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ABSTRACT 

Classifying the mechanisms of antibiotic failure has led to the development of new treatment 

strategies for killing bacteria. Among the currently described mechanisms – which include 

resistance, persistence and tolerance – we propose defiance as a subclass of antibiotic failure 

specific to prodrugs. Using locked antimicrobial peptides (AMP) that are activated by bacterial 5 

proteases as a prototypic prodrug, we observe that although treatment eliminates bacteria across 

the vast majority of environmental conditions (e.g., temperature, concentration of growth 

nutrients), bacteria spontaneously switch from susceptibility to defiance under conditions that alter 

the competing rates between bacterial proliferation and prodrug activation. To identify the 

determinants of this switch-like behavior, we model bacteria-prodrug dynamics as a multi-rate 10 

feedback system and identify a dimensionless quantity we call the Bacterial Advantage Heuristic 

(BAH) that perfectly classifies bacteria as either defiant or susceptible across a broad range of 

treatment conditions. By recognizing that the bacterial switch from susceptibility to defiance 

behaves analogously to electronic transistors, we construct prodrug logic gates (e.g., AND, OR, 

NOT, etc.) to allow assembly of an integrated 3-bit multi-prodrug circuit that kills defiant bacteria 15 

under all possible combinations of BAH values (i.e., 000, 001, …, 111) that represent a broad 

range of possible treatment conditions. Our study identifies a form of bacterial resistance specific 

to prodrugs that is described by a predictive dimensionless constant to reveal logic-based 

treatment strategies using multi-prodrug biological circuits. 
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INTRODUCTION 

The rise of multidrug-resistant bacteria coupled with the lack of newly developed 

antibiotics has created a serious public health threat 1, 2. Understanding the causes of antibiotic 

failure inspires the development of new drugs and informs clinical treatment strategies 3-5. These 

failure mechanisms are broadly classified into three distinct categories (i.e., resistance, 5 

persistence, and tolerance), which are characterized by the change in drug concentration and 

exposure time required to kill bacteria 6. For example, resistance is characterized by genetic 

mutations or phenotypic changes which result in bacteria requiring significantly higher 

concentrations of antibiotic (minimum inhibitory concentration, MIC) to be lethal. By contrast, 

bacteria exhibiting tolerance or persistence require increased drug exposure time (minimum 10 

duration for killing, MDK), with the latter exhibiting a biphasic killing profile (Fig. 1A). Further, 

bacteria populations become tolerant through environmental conditions or genetic mutations, 

whereas persistence is an actively maintained, non-heritable state exhibited by a subpopulation 

of bacteria. Discriminating between these survival strategies employed by bacteria is crucial for 

the development of new drugs and clinical treatment decisions 6.  15 

Antibiotic success is markedly improved by proper titration of drugs, as overdosing leads 

to off-target toxicity and underdosing increases the likelihood of pathogens developing 

resistance7. However, optimal drug doses are difficult to achieve over the course of treatment 

because infection burden changes dynamically over time, creating a moving target 7, 8. Prodrugs, 

which represent ~10% of all FDA-approved drugs in the last decade, are a promising solution 20 

because they may be automatically titrated by a disease-related activation mechanism, increase 

bioavailability, and reduce the risk of off-target effects 9. For example, prodrugs such as 

ganciclovir 10 and isoniazid11 are administered as biologically inactive forms and are enzymatically 

activated by the pathogen. Here, we use prototypic auto-titrating prodrugs comprising cationic 

antimicrobial peptides (AMP), which evolved as a part of innate immunity and display broad-25 
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spectrum and prokaryote-specific antimicrobial activity 12. Cationic AMPs act by disrupting 

bacterial membranes and inducing inflammatory responses 13, but suffer from off-target toxicity 

and low stability in vivo 14, 15. Our AMP prodrugs are activated directly by bacterial proteases, 

which are a major cause of virulence 16-21 during infections and important targets for antibiotic 

development 22. Of these proteases, outer membrane protease T (OmpT) is a membrane-bound 5 

bacterial protein that is widely conserved across gram-negative bacteria of the 

Enterobacteriaceae family and recognizes a variety of targets that contribute to its virulence (e.g., 

plasminogen)18, 19, 23-25. In this work, we design cationic AMPs that are locked by charge 

complexation with anionic peptides and connected with a protease-cleavable linker substrate 26-

28 that is recognized by E. coli protease OmpT, such that increasing concentrations of bacteria 10 

activate higher concentrations of free drug. 

While AMP prodrugs eliminate the majority of bacteria, we observe bacteria populations 

exhibiting a phenotype we named "defiant", proliferating in the presence of active drug by 

consistently outpacing prodrug activation at all stages of growth (i.e., log phase, stationary phase). 

To understand the mechanism by which bacteria become resistant to AMP prodrugs, we built a 15 

system of coupled ordinary differential equations (ODE) that model the dynamics of the bacteria-

prodrug competition. We use this model to identify a dimensionless quantity – the Bacterial 

Advantage Heuristic (B.A.H.) – which predicts with perfect accuracy whether bacteria will become 

defiant under a broad range of environmental conditions. At low BAH values, bacteria are 

susceptible to elimination, but beyond a critical BAH threshold, the bacteria switch to a state of 20 

defiance, in which the bacteria proliferate in the presence of activated drug.  To combat prodrug 

failure due to defiance, we design biological circuits that eliminate bacteria under all conditions 

(BAH values) by recognizing that AMP prodrugs behave analogously to transistors: above a 

critical BAH threshold (i.e., gate voltage), bacteria (i.e., input current) pass through the prodrug 

and exhibit defiance. We use this framework to build logic gates with prodrug transistors, which 25 
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we use to construct a multi-prodrug circuit that outputs 0 (i.e., dead bacteria) under all eight 

combinations of three input BAH values. These quantitative mechanistic insights will inform future 

drug design and treatment protocols to combat antibiotic resistance. 

