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Abstract 
 
A critical goal in drug discovery is the rational design of therapeutics that last longer in the face of 
biological evolution. However, this goal is thwarted by the astonishing diversity and stochasticity of 
mutational paths in the clinic. Beyond biophysical predictions of thermodynamics, we present stochastic, 
first principles models of evolution built on a large in vitro dataset that accurately predict the 
epidemiologic abundance of mutations to three different drugs across multiple leukemia clinical 
trials. Our ability to forecast the prevalence of resistance mutants required an understanding of the 
likelihood of the nucleotide substitutions that cause them. Beyond leukemia, a meta-analysis of 
acquired drug resistance across prostate, breast, and gastrointestinal stromal tumors (GIST) suggests 
that drug resistance in the adjuvant setting is significantly influenced by mutation bias. Our analysis 
points towards a new design principle in rational drug discovery: when evolution favors the most 
probable mutant, so should drug design. 
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Introduction 
Since “On the Origin of the Species” in 1859, the most powerful demonstration of natural 
selection is the pervasiveness of genetic resistance following the adoption of new drugs for 
viruses, prokaryotes, eukaryotes, and cancers1–7. Thus, efforts to rationally design new drugs 
that are less susceptible to evolutionary change are urgently needed.  
 
Foundational stochastic models of evolutionary dynamics in cancer and infectious diseases 
have focused on the probability that most drug resistance mutations pre-occur in large 
populations of tumors, bacteria and viruses1,8–12. These theoretical arguments led to the 
practical insight that non-cross-resistant drug combinations are needed to combat genetic 
diversity. They also formed the basis for our current therapeutic regimens in HIV, TB, and 
cancer. However, despite this powerful example of evolution-guided therapeutic regimen 
design, drug resistance remains a problem. We posit that an important step forward involves 
using decades of improvements in evolutionary theory1,12,21,13–20 and population genetics22–24 to 
create additional design principles for drug discovery informed by evolution. We suggest that 
this might be achieved by expanding our ability to quantitatively predict which diverse resistance 
mutations can generate relapses in individual patients during treatment. 
 
Recent and classic papers in cancer and bacteria have shown that biophysical methods and 
mutagenesis screens have great value in qualitatively identifying which mutations in a protein 
might lead to clinical resistance25–27. However, a long list of possible resistance mutations is 
challenging to incorporate into drug design. Which mutations will be most clinically abundant, 
and thus constitute “must hit” variants during drug development? To answer this question, we 
must go beyond qualitative predictions of possible resistant mutant identity to quantitative 
predictions of evolutionary outcomes. Recent progress in predictive evolution has shown that 
biophysical metrics can predict cellular fitness landscapes in antibiotic resistance26, and that 
fitness effects can forecast seasonal flu trends28. These exciting steps forward led us to ask an 
unanswered question in drug resistance research: Can the diversity and distribution of 
mutations that contribute to resistance evolution be quantitatively predicted? And could those 
predictions guide drug discovery? 
 
There are two scales that combine to quantitatively determine which drug resistance variants 
arise across a population: 1) the host-level variables affecting de novo resistance generation 
and 2) the community level variables affecting the global spread of resistance.  De novo 
variables include growth rates in the presence and absence of drug (which are often measured) 
as well as mutation rate, codon structure, genetic context and pharmacology (which are seldom 
measured). Human cancers offer a unique opportunity to investigate the process of parallel de 
novo resistance evolution in individual hosts because they lack community level variables that 
affect the spread of variants across a population (Figure 1A). Thus, predictive models of 
resistance to targeted cancer therapies are an interesting first test for predictive models of the 
evolution of drug resistance variants across real world populations. 
 
