which one of the objects is more probable   

(a prior of 25%-75%). (A and B) Receiver operating characteristic (ROC) plot of the probability 

for correct discrimination as a function of the probability for incorrect discrimination, averaged 

across observers, in reaction times (RTs) that are (A) faster or (B) slower than the median.      

(C and D) Response probability as a function of reaction time, for different priors (colors), and 

different stimuli (line styles), averaged across observers over four equal-quantity bins.             

(C) Discrimination experiment (as in panels A and B). (D) Detection experiment, target-present 

probability indicated by color (75%, 50%, and 25% corresponding to red, gray, and blue, 

respectively). The results showed a significant prior-dependent bias (a change due to color) only 

in fast responses. Error bars are ±1SEM. 
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Specifically, bias (Eq. 1) is the change in response probability to a fixed stimulus s  under 

different priors (the vertical distance between data points of different colors in Fig. 1C; formally 

equivalent to the change in internal criterion, see Supplementary materials). This measure 

showed that the experimental manipulation of priors led to a robust bias in fast, but not slow, 

trials (F(3,18)=43.66, p<0.0001, for the interaction term in a repeated-measures ANOVA of bias 

at the different RT bins, where bias is calculated between the 25% and 75% priors, Fig. S1AB). 

Similarly, accuracy (formally sensitivity or d', Eq. 2) is the change in response probability 

between two stimuli under a fixed prior (the vertical distance between data points of the same 

color with different line styles in Fig. 1C). This measure showed that changes in accuracy were 

small and inconsistent (d’≈1 across priors and decision times, Fig. S1C). 

Next, we consider a classic detection task, whereby observers report whether a visual target is 

present or absent from the display. To experimentally manipulate priors, the proportion of target-

present relative to target-absent trials was changed (from 25% up to 75%). Again, the results 

showed a prior-dependent bias, which was strong in the fast decisions, and almost entirely absent 

in the slow decisions (F(3,24)=32.76, N=9, p<0.0001, Figs. 1D, S1DE). The accuracy showed an 

inconsistent but overall significant reduction with decision time (F(3,24)=7.56, p=0.001; Fig. 

S1F), though not by much (~40% reduction from the fastest to the slowest bin). Overall, in both 

discrimination and detection tasks, a significant change in behavior due to the learned prior was 

restricted to the faster half of the responses. 

Context-dependent bias 

Motivated by the interaction of decision time and bias when manipulating the prior of the 

decision alternatives, we were interested in context-dependent biases, usually considered to be a 

perceptual effect, often considered as visual illusions. Specifically, with perhaps any visual 

property (orientation, luminance, color, motion, size, or facial expression, Clifford & Rhodes, 

2005; Webster, 2011), the contextual value of the property leads to a bias in the reported 

perception of that property. For example, a physical vertical (0°) test may be reported as if it is 

tilted -2° due to a context of +20° surrounding the test (spatial context, Fig. 2A) or viewed before 

the test (temporal context; similarities of spatial and temporal contexts are discussed elsewhere, 

Schwartz, Hsu, & Dayan, 2007). 
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First, we measured the influence of oriented context on a subsequently perceived orientation (tilt 

aftereffect, TAE). To verify that the decision time is not confounded with the presentation 

duration of the test (Kaneko, Anstis, & Kuriki, 2017; Wolfe, 1984), we used briefly presented 

stimuli (50 ms). The results showed standard effect magnitudes, with bias opposite to the 

orientation of context. Most importantly, the magnitude of contextual influence was reduced in 

slower decisions (Figs. 2C, S2). Indeed, across test orientations and conditions, the measured 

bias showed about 50% reduction from the fastest to the slowest bin (using 6 bins of 

approximately equal quantity, Figs. 2D, S3; interaction of bias for the vertical test and RT in a 

repeated-measures ANOVA showed fixation: F(5,60)=4.86, N=12, p=0.001, near-periphery: 

F(5,65)=6.93, N=14, p<0.0001, near-periphery non-retinotopic: F(5,65)=2.95, N=14, p=0.02; 

"non-retinotopic" in the sense that the adaptor and the test were presented at different retinal 

positions). Note that unlike the known reduction in the aftereffect magnitude with increased time 

difference between the adapting context and the test (Magnussen & Johnsen, 1986), here the 

involvement of decision mechanisms was measured using a fixed target-to-adapter time by 

analyzing the TAE at different reaction times. 