 

RESULTS 5 

A bacteria-activatable prodrug targets E. coli protease OmpT  

To construct bacteria-activated prodrugs, we synthesized cationic (polyarginine) AMPs in 

charge complexation with anionic peptide locks (polyglutamic acid) by a linker peptide (RRS|RRV) 

specific for the ubiquitous bacterial protease OmpT26. Upon proteolytic cleavage of the linker, the 

hairpin prodrug is unlocked to release free AMP, creating a mechanism for auto-titration (Fig. 1B). 10 

To demonstrate linker specificity for OmpT, we synthesized an activity probe24, 29-33 with free linker 

peptides containing a fluorophore-quencher pair and detected OmpT activity in samples 

incubated with recombinant OmpT or live E. coli culture. Conversely, we observed no activity in 

samples containing the serine protease inhibitor, Aprotinin, which inhibits OmpT when present in 

micromolar concentrations 23 (Fig. 1C). We observed similar cleavage activity using this linker 15 

substrate when fully integrated into hairpin AMP drug-lock complexes, confirming that linker 

presentation within a constrained conformational state did not affect cleavage activity by OmpT 

(Fig. 1D). To measure cytotoxicity of unlocked drug, we dosed bacteria with free AMP and 

observed significant reduction in colonies compared to untreated controls (blue bars) (Fig. 1E, 

F). To confirm prodrug specificity, we synthesized AMP drug-lock complexes using linker peptides 20 

specific for OmpT or Tobacco Etch Virus Protease (TEV), which exhibits orthogonal protease 

specificity 34. We observed elimination of bacteria only in samples containing OmpT-specific AMP 

prodrugs (grey bars) or samples treated with both TEV and TEV-specific AMP prodrugs (red bars). 

All control samples containing either TEV-specific prodrug alone or Aprotinin inhibitor did not 
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significantly reduce bacteria load (Fig. 1E, F, Table S1). Our results showed that AMP drug-lock 

complexes are inert and lack cytotoxic activity until activation by protease activity.   

 

Figure 1. A bacteria-activatable prodrug targets E. coli protease OmpT (A) Schematic 

comparing time-dependent killing profiles of bacteria exhibiting tolerance, persistence, or 5 

defiance. Red line represents killing profile of susceptible bacteria. (B) A cationic AMP drug 

(RRRRRRRRR, white rectangle) locked by an anionic peptide lock (EEEEEEEEEEEEE, black 

rectangle) with a protease-cleavable linker (RRS|RRV, grey u-shape) is activated by OmpT 

protease (grey pacman) activity. (C) Cleavage assay measuring the activity of recombinant OmpT 

(grey protease) (left) and OmpT expressed on the surface of E. coli (right) against fluorescence-10 

quenched linker substrates (blue lines). Negative control samples contain the inhibitor aprotinin 

(black triangle, black lines) or linker substrates only (grey lines). Shaded regions represent 

standard deviation (n = 3). (D) Cleavage assay measuring the activity of recombinant OmpT (left) 
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or OmpT expressed on the surface of E. coli (right) against fluorescently labeled hairpin prodrugs 

(blue lines) or hairpin prodrugs only control (grey lines). Shading represents standard deviation 

(n = 3). All cleavage assays plotted as fold change in RFU from initial time point. (E) Bacteria 

viability assay quantifying drug toxicity relative to untreated bacteria control (blue bar). Positive 

control for AMP toxicity (black bar). Negative control for locked AMP or TEV protease alone (tan 5 

bars). Positive control for TEV protease with locked AMP (substrate: ENLYFQ|G, specific to TEV 

protease) (red bar). Negative control for locked AMP (substrate: RRSRRV, specific to OmpT) with 

OmpT inhibitor, aprotinin (grey bar). Experimental condition of bacteria treated with locked AMP 

activated by natively expressed OmpT (white bar). All values normalized and statistically 

compared to bacteria only control. Error bars represent standard deviation (n = 3). (F) 10 

Representative images of bacterial plates used to quantify viability with schematic legend (scale 

bar = 4 mm). * < 0.05, ** < 0.01, *** < 0.001, and **** < 0.0001. 

 

Kinetic model of prodrug treatment reveals a binary outcome 

To quantitatively understand how the rate of prodrug activation competes with the number 15 

of living bacteria, we built a mathematical model using a system of nonlinear ordinary differential 

equations (ODE). In our system, the three dynamic populations are the Bacteria, B, the Locked 

drug, L, and the Unlocked drug, U, for which we formulated governing ODEs by considering the 

system parameters that affect populational change over time. For this prodrug system, increased 

E. coli growth results in increased proteolytic activation of AMP, which in turn lyses bacteria to 20 

create a negative feedback loop. Therefore, we modeled the bacteria population B as increasing 

(i.e., green dashed arrows) the rate of enzymatic drug conversion (i.e., L to U) and the unlocked 

drug population U as increasing the rate of bacterial death (Fig 2A). To account for the fact that 

bacterial growth rate, r, slows down as environmental resources become limiting (i.e., carrying 

capacity, Bmax), we used a logistic growth model 35, which produces an S-shaped curve and has 25 
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been used extensively in biology to study population expansion36 and tumor growth37. By contrast, 

the rate of E. coli death is proportional to the concentration of unlocked drug, U, and the 

concentration of Bacteria, B, according to a proportionality constant, a, that represents the amount 

of AMP required to kill E. coli per unit time (Table S2, Equation 1.1). 