The lack of a quantitative and predictive consideration of these evolutionary variables creates a 
gap in cancer patient care. In the targeted therapy of cancer, as first generation drugs are used 
and resistance liabilities are identified, drug discovery scientists have raced to develop second 
generation drugs that can target resistance mutations29–32. Second generation inhibitors can 
improve clinical outcomes in drug resistant and drug naïve patients, but vulnerabilities persist 
because patient need drives rapid drug development in the face of immature clinical data29,31,32. 
Thus, molecular design occurs before we know the true prevalence of specific mutations in the 
population. This means that solutions are offered in the clinic before the full scope of the 
resistance problem is understood. Structure-based drug design is now the industry standard to 
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create potent second generation inhibitors and has succeeded in ABL1+ leukemias30,33, 
c-KIT/PDGFR mutated GIST34, ALK/EGFR+ lung cancers35,36, RET mutants/fusions37, and TRK 
fusions38. Rational design is typically based upon the biophysics of binding to the target and key 
counter targets, but not evolution. Thus, it can often identify whether a mutation can cause 
resistance, but it can’t determine how often we would expect to see that mutation in the clinic39. 
Using evolutionary theory to prospectively identify the residues and abundances that contribute 
to resistance following real-world drug use will improve pharmaceutical design. By developing a 
broader picture of drug resistance evolution before clinical data has matured, evolutionary 
criteria may be combined with structure-function analysis to guide next generation drug 
development. 
 
In this study we parameterize stochastic, first-principles models of drug resistance. By 
systematically studying multiple variables that could affect de novo resistance generation, we 
show that predictive evolutionary modelling can forecast population patterns of drug resistance 
without requiring clinical measurements of resistant mutant specific resistance parameters. 
Moreover, we show that multiple treatment scenarios and biological architectures create 
populations that are sensitive to nucleotide substitution bias and codon path (together termed 
substitution likelihood) in the introduction of drug resistance variants in the clinic. We posit that 
next generation drug design could become more evolutionarily principled by adopting a simple 
design principle: when evolution favors the likeliest resistance mutation, so should drug 
discovery. 
 
Results 
A single salt bridge in ABL1 suggests that clinical abundance is not predicted by 
multiple fitness metrics. 
We first examined two drug resistance mutations identified in the literature that exist at the same 
amino acid in the BCR-ABL oncogene: E255. E255 forms a salt bridge interaction with K247, 
stabilizing the phosphate binding loop (P-loop) that clamps over the ATP competitive inhibitor in 
the active site of the molecule (Figure 1B). E255 can mutate to become either E255V or K, both 
of which abolish the charge interaction and promote clinical resistance to imatinib (Figure 1C), a 
BCR-ABL inhibitor used to treat patients with chronic myelogenous leukemia (CML). 
Interestingly, tallying the abundance of E255V and E255K mutations across clinical studies 
suggested that E255K was more prevalent (21 patients) than E255V (10 patients) (p<0.05, chi-
square test). 
 
Next, we sought to examine why E255K might be more prevalent than E255V. We made BaF3 
cells that harbored wild type, E255V, and E255K BCR-ABL (a common model for BCR-ABL 
targeted therapies40), and we examined their relative sensitivity to imatinib. As expected, both 
mutations provided resistance to imatinib, but E255K provided significantly less resistance than 
E255V (Figure 1D). Importantly, this difference in phenotype occurs at clinically relevant 
concentrations of imatinib, which has a Cmax of 5.3 μM and a Ctrough of 2.4 μM at steady state41. 
While further investigation into the biophysics of P-loop dynamics could reveal the molecular 
mechanism behind this difference in drug resistance, we aimed to understand how a mutation 
that is worse at conferring drug resistance (regardless of the biophysical mechanisms) might 
become more prevalent in humans. Because the less drug resistant variant appeared to grow 
out more often, we examined the relative growth rate of E255V and K in the absence of drug. If 
E255V grows significantly slower before imatinib exposure, that might help to explain its lower 
incidence in a human population. However, the relative growth rates for E255V, E255K and wild 
type BCR-ABL cells were indistinguishable (Figure 1E), despite having 80% power to detect a 
~10% growth rate difference (see GitHub). 
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Thus, we hypothesized that a mutation from E>K might be more likely to occur than a mutation 
from E>V. Examining the genetic code, E>K requires a transition from G>A, while mutating from 
E>V requires a transversion from A>T. No other single nucleotide substitutions can cause these 
two mutations. While transitions are usually more likely than transversions, mutation biases are 
known to vary across genes and cancer types. We sought a direct measurement of the mutation 
bias in ABL1 and CML. To do this, we turned to multiple data sets that have analyzed mutations 
in cancer and variation in the normal human exome. As an example, the Broad ExAC data set 
of 100,000 human exomes (see Methods, Table S1) can be used to estimate ABL1 mutation 
bias by focusing on the extremely rare variants that constitute 90% of the variation in the ExAC 
data. Using this data set we examined rare (<1/10,000) synonymous mutations, missense 
mutations, and noncoding mutations in the ABL1 gene (Figure 1F, upper). Splitting these 
mutations by nucleotide type on the transcribed strand to account for biases due to 
transcription, we quantified the nucleotide substitution biases in the ABL1 gene. The measured 
bias was consistent with a transition-transversion bias, i.e. G>A mutations were much more 
likely than A>T mutations. Moreover, it was largely invariant depending upon the exact mutation 
types utilized (synonymous, nonsynonymous, intronic) and consistent with previous literature. 
Finally, this ABL1 mutation bias also highly correlated with the mutation biases that were 
measured across the CML exome (Figure 1F, lower).  
 