Next, we measured the influence of oriented surrounding context on the perceived orientation of 

a central test (tilt illusion, TI). When the presentation of the stimulus (test+surround) persisted 

until the observers’ response, the results showed a clear reduction in bias for increased reaction 

times (bias of ~2 at ~550 ms, decreasing to bias=~0.9 at ~2000 ms; F(5,45)=3.98, N=10, 

p=0.005, Figs. 2D, S3). Importantly, when using a fixed presentation duration (200 ms, briefer 

than any decision), the results again showed a reduction in bias with time (bias of ~2.3 at ~500 

ms, decreasing to bias=~1.2 at ~1000 ms; F(5,45)=8.71, N=10, p<0.0001, Figs. 2BD, S3). The 

results indicate that the observed reduction in illusion magnitude is mediated by changes in the 

decision-making processes. 
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The accuracy in the tasks showed an inconsistent and mostly minor reduction in slower decisions 

(as measured by reduced d’, Fig. S3), suggesting a dissociation between change in bias and 

change in accuracy at different reaction times (moreover, reductions in accuracy are typically 

associated with increased rather than decreased bias, Wei & Stocker, 2017). An alternative 

measure for bias, though less accurate (see the Supplementary materials) is the shift in the 

perceived vertical orientation measured in degrees. Results using this measure showed similar 

results as reported above (Fig. S4). Overall, the magnitudes of both TAE and TI were reduced in 

slower decisions, revealing an interaction between contextual influence and decision-making 

processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 – Context-dependent bias disappears with decision time. (A) Tilt illusion (TI, spatial 

context). An oriented surrounding context leads to a change in the perceived orientation of a 

center. (B and C) Response probability as a function of reaction time, under different context 

orientations     (-20° in blue, +20° in orange), and different test orientations (line styles, see 

legend), averaged across observers for six approximately equal RT bins in the (B) TI 200 ms 

condition, and (C) tilt aftereffect (TAE, temporal context) periphery non-retinotopic condition. 

(D) Bias (Eq. 1) due to context orientation as a function of reaction time (six bins), for a vertical 

test (0°), averaged across observers. Error bars are ±1SEM. 
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Theory 

Next, we aimed to account for the 

observed reduction in bias with decision 

time by applying general principles. 

Generally, a system that accumulates 

noisy evidence when making a decision 

can be interpreted as a stochastic decision 

process (for example, Dayan & Daw, 

2008). Interestingly, in many stochastic 

processes (notably “memoryless” ones, 

such as random walks, Markov chains, 

and typical diffusion models), with 

processing time, the process gradually 

becomes independent of the initial state due to accumulated stochasticity (noise), so biases that 

reflect initial conditions are expected to gradually decrease with time. For example, in simple 

unbounded diffusion (random walk), the initial state is lost at a slow rate proportional to time  

(Fig. 3A), as in many stochastic processes. From the Bayesian perspective, the initial state 

measures the a priori information, and this prior is outweighed when more noisy evidence has 

been accumulated, leading to reduced prior effect in slower decisions. 

Importantly, decision bias is reduced rapidly (~exponentially) in bounded decision models such 

as the Drift Diffusion Model (DDM, Ratcliff, 1978), in which the process of evidence 

accumulation continues until a bound is reached (Fig. 3B). For a starting point that is not too 

extreme (i.e., a moderate bias), the model predicts almost zero bias after the median decision 

time (Fig. 4). Indeed, the model provides an excellent account (Figs. 4, S5) for the rapid 

reduction of prior-dependent bias observed here (Fig. 1). This result is consistent with earlier 

modeling of experimental data with the DDM (Mulder, Wagenmakers, Ratcliff, Boekel, & 

Forstmann, 2012; Summerfield & De Lange, 2014; White & Poldrack, 2014). Note that the 

theory presented here to explain decision time-dependent bias can also account for experimental 

situations where the bias effect persists with time (e.g., a change in the drift rate in the DDM), as 

evident with experimental manipulations affecting external noise selection (Urai, De Gee, 