  1

max

1
dB B

rB a BU
dt B

− 
= − − 

 
 (1.1) 5 

To model the rate of enzymatic activation of locked drugs, L, by OmpT, we applied Michaelis-

Menten (MM) kinetics 38, where the rate of substrate activation is determined by the catalytic rate 

of the reaction, kcat, and the half-maximal substrate concentration, Km (Equation 1.2). Here we 

assumed our system constituted a well-mixed solution of freely diffusing substrates (i.e., locked 

drug) in large excess, which were valid assumptions for this study since AMP prodrug was present 10 

at concentrations ~102 micromolar in an aqueous environment. Because the total amount of drug 

is conserved, we defined the MM activation rate of unlocked drug, U, as opposite of the 

degradation rate of locked drug L (Equation 1.3). We further included a term to account for the 

loss of active AMPs according to a proportionality constant, a*, that represents the number AMP 

required to kill one E. coli. This term was necessary as AMPs lyse E. coli by intercalating with 15 

bacterial membranes39 and therefore are removed from the system and unable to target additional 

bacteria.  

 cat

m

dL L
k B

dt K L
= −

+
  (1.2) 

 
* 1

cat

m

dU L
k B a a BU

dt K L

−= −
+

  (1.3) 

To fit this model to our system, we measured the values for relevant parameters, including 20 

enzymatic efficiency (e.g., kcat, Km), bacterial growth (e.g., r, Bmax), and prodrug activity (e.g., a, 
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a*) (Fig. S1, Table S2). This allowed us to predict bacteria-prodrug response curves (red and blue 

dashed lines; Fig. 2B) across nine distinct combinations of kcat and r values, which we 

experimentally controlled by altering the ambient temperature and concentration of broth 

(conditions labeled A1–3, B1–3, and C1–3; Table S3). Strikingly, our model anticipated a binary 

bacterial response to prodrug treatment that would be evident within 24 hours; bacteria were 5 

predicted to be either susceptible to the prodrug and die (red dashed lines) or to exhibit a drug-

invariant phenotype and proliferate to saturating levels (blue dashed lines) (Fig. 2B, C). To 

experimentally validate our model predictions, we incubated bacteria with prodrugs under the 

defined nine conditions, and quantified the number of living bacteria longitudinally over the course 

of a 24 hour treatment window. Quantified bacterial counts taken during the course of treatment 10 

as well as at endpoint closely matched the values predicted by our model (R2 = 0.84, red and blue 

dots; Fig. 2B, C) and likewise revealed a binary bacterial response to prodrugs leading to 

antibiotic failure. We therefore called this form of resistance to prodrugs as bacterial “defiance.” 

Collectively, these experiments demonstrate that when E. coli are exposed to the AMP prodrug, 

our model can be used to predict bacterial growth kinetics, which ultimately result in a binary 15 

outcome. 
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Figure 2. Kinetic model of prodrug defiance reveals a binary outcome. (A) Graphical 

representation of the multi-rate model of bacteria (B), locked drug (L), and unlocked (U) drug 

populations. Legend describes the agents associated with each variable. (B) Validating the model 

with serial CFU measurements (red and blue dots; n = 3, error bars SEM) and ODE model 

simulations of nine conditions (A1–3, B1–3, C1–3) given extracted growth rate and enzyme 5 

kinetics parameter values. (C) Agar plates taken at end-point showing the binary presence (1) or 

absence (0) of bacterial growth for nine environmental conditions (A1–C3, scale bar = 4 mm). 

Schematic depicting that bacterial defiance is characterized by proliferation in the presence of 

activated drug. 

 10 

Predicting bacterial defiance with a dimensionless parameter  

Having demonstrated that bacteria exposed to a prodrug exhibit a binary outcome – susceptibility 

(i.e., death) or defiance (i.e., survival) – we next sought to determine whether the behavior could 

be quantified by a metric of resistance that could be generalized across broad treatment 

conditions. Based on our model and experimental validation, we observed that under defiance, 15 

populations of live bacteria expanded (i.e., positive growth rate) throughout the course of 

treatment,  which implied that key bacterial growth parameters (e.g., r, Bmax) were greater in value 

than enzyme-driven death rate parameters (e.g., kcat, Km) (Fig. 2B, 3A). Therefore, to derive a 

metric to discriminate between defiant and susceptible bacteria, we used Buckingham Pi theorem 

to identify a dimensionless quantity that represents the competing balance between growth rate 20 

and enzymatic turnover, which we defined as the Bacterial Advantage Heuristic (B.A.H.) 

(Equation 1.4). 