We observed that the substitution likelihood of a given amino acid mutation (defined as the 
nucleotide substitution bias and the individual codon path), but not the fitness in the presence or 
absence of drug, is correlated with the clinical prevalence of E255V versus E255K. 
 
An analytical model of stochastic dynamics identifies parameter regimes in which the 
likeliest mutations can predominate. 
Because E255K was more likely to occur than E255V, but not more fit in the presence or 
absence of drug treatment, we asked whether it makes theoretical sense that a more likely 
mutation can beat a more resistant one to create de novo drug resistance.  
 
To study this, we developed a probability model for the stochastic evolutionary dynamics of a 
hypothetical drug target with two possible resistance alleles. Allele A is more resistant (more fit 
in the presence of drug) but less likely; Allele B is less resistant but more likely (Figure 2A). The 
probability that either allele drives relapse was calculated from the allele-specific probabilities of 
seeding a detectable resistance clone. In cases where both resistance clones of the two alleles 
are present, the first allele to reach clinical detection was considered to dominate relapse. This 
“race” to detection was formulated as two steps: mutation and growth. While Allele A is 
expected to grow out faster, Allele B is expected to mutate first, giving it a head start (Figure 
2B). From this model, we derived an asymptotic solution for the probability that either allele 
drives relapse (Appendix S1). 
 
We then evaluated these probabilities across a region of the effective population size/mutation 
rate parameter space to identify parameter regimes where Allele B (the less fit, more likely 
allele) is more likely to drive relapse. We refer to this phenomenon as survival of the likeliest, 
and it is strongest in the region of the phase plane with low mutation rates and a small effective 
population (Figure 2C), corresponding to populations with low heterogeneity. Here, where the 
opportunity for mutation is limited, unlikely mutants may not spawn at all, regardless of their 
fitness. Thus, under these conditions, it is more important for a resistance mutant to be likely 
than to be fit. In contrast, as mutation rate and effective population size increase, Allele A is 
more likely to dominate, reflecting a more standard survival of the fittest model. Thus, the 
degree of heterogeneity, as shaped by population size and mutation rate, determines when 
substitution likelihood can play a driving role in drug resistance epidemiology. 
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These theoretical results point towards the correlation of mutation and codon biases observed in 
real-world CML resistance incidence. The population structure of CML includes a well-
characterized leukemic stem cell population of 105-106 cells that gives rise to peripheral 
differentiated leukemic cells (Figure 2D). This hierarchy effectively restricts the population size, 
since only resistance mutations that occur in leukemic stem cells have any clinical 
consequence.  
 
Thus, CML can be placed in the “low heterogeneity” regime of the parameter space. Together, 
theory and empirical data support the idea that low heterogeneity populations are most strongly 
influenced by mutational likelihood.  
 
Epidemiologic incidences of ABL1 resistance mutations are best predicted by how likely 
they are. 
To approach this problem more comprehensively, we gathered data from hundreds of parallel 
clinical evolution experiments in BCR-ABL+ leukemias across four continents over 17 years 
(Data S1)42–47. Specifically, we identified clinical trials with clear clinical resistance criteria and 
codon level resolution. 268 high confidence clinical cases of imatinib resistance were identified 
in these studies. Tallying mutations at individual amino acid positions, we found that the 19 most 
abundant amino acid mutations account for ~95% of the resistance mutations identified (Figure 
3A). Notably, 85% of the resistance prevalence captured by this set of mutations is caused by a 
mutation other than the fittest (T315I; imatinib IC50 = 8711 nM).  
 