Fig. 3 – Bias reduction due to accumulated 

noise. Probability density function (pdf) of the 

system state at different times, for different 

initial conditions (i.e., priors; red vs. green), in 

(A) a diffusion process with no bounds, and in 

(B) a diffusion process that stops when a bound 

(dashed lines) is reached. The effect of the 

initial state is lost with time (yellow color mix). 
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Tsetsos, & Donner, 2018). More generally, persistent evidence selection should clearly lead to 

persistent bias effects (Kloosterman et al., 2019; White & Poldrack, 2014). 

With context-dependent bias, the observed reduction in bias was slow (Fig. 2D). This can be 

explained as a partially persistent bias effect (e.g., a context-dependent change in both prior and 

the rate of evidence accumulation, which is addressed within the DDM framework, Figs. 5, S6), 

or as an unbounded diffusion process (i.e., the time  rate of bias decay, consistent with decision 

timing that is independent of the system state, Fig. 5). Note that the sign of the context-

dependent bias is opposite to the prior (“anti-Bayesian”), consistent with a shift of the reference 

(i.e., bound positions) in the direction of the prior. A seemingly promising alternative to the 

above interpretations is that the influence of adapting context is time independent but varies 

across trials. However, this would predict the absence of line intersections in plots of reported 

probability vs. time (Fig. S7), unlike behavioral data (Figs. 1B, S2). More generally, preferring 

one mechanistic model over another is within the boundaries of the explanation we offer.

 

Fig. 4 – Reduction in prior-dependent bias is explained by the drift diffusion model. (A) Bias 

(Eq. 1) as a function of cumulative probability, for behavioral data of the prior-dependent 

experiment (averages of Fig. S1AB), and for a change in starting point in the DDM measured in 

four RT bins (red lines; the different groups of superimposed lines reflect different sizes of 

starting point changes away from the mid-point, and superimposed lines reflect varying drift 

rates; the influence of the bound-separation parameter is ignored because, for reasonable 

parameter values, it is mostly accounted for by changes in drift rate and starting point, by virtue 

of considering cumulative probability). (B) Bias from panel A divided by the average value 

(calculated separately for each observer and then averaged across observes). It can be seen that 

the stereotypical rate of reduction of bias owing to a starting point change in the DDM is 

qualitatively similar to behavior. (C) Bias as a function of RT, in behavior, and for DDM fitted to 

behavior based on the RT distributions (Fig. S5), using 4 or 8 fitting parameters (see Methods), 

separately for each observer, then averaged across observers. Error bars are ±1SEM. 
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Fig. 5 – Modeling the reduction in context-dependent bias. Shown is bias (Eq. 1) in models and 

in the behavioral context experiments (gray lines, reproduced from Fig. 2D). (A-C) DDM model, 

measured in six RT bins (red lines). (A) Bias as a function of cumulative RT probability, where 

modeled DDM bias is caused by a change in starting point (for different fixed values of drift rate 

and for different sizes of starting point change, as in Fig. 4A). The behavioral rate of reduction 

in bias is much slower than modeled. (B) Bias as a function of RT, where modeled bias is the 

DDM fit to the behavioral RT distribution, averaged across observers (see Fig. S6), using 4 

fitted parameters. (C) Same, using 8 fitted parameters. (D) Bias as a function of 0RT t  in a 

log-log plot, in behavior, and the least-squares fit to a time  decay rate (purple lines; possibly 

reflecting a fixed rate of noise accumulation as in an unbounded random walk). The 0t  measures 

the non-decision time, presumably mostly post-decision, which was set to a fixed value of 350 

ms. Overall, the different modeling approaches can qualitatively account for a slow rate of 

reduction in bias. Error bars are ±1SEM. 