                                                    
10. . . log

cat

r
B A H

k

 
=  

 
                                                 (1.4) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/556951doi: bioRxiv preprint 

https://doi.org/10.1101/556951
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

This quantity reflects that bacteria have a higher probability of switching to the defiance phenotype 

under conditions that promote a faster growth rate, r, and slower enzymatic activity, kcat. To predict 

the onset of the defiance phenotype, we sought to determine the critical B.A.H. value that 

distinguishes defiant bacteria from susceptible populations. Using our mathematical model, we 

simulated >2000 prodrug treatment conditions covering a range of values for r, Bmax, kcat, and Km 5 

and identified a critical value of BAH at which bacteria switch from susceptibility to defiance 

(BAHcrit ~ -11.37) (Fig. 3B). In other words, for any environmental or genetic condition that 

produces a BAH > BAHcrit, the bacteria will survive the prodrug treatment, and for BAH < BAHcrit, 

the bacteria will die. To test the robustness of this switch-like behavior, we modeled treatment 

outcomes by varying bacterial growth rates (r) and enzymatic efficiencies (kcat) (> 100 points) and 10 

found that BAHcrit was time-independent across a range of prodrug treatment durations. (Fig 3C–

E). Additionally, to demonstrate that BAHcrit is independent from any system parameter, we 

modeled treatment outcomes (> 500 points) by individually fixing each of the four parameters (i.e., 

r, Bmax, kcat, and Km) in turn and found that BAHcrit was invariant across all conditions tested (Fig 

3F–I). To confirm the value of BAHcrit experimentally, we first used the nine experimental 15 

conditions previously tested (A1–3, B1–3, C1–3) to fit the values for kcat and r (Fig S2), and then 

used the computationally-derived critical BAH threshold to classify the phenotype of nine bacteria-

prodrug treatment conditions. By receiver-operating-characteristic (ROC) analysis, BAHcrit 

perfectly predicted the onset of defiance (Fig. 3J,K AUROC = 1.00, n = 9) with 100% specificity 

and sensitivity. Our model results predicted that changing key system parameters to decrease 20 

the B.A.H. below the critical threshold will result in successful treatment of defiant bacteria. To 

demonstrate this, we took three different AMP prodrugs with distinct linker sequences (Table S1) 

with increasing kcat values for OmpT to decrease the B.A.H. below BAHcrit, which allowed us to 

successfully treat previously defiant populations of bacteria (Fig. S3). These findings are 

important for the successful design and administration of prodrug therapies, which may be 25 

improved by optimizing fundamental pharmacokinetic parameters. 
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Figure 3. Predicting bacterial defiance with a dimensionless constant. (A) Schematic 

depicting competing rates between bacteria growth, prodrug activation, and bacteria death with 

the relevant parameters. Illustrative graph showing the "switch" like behavior that occurs at a 

critical BAH (BAHcrit) threshold (bacterial defiance = 1 when BAH > BAHcrit, susceptibility = 0 when 5 

BAH < BAHcrit) (B) Model prediction (dashed line) and experimental validation (blue dots) of 

bacteria outcome as a function of BAH to validate the critical defiance value BAHcrit. (C–E) Model 

simulations of bacteria outcome as a function of BAH for treatment durations 24, 48, and 72 hours. 

(F–I) Model simulations of bacteria outcome versus BAH by controlling four parameters: r, kcat, 

Km, and Bmax. In each panel, one of these four variables is fixed while the others are changing. (J) 10 
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Classifying bacteria into defiant and susceptible populations based on BAH. (K) Receiver-

operating characteristic (ROC) analysis using BAH to classify populations as defiant based on 

bacteria-driven parameters (r and kcat/Km). 

Combating bacterial defiance with prodrug biological circuits 

Our model revealed that bacterial defiance arises during prodrug monotherapy when 5 

environmental parameters, as represented by a dimensionless constant, crosses a critical 

transition BAH value. To combat bacterial defiance, we therefore sought to design a multi-prodrug 

approach to eliminate defiant bacteria that would otherwise resist treatment to a single prodrug 

(Fig. 4A). To do this, we recognized that the bacterial switch from susceptibility to defiance could 

be considered as behaving analogously to electronic transistors – transistors allow input current 10 

(Iin) to pass (Iout) when the gate voltage (G) crosses a threshold, whereas with AMP prodrugs, 

input bacteria (Bin) survive treatment (Bout) when the BAH (gate) crosses a critical value (Fig. 4B). 

Under this analogy, we postulated that multiple prodrug biological transistors could be used to 

construct logical operations (i.e., AND, OR, NOT gates) that allow for the design of integrated 

biological circuits that output state “0” (i.e., bacterial death) for all possible inputs. These biological 15 

circuits would then be representative of a multi-prodrug strategy to eliminate bacteria even when 

input BAH variables (i.e., temperature, nutrient level, enzyme activity) would result in a state of 

defiance for a single prodrug. To accomplish this, we designed complementary N-type and P-type 

transistors, which are required to construct all possible logic gates40. N-type transistors allow input 

current to pass when the gate signal is above a defined threshold, whereas P-type transistors 20 

allow current to pass when the gate signal is below a defined threshold. We constructed N-type 

transistors with our AMP prodrug system, which allowed input bacteria (Bin = 1) to survive (Bout = 

1) when the BAH is above BAHcrit which we used to define the gate threshold (i.e., BAH > BAHcrit 

equivalent to G = 1; BAH < BAHcrit equivalent to G = 0) (Fig. 4B). To create P-type transistors, we 

synthesized heat-triggered liposomes41 (Fig. S4) loaded with the antibiotic ampicillin42, which was 25 
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released at temperatures above 37oC to kill bacteria (i.e., Bout = 0) (Fig. 4C). Above this critical 

temperature, treatment with AMP prodrugs leads to bacterial defiance (i.e., BAH > BAHcrit or G = 

1) and E. coli survive prodrug treatment by proliferating significantly faster than prodrug 

activation43. We therefore defined temperatures above 37 oC as corresponding to G = 1 and below 

as G = 0 for our P-type biological transistor to match inverse gate values for our N-type biological 5 

transistor. These results demonstrated that antimicrobial drugs could be modeled with similar 

input and output characteristics compared to N-type and P-type transistors. 