For each of these 19 amino acids, we generated three independent isogenic BaF3 cell lines and 
measured the IC50 of imatinib in each cell line in triplicate across 11 serial drug dilutions. (Figure 
3B). While this set of 19 clinical point mutations in ABL1 is the most systematically assembled in 
vitro data set to date (regarding clinical abundance), many of these mutations have had their 
IC50s measured in other resistance studies in other labs. Thus, the literature presents us with an 
opportunity to estimate how genetic context and experimental conditions might affect drug 
response. Supplemental Figure S1 shows that cross study correlations are high (Pearson’s 
r~0.9 or higher for four studies), but systematic shifts in slope exist between studies. This might 
suggest that the genetic drift in cell lines in an individual lab can influence drug potency and is 
consistent with recent findings48. Thus, we have an opportunity to account for the effects of 
genetic background upon drug resistance. To do this, we normalized all systematic differences 
between the data sets into one “mean” data set and combined all the data from the literature 
with our data (see Methods and Data S1). This cross-study approach leverages the genetic drift 
across cell lines to get the best estimate of the average isogenic effect of BCR-ABL mutations.  
 
Beyond genetic background normalized IC50 measurements, we also measured the drug-free 
growth rates of all ABL1 mutants from 6-10 independent lentiviral infections (Figure S2A). Many 
independent infections were critical because the growth rates of individual clonal selections 
exhibit high variance. We also measured the substitution likelihood of a given amino acid 
conditioned upon a resistance mutation event (Figure 3C, see Methods and GitHub). Negative 
binomial regression was used to predict the incidence of individual resistance mutants across 
the human population (Supplemental Figure S2B, R-markdown file on GitHub). After 
considering all possible single variable models, we built multivariate models, identifying the best 
N-variable model by leave-one-out-cross validation (LOOCV) (Figure S2C). A two-variable 
model built on normalized IC50 values and substitution likelihood (Figure 3D) fit the data well, 
exhibiting a Pearson correlation between model-predicted and observed values of r = 0.76. This 
model outperformed one built on normalized IC50 values and drug-free growth rates (Figure 3E), 
with a correlation of r = 0.27. While the statistical model suggested that the amount of drug 
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resistance and the substitution bias were both significant and predictive (Figure 3D/E and Figure 
S2C, R-markdown file in GitHub), substitution likelihood was the more significant predictor of 
clinical abundance (p=3.3e-5 for substitution bias vs p=0.016 for IC50). To verify that our result 
wasn’t overfit, we also identified a likely independent data set of the abundance of different 
ABL1 mutations that is curated by the Sanger Institute. While these mutations have a less clear 
clinical provenance than our analysis, we decided to use them as a “test set” because they had 
considerably more data. The same two variables performed well in this independently generated 
model (Figure 3F, Supplemental Figure S2D). However, in case our data has any overlap with 
the Sanger Institute data, we also verified that the results for substitution likelihood were similar 
when our counts were subtracted from the Sanger Institute counts (p<0.0001 in the same 
bivariate regression model). The reproducibility in a second data set highlights the significance 
of substitution likelihood as the most important predictive variable. 
 
Thus, substitution likelihood, rather than drug resistance, is the more significant variable 
predicting the relative abundance of the 19 mutants that account for 95% of the clinical 
mutations in BCR-ABL for patients with CML. 

 
A stochastic, first principles, multi-mutation model of three inhibitors predicts the clinical 
prevalence of resistance mutations across ABL1. 
Our experiments and epidemiologic analysis indicated that an understanding of substitution 
likelihood is necessary to predict the clinically-observed distribution of specific resistance 
mutations. Because of this, we wanted to know if we could predict the frequency of mutations 
from a mechanistic model built from first principles.  
 
To do this, we first identified a simple, clinically-parameterized model of CML treatment that 
incorporates hematopoietic stem cell division and differentiation49. To adapt the system to our 
question, we added our 19 resistance variants of interest to the model (Figure 4A). Each mutant 
was parameterized with an allele-specific substitution probability and a drug kill term. The drug 
kill rates measured in our in vitro experiments were linearly scaled by the ratio of net growth 
rates of BaF3s and in vivo LSCs, under the assumption that the relative size of the resistance 
phenotype was preserved across the in vitro and in vivo systems. We used cell-based 
measurements in the presence of human serum to appropriately scale drug exposures to the 
effective in vivo levels (see Methods and Appendix S2). 
 