 

 

Discussion 

Overall, this work illustrates a novel way of thinking about bias and time in human decision-

making. Instead of fitting a specific model to data (as in White & Poldrack, 2014), we make a 

simple yet powerful general claim: that bias derived from starting conditions (e.g., prior) 

gradually decreases with decision time. This claim applies to an entire family of stochastic 

decision processes, which can be indistinguishable with limited data, emphasizing the 

importance of focusing on the general principle. 
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Most importantly, the finding of reduced bias with longer decision times may appear to perfectly 

conform with a dual-theory account of a transition between separate systems (Evans & 

Stanovich, 2013; Kahneman, 2011; Tversky & Kahneman, 1974): from a fast system that is bias-

prone, to a slow system that is bias-free. Similarly, the known reduction in context-dependent 

bias with the duration of testing stimulus presentations can currently be explained by assuming 

dual processing (in low vs. high systems) (Kaneko et al., 2017; Wolfe, 1984). However, we have 

found that using models based on the decision principles described above offers a full 

mechanistic explanation. Even a rapid reduction in bias (with the slower half of responses 

measuring practically zero bias) can be explained by a rule for when to stop accumulating 

evidence that depends on the extent of evidence that has been accumulated, an account with very 

strong support in brain decision making (DDM, Gold & Shadlen, 2007; Ratcliff & McKoon, 

2008; Ratcliff et al., 2016) and clear statistical implications (SPRT, Moran, 2015; Summerfield 

& De Lange, 2014). Of course, there can be dual processes in the brain, and there are low vs. 

high brain areas, but at least for the basic perceptual phenomena considered here, there is a 

simple mechanistic account that does not need to assume multiple systems. 

Traditionally, perceptual phenomena are considered to be a part of the faster system (Tversky & 

Kahneman, 1974), although there is no clear definition. One attempt at formulating a definition 

by Evans and Stanovich (Evans & Stanovich, 2013) suggests that “rapid autonomous processes 

(Type 1) are assumed to yield default responses unless intervened on by distinctive higher order 

reasoning processes (Type 2)”, which at least phenomenologically appear to match the reduction 

in bias discussed here. Regardless of terminology, perceptual decisions and the simple 

mechanistic models they permit should be considered in the discussion about fast vs. slow 

systems. 
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Materials and Methods 

The purpose of this study was to investigate the interaction between bias and decision time for 

perceptual and decisional biases. 

Observers 

Thirty-three observers (25 females, 8 males, aged 18-31) with normal or corrected-to-normal 

vision participated in the experiments. All observers were naïve to the purpose of the 

experiments, and provided their written informed consent. The work was carried out in 

accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki). 

Most observers had prior experience in participating in psychophysical experiments. 

Apparatus 

The stimuli were presented on a 22” HP p1230 monitor operating at 85Hz with a resolution of 

1600x1200 that was gamma-corrected (linearized). The mean luminance of the display was 

26.06 cd/m2 (detection, discrimination, and TAE experiments) or 48.96 cd/m2 (TI experiments) 

in an otherwise dark environment. The monitor was viewed at a distance of 100 cm. 

Stimuli and tasks 

All stimuli were presented using dedicated software on a uniform gray background. To begin 

stimulus presentation in a trial, observers fixated on the center of the display and pressed the 

spacebar. Responses were provided using the left and right arrow keys. Distances are reported in 

degrees (°) of the visual field. As described below, the used Gabor patches were of the same 

parametrization (except orientation, monitor position, and contrast). 

Discrimination (2AFC) experiment. Stimuli were Gabor patch targets tilted -0.5° or +0.5° 

relative to vertical (50 ms presentation, 50% contrast, σ=0.42°, λ=0.3°, random phase, 750 ms 

onset ± up to 100 ms onset jitter). Observers were instructed to report whether the orientation of 

the target is clockwise or counter-clockwise to vertical (2AFC), with auditory feedback 

indicating mistaken reports. Four peripheral crosses co-appeared with the target. 

Detection experiment. In the target-present trials, the stimuli were low-contrast Gabor patches 

(50 ms presentation, 0.5% to 1% Michelson contrast (i.e., Gabor amplitude of 0.5 to 1.25), 

vertical orientation, σ=0.42°, λ=0.3°, random phase, 750 ms onset ± up to 100 ms onset jitter). In 
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the target-absent trials, nothing was presented at the center of the display. Observers were 

instructed to report whether the target appeared or not, with auditory feedback indicating 

mistaken reports. Four peripheral crosses co-appeared with the target presentation interval (in 

both target-present and target-absent trials). 