 

Figure 4. Building biological transistors with prodrugs (A) Logic circuit schematic depicting 

a function that universally outputs 0 for all possible combinations of three binary inputs. Inputs are 10 
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controlled by environmental variables including bacterial nutrients (brown circles and triangles), 

ambient temperature (thermometers), and substrate specificity (red substrate = high specificity, 

blue substrate = low specificity). Depicted parameter values represent experimental conditions. 

Truth table for universal circuit input-output combinations. (B) Schematic and truth table showing 

how the AMP prodrug behaves analogously to N-type transistors. Electronic N-type transistors 5 

allow the input current (Iin) to pass when the gate voltage (G) is high. Similarly, the N-type prodrug 

transistor allows the input bacteria (Bin) to survive when the gate signal (G) is high (i.e., G = 1 

when BAH > BAHcrit). (C) Schematic and truth table showing how the heat-triggered, drug loaded 

(black squares) liposomes (black circle) behave analogously to P-type transistors. Electronic P-

type transistors allow the input current (Iin) to pass when the gate voltage (G) is low. Similarly, 10 

heat-triggered, drug-loaded liposomes allow the input bacteria (Bin) to survive (Bout = 1) when the 

gate signal (G) is low (i.e., G = 0 when temperature < Tcrit). All truth tables depict binary input-

output combinations. 

 To demonstrate the use of multiple prodrug transistors in biological circuits capable of 

killing defiant bacteria, we selected three variables (i.e., bacterial nutrients, temperature, linker 15 

substrate kcat) that independently influence bacteria-prodrug competition to act as circuit inputs 

(i.e., A, B, and C respectively). For each circuit input, we assigned the value 0 or 1 by fixing all 

other variables and choosing one condition that enabled bacterial survival (i.e., IN = 1 when BAH 

> BAHcrit) and one condition that resulted in bacterial death (i.e., IN = 0 when BAH < BAHcrit). We 

then designed a biological circuit to kill bacteria (i.e., OUT = 0) under all eight combinations of 20 

nutrient (LB Broth = 0% or 2%), temperature (T = 30 oC or 37 oC), and linker substrate (kcat = 7 x 

107 s-1 or 2 x 106 s-1) conditions while using three AND gates and one NOT gate (Fig 4A). 

Electronic AND gates are created by placing two transistors in series; similarly, we sequentially 

dosed bacteria with two prodrugs, each with corresponding BAH values to represent the gate 

inputs (i.e., A and B). We controlled the corresponding BAH value for each prodrug with the linker 25 
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substrate sequence (e.g., A or B = 0 when kcat = 7 x 107 s-1, A or B = 1 when kcat = 2 x 106 s-1) and 

tested all four combinations of the two prodrugs (i.e., AB = 00, 01, 10, and 11). When exposed to 

all four possible inputs, bacteria only survived the condition with two low kcat prodrugs (i.e., AB = 

11), which matched the ideal outputs of an AND gate (Fig. 5B). These results show that dosing 

multiple prodrugs in sequence reduces the fraction of bacterial populations that survive (e.g., one 5 

prodrug = 50% survival, two prodrugs = 25% survival, etc.). Whereas the AND gate comprised 

prodrugs in series, we demonstrated one implementation of an OR gate by splitting a population 

of bacteria in half (i.e., separate wells), dosing each with a different prodrug during the same time 

interval (i.e., in parallel) and recombining the bacteria post-treatment. Using this circuit, bacteria 

survived in any case where at least one half of the population was dosed with low kcat prodrug 10 

(i.e., AB  = 01, 10, or 11), matching the ideal outputs of an OR gate (Fig. 5C). We created a NOT 

gate by using a P-type transistor comprising ampicillin-loaded heat-triggered liposomes, which 

caused bacteria to die at high temperatures (i.e., IN = 1) and survive at low temperatures (i.e., IN 

= 0). (Fig. 5D). These results show that heat-triggered liposomes can be used as a fail-safe to kill 

bacteria above the critical temperature representing the onset of the defiance phenotype. To 15 

validate the multi-prodrug circuit, we incubated populations of bacteria under each of the eight 

environmental conditions with three prodrugs: (1) an AMP prodrug with fixed kcat/Km, (2) an AMP 

prodrug with kcat/Km determined by input C, and (3) a heat-triggered, drug-loaded liposome (Fig. 

4A). Whereas a single prodrug only eliminated bacteria in half of the input cases (Fig. 5E), our 

circuit autonomously eliminated bacteria under all eight combinations of the three environmental 20 

signals (Fig. 5F). These results demonstrate that by utilizing the transistor-like properties of 

prodrugs, we can design and administer biocircuits that combat bacterial defiance.  
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Figure 5. Combating bacterial defiance with a logic-based prodrug circuit. (A) Bacterial 

viability assay validating the function of a prodrug-based AND gate. Schematic depicts two 

prodrug transistors arranged in series. Blue substrate represents low preference (kcat) for bacterial 

protease OmpT (blue = low activity), and red substrate represents high preference (kcat) for 5 

bacterial protease OmpT (red = high activity). (B) Bacterial viability assay validating the function 

of a prodrug-based OR gate. Schematic depicts two prodrug transistors arranged in parallel. For 

AND and OR, input values were controlled with substrate sequence, where the substrate with 

high kcat/Km corresponds to BAH = 0 and the substrate with low kcat/Km corresponds to BAH = 1. 