Importantly, this methodology does not rely on fitting the model to the prevalence of specific 
resistance mutations. Therefore, it only requires a mechanistic model of treatment (i.e. 
birth/death rates), a list of candidate mutations (which could be generated from structure-based 
design or mutagenesis), measurements of substitution likelihood and a tractable in vitro system 
to measure the effects of putative resistance mutations. 
  
We simulated this system of 60 differential equations stochastically (Figure 4B) for 10,000 
virtual CML patients treated with imatinib (see Methods). Stochasticity allows the potential for 
random mutation to seed each resistant variant. Each patient was assigned a pharmacokinetic 
profile from clinically-observed distributions of in vivo drug concentration50. Similarly, patient-
specific tumor detection sizes were drawn from real-world distributions51 (Appendix S2). Across 
these 10,000 simulations, we totaled the number of in silico patients that relapsed with each 
mutation. 
 
We repeated this process of measuring IC50s for all 19 resistance variants, simulating 
pharmacokinetic profiles, and parameterizing an evolutionary model, for second-generation 
BCR-ABL inhibitors nilotinib and dasatinib. Both TKIs have been previously evaluated in 
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frontline clinical trials. This allowed us to appraise our predictive model with in vitro data for a 
total of three clinically-evaluated drugs (Figure 4C). 
 
Importantly, we ran simulations for a null model without substitution likelihood, where individual 
amino acid changes were assigned the same probability, and compared its predictive value to 
that of a model parameterized with substitution likelihood. In examining the distribution of 
mutations across the ABL1 kinase for imatinib, nilotinib, and dasatinib, a model that considered 
substitution biases was required to accurately predict the abundances of individual mutations 
(Figure 4D/E; Pearson’s correlation r=0.68 without substitution likelihood vs r=0.86 with). 
 
While our model was quantitatively accurate, clinical data for resistance to frontline nilotinib and 
dasatinib suffers from low counts (0-3 counts in most cases) and wide confidence intervals. 
Thus, to more completely evaluate our models’ predictive power in the context of these two 
drugs, we also examined categorical accuracy, i.e. the ability to say whether a mutation should 
or shouldn’t show up in a clinical trial. To do this, we downsampled our dasatinib and nilotinib 
simulations to reflect the size of the frontline trial. These virtual clinical trial results informed a 
binary classifier model – if a mutation was present, it was categorized as resistant; if not, 
sensitive. We repeated this for 103 simulations, each time constructing an ROC curve to quantify 
the accuracy of the binary classifier against the real-world clinical data. Averaging the ROC 
curves across all simulations (Supplemental Figure S3A/B), we found that substitution likelihood 
considerably improved the models’ ability to classify a variant as likely to occur as a resistance 
mutation (AUC = 0.79 without mutation bias vs 0.91 with, for dasatinib; AUC = 0.65 vs 0.82, for 
nilotinib). Given that these predictive models were not fit to any patient data, they could be used 
to forecast which resistance mutations are identified in any CML clinical trial a priori. 
 
These results demonstrate that a first principles, mechanistic model can predict the distribution 
of mutations seen in the clinic if it contains parameters that account for substitution likelihood. 
This improvement is consistent across imatinib, dasatinib, and nilotinib and underscores the 
importance of substitution likelihood in these models.  To our knowledge, no previous 
mechanistic model has ever quantitatively predicted the epidemiologic diversity of clinical 
resistance mutations. 
 
Evolution-guided drug design could inform principled decisions between mutational 
vulnerabilities during drug development. 
To further investigate how an evolutionarily-informed approach to drug design might affect the 
clinical prevalence of resistance, we conceived of a hypothetical BCR-ABL TKI, which we call 
“maxitinib”, designed with mutational liabilities in mind. Given the same number of mutational 
vulnerabilities in a target (here we use five), maxitinib would be designed via structure-based 
drug design to target the five most likely mutants. If this could be achieved, how would that alter 
the overall incidence of resistance that arises in the clinic? 
  
To test this, we simulated a cohort of in silico frontline CML patients for several target profiles of 
our hypothetical drug maxitinib; we name these distinct versions of maxitinib K1 to K15. Each of 
the hypothetical drugs K1-K15 denote a version of maxitinib that was designed to target a 
different set of five of the 19 previously-discussed imatinib-resistant mutants. The top five most 
likely mutants are sensitive to maxitinib K1; the second through sixth most likely mutants are 
sensitive to maxitinib K2; and so on (Figure 5A, see Methods and GitHub for model description).  
 