TAE experiments. The following presentation sequence was used: a blank screen (600 ms 

presentation), Gabor “adaptor” (i.e. context, oriented -20° or +20° to vertical, 50 ms), a blank 

screen (600 ms), and a near-vertical Gabor “test” (50 ms). Observers were instructed to inspect 

the adaptor and target presentations, and then to report whether the orientation of the target was 

clockwise or counter-clockwise to vertical (2AFC, no feedback). Gabor patches were 50% 

Michelson contrast with σ=0.42°, λ=0.3°, and random phase. Two versions of the experiment 

were run: fixation and periphery. In the fixation experiment, adaptors and tests were presented at 

the fixated center of the display, and tests were oriented -9° to +9° (in steps of 1°). In the 

periphery experiment, adaptors and tests were presented at either left or right of the fixation (at 

±1.8°, i.e. 12λ separation). The test was presented either at the same side as the adaptor 

(retinotopic) or at the opposite side (non-retinotopic), randomly. Tests were oriented from -12° to 

+12° (in steps of 2°). The reason that the TAE experiments had no variability in the onset of the 

test is that the time difference between adaptor and test is known to affect the magnitude of the 

TAE (Greenlee, Georgeson, Magnussen, & Harris, 1991). Four peripheral crosses co-appeared 

with the target to facilitate discrimination between the adaptor and the test. 

TI experiments. Stimuli (e.g., Fig. 2A) consisted of a near-vertical sine-wave circular “test” 

(oriented from -9° to +9° (in steps of 1°), λ=0.3°, random phase, a radius of 0.6°), and a sine-

wave “surround” ring (oriented -20° or +20°, λ=0.3°, random phase, width of 1.2°, and a gap of 

0.15° from the central circle). Observers were instructed to inspect the circle presentation, and to 

report whether the orientation of the circle is clockwise or counter-clockwise to vertical (2AFC, 

no feedback). The test+surround stimuli were presented starting from 450 ms after the trial 

initiation (± up to 100 ms jitter), for a duration of either 200 ms (“200 ms” experiment) or for 

however long it took the observer to provide a response (“until-response” experiment). 
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Procedure 

In all experiments, we required a very low rate of finger errors (less than one reported mistake in 

200 trials), to minimize contamination by fast guesses (Ratcliff & Tuerlinckx, 2002). All 

observers managed to achieve this level of accuracy with persistent coaxing. Observers were 

encouraged to reply quickly, unless the speed of reply led to mistakes. Most observers 

participated in multiple experiments of this study, separated by at least three days of a break. 

Under all conditions, each daily session was preceded by a brief practice block with easy stimuli 

(this practice was repeated until close-to-perfect accuracy was achieved). 

Discrimination (2AFC) experiment. Observers (N=7) completed a single daily session. Trials 

were blocked into streams of 80 trials with a given prior (either 75% vs. 25%, 50% vs. 50%, or 

25% vs. 75% for the -0.5° vs. +0.5° orientation alternatives). In each daily session, a set of six 

blocks (two per prior, in random order, each lasting ~2 minutes, separated by a 20-second break 

to minimize inter-block contamination by learned priors) was completed twice (totaling four 

blocks per prior; ~13.5 minutes per set, separated by a 2-minute break). Observers were 

informed that different blocks may have different priors of the decision alternatives. Two 

observers were disqualified before data analysis, one having anomalously high accuracy (d’=2.5, 

with other observers showing d’=1.01±0.18, mean±STD), and one having an anomalously strong 

baseline response bias in favor of one of the alternatives, which saturates the measured 

probabilities. (Both disqualified observers exhibited a prior-dependent bias in fast replies and no 

prior-dependent bias in slow replies.) Note that the experimental design assumes that all 

observers have comparable sensitivity. The horizontal orientation of the monitor and the table 

was verified using a spirit level. 