Statistical comparisons are made with 00 condition. (C) Bacterial viability assay validating the 10 

function of a prodrug-based NOT gate. Schematic depicts heat-triggered liposome (black circle) 

loaded with drug (black squares = ampicillin). BAH = 0 corresponds to temperature of 30 oC and 

BAH = 1 corresponds to 37 oC. All truth tables depict ideal binary input-output combinations. (D) 

Bacterial viability assay quantifying the outcome of a single prodrug in the context of different 
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environmental conditions. (E) Bacterial viability assay demonstrating the eight outputs of the 

autonomous circuit. (F) Representative CFU images for single prodrug and multi-prodrug 

treatment (scale bar = 4 mm). Error bars represent standard deviation (n = 3). * < 0.05, ** < 0.01, 

*** < 0.001, and **** < 0.0001. 

 5 

DISCUSSION 

The rising threat of antibiotic failure has motivated the classification of resistance 

mechanisms to improve the design of future treatment strategies. In this work, we identified a 

prodrug-specific subclass of resistance, which we named defiance. To study bacterial defiance, 

we synthesized an AMP prodrug that was activated by bacterial protease activity and successfully 10 

killed E. coli. However, we found that this prodrug failed in conditions where the bacteria grew 

faster than the rate at which they activated the drug. We developed a mathematical model of the 

bacteria-prodrug competition and derived a dimensionless constant (BAH), which we used to 

perfectly predict the onset of the defiance phenotype. These studies revealed that both 

environmental (e.g., temperature, available nutrients) and pharmacokinetic (e.g., activation rate 15 

kcat) parameters can be tuned to engineer successful prodrug therapies. In future work, this 

information could be leveraged to improve the efficacy of existing prodrugs by tuning the prodrug 

decay constant (i.e., biological half-life), which directly changes the BAHcrit value. Alternatively, 

the catalytic efficiency of the prodrug substrate could be tuned to change the BAH value and 

increase the probability of success, which has been previously demonstrated by engineering 20 

prodrug substrates with higher affinity for the enzymatic target 44, 45.  

In our study, insights into bacterial defiance were elucidated in the context of AMP 

prodrugs that activate by an extracellular mechanism of action. We anticipate that this 

phenomenon of defiance also extends to prodrugs that are intracellularly activated, which 
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represent the second major category of prodrugs46. To account for intracellular activation, our 

model would include a transport rate term to account for prodrug diffusion across cell membranes 

47. The implications of our model will likely still hold if prodrug transport is not the rate limiting step 

(i.e., represents a separate mechanism by which bacteria can escape treatment) and is greater 

than the rate of prodrug activation. This is a reasonable assumption given that the rates of drug 5 

diffusion across membranes 48, 49 are on the order 1010–1017-fold higher than the typical range of 

prodrug activation rates 50, 51. 

By comparison to established forms of resistance, prodrug defiance could occur from 

either genetic or phenotypic changes. For example, both phenotypic resistance (i.e., non-inherited 

resistance) and tolerance are acquired under specific conditions that affect growth rate, such as 10 

in biofilms 6, 52. By contrast, inherited resistance arises from genetic mutations that alter key 

bacterial processes including metabolism, enzymatic activity, and drug efflux pumps 53. In our 

studies, we demonstrated that environmental conditions (i.e., temperature, nutrient levels) affect 

the defiance phenotype; however, it is also likely that the onset of defiance could also arise from 

genetic mutations that affect E. coli growth rates or cleavage activity or proteases54-56. Our findings 15 

suggest that prodrugs currently used in the clinic may fail due to the onset of bacterial defiance. 

For example, the nitroimidazole class of antibiotics (e.g., metronidazole, dimetridazole, tinidazole, 

etc.), which is used to treat anaerobic bacteria (e.g., Enterococcus species, Clostridium species, 

Helicobacter pylori, etc.) represent prodrugs that are activated by bacterial reductases 57. Genetic 

studies have revealed that bacterial resistance to nitroimidazole antibiotics is caused by either 20 

partial or complete reduction in expression of genes (e.g., rdxA, frxA, etc.) encoding the 

reductases that activate the prodrug 58-60. These changes in the activating enzyme would 

decrease the rate of prodrug activation, thereby resulting in a reduced overall BAH, that if below 

BAHcrit for the system, would result in defiance. 
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As bacteria-activated prodrugs are an emerging strategy to treat antibiotic resistant 

infections 9, our work may provide strategies for preventing defiance-related resistance 

mechanisms in new and existing prodrugs. To propose strategies for treating prodrug defiance, 

we leveraged the transistor-like behavior of prodrugs to design a multi-drug circuit to eliminate 

defiant bacteria that would normally survive the treatment of a single prodrug. In these 5 

experiments, we tested eight discrete combinations of three variables (e.g., nutrients, 

temperature, and linker substrate) and showed that the multi-drug logic circuit effectively 

eliminated bacteria in all eight conditions. In future work, different variables (e.g., O2, pH, relative 

biodistribution, etc.) could be included to increase the range of possible treatment conditions. This 

would require a quantitative understanding of the relationship between the variable and how it 10 

affects key components of the BAH (i.e., r or kcat). Ideally, these variables will proportionally 

influence either the growth rate or the enzymatic activity of the bacteria, such as how increasing 

substrate efficiency increases kcat, which creates one critical value (BAHcrit). By contrast, variables 

that influence growth rate or enzyme activity with multiple critical values (i.e., inflection points) 

limit the range of applicability. For example, higher temperatures increase both growth rate and 15 

enzymatic activity, but above critical temperatures, protein enzymes denature, resulting in 

irreversible loss of activity 61. However, these values are beyond relevant biological values and 

do not limit the applicability of these prodrug treatments to normal physiological conditions.  