The model predicts a 67% reduction in resistance incidence relative to imatinib for maxitinib K1, 
the hypothetical chemotype that targets the five most likely mutants (Figure 5B). This reduction 
is larger than either nilotinib or dasatinib (even though there are at least as many mutations that 
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confer resistance to maxitinib K1 as nilotinib or dasatinib), and predicts that the evolutionarily 
optimal chemotype would prevail in the clinic.  
 
Considerations relating to structure, conformation, and intermolecular interactions complicate 
drug design and would sometimes preclude the development of a drug that targets exactly the N 
most likely resistance mutants. However, as small molecules are screened, and tradeoffs are 
identified, evolutionary models could choose a molecular profile that predicts less resistance 
when used in the clinic. Our models suggest that designing molecules in this way could create 
second generation inhibitors that minimize drug resistance (Figure 5C). 
 
Evolution of resistance to drugs used in the adjuvant setting is shaped by substitution 
likelihood. 
Figure 2 identifies conditions where predictive evolutionary modeling would benefit from 
measurements of substitution likelihood. While CML is one example where the survival of the 
likeliest plays a strong role in resistance evolution, a small tumor-initiating population is not the 
only condition that restricts effective population sizes in cancer. In adjuvant therapy, a large 
tumor is surgically debulked before systemic treatment is initiated. Population bottlenecks 
created by surgical resection can considerably reduce the genetic diversity of tumor cells that 
escape excision. We therefore hypothesized that survival of the likeliest could play a role in the 
development of resistance to drugs used in the adjuvant setting.  
 
Using a mechanistic model of tumor evolution (see Supplemental Appendix S3), we simulated 
tumors treated with adjuvant therapy for varying levels of pre-surgery tumor dissemination and 
completeness of excision. In the model, 100 initial drug-sensitive cells divide until the tumor 
reaches detection (109-1012 cells), at which point the majority of the tumor is excised and the 
remaining population (105-108 cells) is treated with a small molecule inhibitor. During division 
events, sensitive cells can spawn one of ten resistant alleles, each with randomly preassigned 
allele-specific resistance and substitution likelihood parameters. For each combination of tumor 
size pre-and post-surgery, 50,000 patients were simulated, and their dominant resistance alleles 
were tallied upon relapse (i.e. when the resistant population reached a detectable size). The 
Spearman rank correlation between allele frequency and degree of drug resistance (Figure 6A, 
top) as well as allele frequency and substitution likelihood (Figure 6A, bottom) were calculated 
for each combination of population size pre-and post-surgery. The simulation results show that 
when 107 or fewer cancer cells remained following resection, the allele frequency at relapse was 
more highly correlated with substitution likelihood than the degree of drug resistance conferred 
(Figure 6B). 
 
To evaluate our theoretical results, we turned to clinical data for indications where adjuvant 
therapy is often used. In particular, we analyzed on-target resistance mutations in c-KIT for 
gastrointestinal stromal tumor (GIST) patients treated with imatinib, in ESR1 for breast cancer 
patients treated with ER antagonists, and in AR for prostate cancer patients treated with AR 
antagonists (Figure 6C). Some characteristics of the available clinical data complicate the 
analysis. Resistance data for GIST, breast cancer, and prostate cancer were generally not 
delimited by whether the drug was administered adjuvantly. This ambiguity gives rise to a less 
pure, more conservative data set, since our meta-analysis likely includes some late stage 
patients with advanced metastatic disease. This uncertainty, combined with the fact that drug 
fitness data is unavailable for most resistance variants in the three drug targets, precludes an 
analysis identical to the one taken in CML described above. 
 