Detection experiment. Observers (N=9) completed from two to three daily sessions. Trials were 

blocked into streams of 80 trials with a given prior (either 75% vs. 25%, 50% vs. 50%, or 25% 

vs. 75% for target-present vs. target-absent). In each daily session, two sets of six blocks were 

completed (two per prior, in random order). Blocks (lasting ~2 minutes) were separated by a 15-

second break. The two sets (~14.5 minutes each) were separated by a 2-minute break. To ensure 

a comparable d’ between observers and daily repetitions, the level of difficulty was adjusted per 

observer at the beginning of each daily session with a staircase procedure, and occasionally also 

during the break between the two sets. 
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TAE experiments. Sessions were composed of blocks of 125 trials (lasting ~5 minutes), 

separated by 2-minute breaks of blank screen free viewing. In the fixation experiment, observers 

(N=12) performed a single daily session consisting of six blocks. In the periphery experiment, 

observers (N=14) performed 3-8 daily sessions each consisting of five blocks. 

TI experiments. Sessions consisted of blocks of 190 trials (lasting ~5 minutes), separated by 2-

minute breaks of blank screen free viewing. Observers (N=10 and N=10, in “200 ms” and “until-

response” experiments, respectively) performed a single daily session consisting of five blocks. 

Analysis 

Data binning. To measure the interaction of time and bias, behavioral data were binned, based on 

reaction times (RT) into N bins. For the detection and discrimination experiments, binning was 

carried out separately for each combination of experimental block × trial type (i.e., separately for 

each decision alternative; note that different blocks correspond to different experimental priors). 

For the TAE and TI experiments, binning was carried out separately for each combination of 

experimental day × test orientation × context orientation (adaptor or surround). Under the TAE 

periphery conditions (retinotopic and non-retinotopic), binning combinations were further 

conditioned based on adaptor side × test side. For example, if a given combination has two trials 

with a RT of 350 and 500 ms, then to achieve binning for N=2 bins, the trial with 350 ms is put 

into the faster bin, and the trial with 500 ms is put into the slower bin. When the number of trials 

is not an exact multiple of the required number of bins, a deterministic rule was used. Binned 

trials were pooled from all relevant repetitions, separately for each observer. Conceptually, the 

strict binning rule we applied prevents interaction between trial type and the bin used (because 

different trial types can have different inherent difficulties and hence, different average reaction 

times). In practice, any reasonable binning rule we tried that had more trials than binning 

combinations led to nearly identical results. In the detection and discrimination experiments, the 

first ten trials were excluded from the analysis, so that the priors could be learned (which takes at 

least a few trials to learn, e.g. Zylberberg, Wolpert, & Shadlen, 2018). In the context 

experiments, trials with RT<300 ms were pruned (this rule addressed the rare occasions where 

the observers judged the perceived orientation of the adaptor instead of the test). 
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Bias and accuracy calculation. To quantify bias and accuracy, we relied on measures motivated 

by signal detection theory (SDT, Green & Swets, 1966). Specifically, the definition of bias (Eq. 

1) is equivalent to the change in the internal criterion c  (Eq. S1, from SDT) between two 

conditions. 

(Eq. S1)       0.5 z P | z P |c            

Formally, define s

dp  to be the response probability (the percent of ' '  responses) for stimulus s  

( ' 's    or ' 's   ) in condition q  ( 1q   or 2q  , for two prior probabilities or two context 

orientations). Then it holds (Eq. S2) that the average of the bias of the two stimuli (i.e., 

 0.5 Bias Bias    where Biass  is the bias with stimulus s ), is the change in the internal 

criterion of the two conditions (i.e., 2 1c c  where dc  is the internal criterion in condition q ). 

 (Eq. S2)  
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In addition, to avoid saturation, probabilities were clipped to the range 
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 , where 𝑛 is 

the number of trials in the measurement. Accuracy (d’) was calculated by applying Eq. 2 after 

the probabilities were clipped to the above range. (An alternative approach for avoiding 

saturation is to average probabilities across observers before calculating bias and accuracy. This 

approach led to the same qualitative findings as reported here, in all experiments.) 