Here, we quantitatively studied the mechanism of prodrug defiance and revealed logic-

based strategies for successfully treating bacteria. We envision that this body of work will motivate 20 

the development of new prodrugs and improve the clinical administration of existing prodrugs, 

ultimately helping to reduce the burden of antibiotic failure. 

 
 
 25 
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EXPERIMENTAL PROCEDURES 
Protease Cleavage Assays 
All protease cleavage assays were performed with a BioTek Cytation 5 Imaging Plate Reader, 
taking fluorescent measurements at 485/528 nm (excitation/emission) for read-outs measuring 
peptide substrates terminated with FITC (Fluorescein isothiocyanate). Kinetic measurements 30 
were taken every minute over the course of 60 – 120 minutes at 37 C. Tobacco Etch Virus 
protease (TEVp), along with its substrate and buffer was obtained from Anaspec, Inc. (Fremont, 
CA). Activity RFU measurements were normalized to time 0 measurement, and as such represent 
fold change in signal. Outer Membrane Protease T (i.e., OmpT, Protease 7) was purchased from 
Lifespan Biosciences (Seattle, WA). OmpT fluorescent peptide substrate was custom ordered 35 
from Genscript (Piscataway, NJ). 
 
Bacterial culture and cytotoxicity measurement 
DH5α Escherichia coli were a gift from Todd Sulchek's BioMEMS lab at Georgia Tech. E. coli 
were cultured in LB broth (Lennox) at 37 C and plated on LB agar (Lennox) plates. LB broth was 40 
purchasd from Millipore Sigma (Burlington, MA) and LB agar was purchased from Invitrogen 
(Carlsbad, CA). AMP and locked AMP were custom ordered from Genscript (Piscataway, NJ). 
See Table S1 for more information. Bacteria were grown to a concentration of 109 CFU/mL before 
being used for experiments. Concentration was estimated by measuring the OD600 of the bacterial 
suspension, and assuming an OD600 of 1.000 corresponds to a concentration of 8 x 108 CFU/mL. 45 
Bacterial cell viability was measured by making eight 10-fold serial dilutions, and plating three 10 
uL spots on an LB agar plate. Plates were incubated overnight at 37C, and CFUs were counted. 
Untreated bacteria CFU counts served as control for 0% cytotoxicity, and bacteria + IPA (or 0 
countable CFUs) served as control for 100% cytotoxicity.  
 50 
Liposome Preparation 
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DPPC and MPPC were purchased from Avanti Polar Lipics, inc. The heat-triggered NOT gate 
formulation was composed of DPPC:MPPC at the molar ratio 9:1, and were evaporated in 
cholorform to produce a lipid film. Films were rehydrated in 100% water containing 100 mg/mL 
ampicillin and were sonicated for 20 minutes. Lipid formulations were then purified using a PD-10 
desalting column (GE Healthcare) and size was measured via dynamic light scattering (DLS, 5 
Malvern). 
 
Computational model 
The ODE modelling and solutions were performed in MATLAB 2016b. Code can be found in 
supplementary information. 10 
 
Statistical Analysis 
Statistical analysis was performed using statistical packages included in GraphPad Prism 6. To 
assess the significance of increase in signal due to protease cleavage, we used a two-way 
ANOVA (without repeated measures) followed by Sidak's multiple comparisons test. A one-way 15 
ANOVA followed by Dunnett's multiple comparisons test was used to compare experimental 
means to cells only control bacterial viability assays. Two-way ANOVA followed by Sidak's 
multiple comparisons test used to compare experimental means to control for bacterial cytotoxicity 
at multiple starting concentrations. 
 20 
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SUPPLEMENTARY INFORMATION, FIGURES, AND TABLES 

 

Measuring kinetic parameters for the ODE model 

To measure drug cytotoxicity, we quantified the percent of viable bacteria when exposed to 

unlocked AMP drug doses ranging from nanomolar to millimolar concentrations and observed a 5 

spike in cytotoxicity in the micromolar range (Fig. S1A). To calculate bacterial growth rate 

constants, we incubated bacteria  in broth or water at 37 oC and measured OD600 over the course 

of 8 hours, revealing a higher growth rate in broth consistent  with published values35, 56 (3.0 > 0.1 

h-1) (Fig. S1B). To quantify enzymatic velocity, we measured proteolytic velocity (moles L-1 s-1) 

under substrate concentrations ranging from 0—200 uM and fit the Michaelis-Menten equations 10 

to this data to calculate kcat and Km (Fig. S1C). Using these measured parameters (Table S2), we 

generated kinetic curves for bacteria number and drug concentration over time. The model 

showed that after a period of initial bacterial growth, the lagging drug population eliminated the 

infection burden. While the initial reservoir of locked drug concentration was ~200 µM, the 

unlocked drug never rose above 5 µM (Fig. S1D), revealing that this system maintains the minimal 15 

drug concentration required to kill the infection. 
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Fig. S1. Measuring kinetic parameters for the ODE model. (A) EC50 measurement on a 
sample of E. coli exposed to increasing concentrations of AMP. (B) Growth rate calculation of E. 
Coli in broth and water by measuring OD at 600 nm. (C) Measuring kcat/Km from a series of 
cleavage assays incubating E. coli at a range of substrate concentrations. (D) Predicting the 5 
dynamics of the bacteria and unlocked drug population given empirical parameter values. Error 
bars are standard deviation (n = 3). 