Fitting perceived orientation. In addition to the bias measure motivated by SDT (described 

above), we also considered the magnitude of the shift in the perceived test orientation to quantify 

context-dependent bias. Specifically, the magnitude was defined as half the shift in the perceived 

vertical orientation between the two adaptor orientations. To find the orientation that is perceived 

as vertical in a given condition, the percentage of clockwise reports as a function of the target 

orientation was interpolated to find the orientation with 50% clockwise reports (i.e., equal 

probability for clockwise and counter-clockwise reports; fitting to a cumulative normal 
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distribution that takes into account the lapse rates was achieved with the Psignifit 3.0 software, 

Fründ, Haenel, & Wichmann, 2011). Under the TAE periphery conditions (retinotopic and non-

retinotopic), the data reflected two ‘test’ sides measured at several experimental days. The effect 

magnitude was calculated separately for the different experimental days and sides, then averaged 

across days and sides. Note that although this method of analysis is standard for estimating TAE 

and TI effect sizes, it is less meaningful when binning reaction times, because different test 

orientations have different difficulties, and hence, different mean decision times. Specifically, if 

binning is done based on time irrespective of test orientation, then the bins are unbalanced (e.g., 

the fastest bin will only contain trials of easy test orientations). If binning is done separately for 

each test orientation (as we do here), then the bins are balanced, but there is no descriptive time 

range associated with a bin (i.e., bins reflect relative rather than absolute times). 

Drift diffusion model analysis. To obtain analytical function computation and fitting of the drift 

diffusion model (DDM, Ratcliff, 1978), we used the Fast-DM software (Voss & Voss, 2007). 

Fitting was achieved with a Kolmogorov-Smirnov (KS) setting, which finds the set of parameter 

values that minimizes the KS distance between the modeled and the behavioral cumulative RT 

distributions. The following model parameters were considered: starting point (normalized to the 

bounds separation, i.e. taking values in the range of 0 to 1), drift rate, non-decision time (in ms), 

bounds separation, and the asymmetry in non-decision time between the upper vs. the lower 

bound. Parameters reflecting the inter-trial variability of starting point, drift rate, and non-

decision time were also considered (measured in units of standard deviation) (Ratcliff & Rouder, 

1998). The fitting of the drift rate and of the variability in drift rate parameters permitted 

different fitted values for different experimental stimuli, unlike the remaining parameters that 

were assumed to be stimuli-independent (but still dependent on prior or context). In all reported 

conditions, the DDM provided a reasonably good fit of the behavioral RT distribution (typical 

lack-of-fit p-values of about 0.5). For the context experiments, only three test orientations were 

used in the fit (-k°, 0°, and +k°; k=1 for TI and TAE fixation, whereas k=2 for TAE periphery). 

To deal with RT contaminants, the observers were instructed to avoid finger errors (see above), 

and trials with extreme RT values were pruned before fitting (Ratcliff & Tuerlinckx, 2002). (The 

reported findings remained the same if none of the trials were pruned.) The illustrations in Fig. 

3ab were obtained by simulations (100,000 trials). 
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Supplementary figures 

 

Fig. S1 – Bias, criterion, and sensitivity in the discrimination and detection tasks. (A-C) Shown 

for the discrimination task are average across observers of (A) bias (Eq. 1), (B) internal 

criterion (c, Eq. S1), and (C) sensitivity (d', Eq. 2). (D-F) Same for the detection task. Note that 

in the detection task, the criterion data showed an asymmetry between the 25% and the 75% 

priors, possibly reflecting an asymmetry in learned prior: missed targets may be more likely to 

be interpreted as absent, despite an auditory feedback (i.e., priors are learned with a shift 

toward target-absent, e.g., the 50% prior is learned as if it is 40%). Error bars are ±1SEM. 
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Fig. S2 – Interaction of bias and time for TAE and TI. Shown is the response probability as a 

function of reaction time, under different context orientations (line styles: -20° is dashed, +20° is 

solid), and different test orientations (colors: gray, blue, and red indicate 0°, ±k°, and ±2k° test 

orientations; k=1 for TI and TAE fixation, and k=2 for TAE periphery). The data in the TAE 

non-retinotopic and TI 200 ms conditions are partially reproduced from Fig. 2BC (with different 

styles). The presence of bias is denoted by a difference between the solid and dashed lines of 

equal color. The presence of intersections between lines corresponding to different test (color) 

and context (line style) orientations suggests that the context-dependent bias was time-dependent 

(e.g., an intersection between the dashed gray line and solid blue line in the TAE periphery 

condition can be taken as evidence that the 0° test with a clockwise context-induced bias is not 

interchangeable with the 2° test with a counter-clockwise bias). Error bars are ±1SEM.  
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Fig. S3 – Bias and sensitivity for TAE and TI. Shown is the average across observers of bias 

(Eq. 1) and sensitivity (d', Eq. 2) under the different context conditions. The different test 

orientations were denoted by color (gray, blue, and red indicate 0°, ±k°, and ±2k° test 

orientations; k=1 for TI and TAE at fixation versions, whereas k=2 for retinotopic and non-

retinotopic peripheral TAE versions). For d’, measured for the +k° vs. -k° test orientation, the 

different context orientations were denoted by line style (-20° is dashed, +20° is solid). Results 

show reduction in bias across conditions and reaction times. Error bars are ±1SEM.   
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Fig. S4 – Magnitude of TAE and TI in degrees. Shown is half of the interpolated shift in the 

perceived vertical test orientation due to context orientation (adaptor or surround). 

Measurements were obtained by fitting a cumulative normal distribution to the psychometric 

function of percent clockwise reports as a function of test orientation (see Methods). Note that 

this method of analysis is less accurate than Eq. 1 for analyzing an interaction with RT, because 

different test orientations reflect different difficulty levels, hence different RTs. Still, to ensure a 

balanced number of trials per test orientation in an RT bin, the binning here was performed 

separately for each combination of context orientation and test orientation. Error bars are 

±1SEM, and asterisks indicate the significance level of the change in magnitude in different RTs 

obtained with a repeated-measures ANOVA (*** p<0.001, **** p<0.0001). 
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Fig. S5 – Fitted drift diffusion model parameter values in the prior experiments. Shown is the 

average across observers of the parameter values fitted to the behavioral RT distributions, for 

the different experimental priors, in the discrimination experiment (blue, the prior is for +), and 

in the detection experiment (green, the prior is for target). The fitted DDM had either (A) 4 

parameters, or (B) 8 parameters (see Methods). Asterisks indicate the significance level of a 

change in parameter value with experimental prior in a repeated-measures ANOVA (two-way in 

the case of the drift rate and the STD of drift rate parameters). It can be seen that a change in 

prior was mainly explained in the DDM as a change in starting point. Annotations: n.s. not 

significant, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. Error bars are ±1SEM. 
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Fig. S6 – Fitted drift diffusion model parameter values in the context experiments. Shown is 

the average across observers of the parameter values fitted to the behavioral RT distributions for 

a DDM with (A) 4 parameters, or (B) 8 parameters. Only the three test orientations shown were 

used in the fit (k=1 for TI and TAE fixation, and k=2 for TAE periphery). Asterisks indicate the 

significance level of a change in parameter value with context (as in Fig. S5; vertical order 

following legend). It can be seen that a change in context orientation was explained in the DDM 

as a change of both starting point and drift rate. Error bars are ±1SEM.  
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Fig. S7 – Modeling of starting point vs. variable-drift cause for reduction in bias. Shown is the 

percent of trials that reach the upper bound in a given decision-time bin, when the influence of 

adapting context (line style) is modeled using the drift diffusion model (DDM) as (A) a change in 

the starting-point (z=0.5±0.05, where the bounds are at 0 and 1), or (B) a change in the drift-

rate (v=v±0.8) with added inter-trial variability (standard deviation of drift rate taking a value 

of 2). The influence of different tests orientations was modeled as different drift rates (baseline 

values of v, as shown in the legend). Both models show a reduction in bias as a function of time. 

Importantly, in the drift-rate version the context influence is obviously interchangeable with a 

change in the drift rate, hence there are no intersections. This illustrates the idea that when the 

influence of context or prior is not interchangeable with a change in evidence (e.g., in 

orientation of test), then this indicates that the contextual influence is time-dependent (e.g., 

change in starting point). Note that the exact modeling details for the contextual influence are 

described in the text; this figure illustrates the above idea. 
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