 

 

 10 

 

 

 

 

 15 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/556951doi: bioRxiv preprint 

https://doi.org/10.1101/556951
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Estimating bacterial growth rate and enzymatic activity with parameter fitting 

To estimate bacterial growth rate (r) and enzymatic activity (kcat), we used parameter fitting 

methods to a simplified model without a prodrug (Fig. S3). In this model, the prodrug is substituted 

with a fluorescent probe (P), which is activated with the same substrate sequence as the AMP 

prodrug. To simplify the model, we defined one bacterium, with ~ 2.5 × 103 OmpT proteases per 5 

cell 62, as equivalent to one effective enzyme. The concentration of cleaved fluorescent probe is 

monitored over time, and the bacterial concentration is quantified at serial time points. We fit this 

data to the two equations modelling bacterial growth and activation of the fluorescent probe 

(Equations S1.1, S1.2).  

 
max

1
dB B

rB
dt B

 
= − 

 
  (S1.1) 10 

 cat

m

dP P
k B

dt K P
= −

+
  (S1.2) 

 

 

 

Fig. S2. Estimating bacterial growth rate and enzymatic activity with parameter fitting. (A) 15 
Schematic of model used to quantify r and kcat from bacterial cleavage assays. (B) Bacterial 
cleavage assays (blue line), from which growth rate (r) and enzyme kinetics (kcat/Km) are extracted, 
and BAH is calculated (inset). Dotted line represents model after parameter fitting. (C) Table of r 
and kcat values quantified from model in each condition with varying temperature and LB broth 
concentration.   20 
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Fig. S3. Altering drug efficacy with substrate affinity. (A) Bacteria viability assay post 24 
hour incubation with drug unlocked by various substrates. Bacterial growth = 1 if colonies were 
present after plating, and bacterial growth = 0 if there were no colonies present (n = 3). B.A.H. 5 
values extrapolated from bacteria + probe velocity measurements fitted to model. (B) Bacteria 
dynamics predicted by model given three different enzyme kinetics. Linker 1 = RRSRRV, Linker 
2 = RKTR, Linker 3 = ENLYFQG. 

 

 10 

 

Fig. S4. Validating heat-triggered liposomes. (A) Schematic depicting function of heat-
triggered, drug loaded liposomes. Circles represent liposomes, black squares represent drug 
(ampicillin). (B) Dynamic light scattering of liposome formulation to determine particle size (~35 
nm). Histogram is plotted as the mean of independent measurements (n = 3). (C) Fluorescent 15 
assay measuring the heat-triggered release of liposome contents. Liposomes were loaded with 
100 mM FITC, and heated from 25 oC to 37 oC (indicated by arrow). Grey line represents 30 oC 
control. Lines are plotted as means of independent measurements, shading represents standard 
deviation (n = 3). (D) Fluorescent assay measuring the release of FITC from heat triggered 
liposomes at various temperatures. All samples were heated to 30 oC for 10 minutes, then heated 20 
at the plotted temperature for 30 minutes. Measurements are plotted as fold change in RFU 
between final measurement and measurement at 30 oC. Error bars represent standard deviation 
(n = 3). 

 

 25 
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TABLE S1 

Name Peptide Sequence 

Locked AMP 
(linker 1) 

EEEEEEEEEEEEERRSRRVRRRRRRRRR 

Locked AMP 
(linker 2) 

EEEEEEEEEEERKTRRRRRRRRR 

Locked AMP 
(linker 3) 

EEEEEEEEENLYFQGRRRRRRRRR 

Locked AMP 
Probe 

DABCYL-EEEEEEEEEEEEERRSRRVRRRRRRRRR[Lys(5-FAM)] 

OmpT Probe DABCYL-RRSRRV-Lys(5-FAM) 

 

TABLE S2 
 5 

Variable Value Units Notes 

r 0.1—3 h-1 Bacterial growth rate 

kcat 0.7—25e10 h-1 Enzyme catalytic turnover 

Km 9e12 μL-1 Michaelis constant 

Bmax 1000 μL-1 Max bacteria concentration in tube 

a 1e11 h-1, AMP/bacteria/hr Cytotoxic efficiency, EC50 

a* 2.4e11 AMP/bacteria AMP decay 

 
 
TABLE S3 
 

Location (row, 
column) 

Temperature LB Broth 
Concentration 

r (h-1) kcat (h-1) x 1010 

A1 37C 0% 0.1 25 

A2 30C 2% 0.14 13.6 

A3 37C 2% 0.3 22 

B1 37C 4% 0.5 15 

B2 37C 6% 0.85 13.6 

B3 37C 20% 2.2 1 

C1 30C 20% 1.4 5.2 

C2 30C 66% 1.6 4 

C3 37C 66% 3 6 

 10 
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