We instead asked whether the variation in resistance allele frequency across GIST, breast 
cancer, and prostate cancer could be explained under the null hypothesis that mutation bias is 
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uncorrelated with clinical abundance. Previous studies have developed null models useful for 
detecting transition-transversion biases, even in cases of adaptive evolution24,52. We expanded 
this approach to develop a more complete model of mutational biases by considering the six 
possible pyrmidine substitutions (C>A, C>G, C>T, T>A, T>C, and T>G, here after referred to as 
mutation classes). First, we determined the distribution of resistance variants for c-KIT, ESR1, 
and AR for GIST, breast cancer, and prostate cancer, respectively, and noted the mutation 
class associated with each resistance-conferring mutation (Figure 6D and Data S2). We then 
simulated the same distribution under the null assumption that differences in the probabilities of 
mutation class do not affect resistance allele prevalence (see Supplemental Figure S4A/B and 
Methods). That is, we randomly reassigned the mutation class associated with each variant and 
then tallied the number of patients in each mutation class. Under these null simulations, all 
variation in resistance allele frequency must be explained by factors other than mutation bias, 
e.g. fitness effects, since substitution likelihood is artificially decoupled from resistance 
frequency. If mutation bias plays no role in the real-world allele frequency, then our observed 
allele frequency distribution should resemble those generated by this null model. We calculated 
the Mahalanobis distance from the mean for both the simulated and the observed data 
(Supplemental Figure S4C) and found that the observed counts of mutation class were more 
extreme than those simulated under the null model (empirical p-value 0.02, Figure 6E). 
 
To validate this approach, we similarly evaluated two other data sets. The first was the 
resistance mutation data from our CML meta-analysis, where we anticipated a significant result 
implicating the role of mutation bias in allele frequency. Indeed, our analysis found an empirical 
p-value of 0.018 (Supplemental Figure S4E/F). The second was resistance mutation data for 
EGFR+ non-small cell lung carcinomas (NSCLCs) treated with erlotinib or gefitinib. There is little 
reason to suspect that NSCLC would have a limited effective population size, and resistance is 
dominated by T790M. Thus, NSCLC serves as a negative control. As expected, the observed 
resistance variant distribution for EGFR does not significantly differ from those generated under 
the null model (empirical p-value 0.38, Supplemental Figure S4G/H). These results indicate that 
the approach outlined here is a sensitive and specific method to identify cases where 
substitution likelihood shapes drug resistance evolution, and where next generation drug design 
could be informed by analysis of mutation biases and substitution likelihood. 
 
Discussion 
In this study, we demonstrate the ability to accurately predict real-world resistance evolution 
with amino acid scale resolution. In cases of restricted genetic diversity, as in populations with 
small effective sizes, this predictive power requires understanding of the mutational pathways 
and substitution probabilities that generate the variation upon which selection acts. To be clear, 
it is inaccurate to say that drug selection is unimportant. Certainly, a highly likely variant that 
grows out during treatment must still harbor a drug resistance phenotype, and our analysis of 
CML epidemiological data (Figure 3) indicates that the degree of resistance conferred by a 
mutation is still a significant predictor of mutation prevalence. However, in CML, the ability to 
forecast amino acid prevalence requires an understanding of the stochastic molecular events 
that generate the evolution of resistance. Beyond CML, our theoretical and empirical analyses 
(Figure 6) indicate that drugs used in the adjuvant setting provide multiple additional examples 
where resistance evolution can be shaped by substitution likelihood. 
 
Beyond the retrospective analyses of molecular evolution, our study highlights the ability to 
prospectively forecast macroscopic evolutionary outcomes. Recent studies have shown the 
power of multiscale modeling in forecasting the evolutionary trajectories of influenza evolving 
immune escape17 and predicting fitness landscapes of bacteria evolving resistance against 
trimethroprim26. Our work builds on these findings by predicting epidemiology-scale resistance 
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from molecular insights. While in vitro parallel evolution experiments have been able to 
qualitatively nominate resistance variants (Supplemental Figure S5), ours is the first study to 
quantitatively predict interpatient heterogeneity with a completely mechanistic model of 
intratumoral heterogeneity. Moreover, we concretely demonstrate how these models could be 
used to optimize rational drug design. 
 
Despite their power, our predictions are an imperfect step forward. There is unfit variance in our 
statistical model of the epidemiological data (the predictions from our mechanistic model has a 
correlation of 0.86 with the clinical data). While the accuracy of these models is surprisingly high 
given their simplicity and the fact that none of the mechanistic parameters were fit to clinical 
data, there are other variables that could explain the small amount of residual variance. The first 
is that the genetic background outside of ABL1 can alter the level of phenotypic drug resistance. 
The second is that in vivo niches can provide protection from drug effects and/or exposure 53,54, 
and if the fitness as determined by the niche is variable across patients or mutations, this could 
strongly contribute to existing uncertainty in our predictions. Finally, it is also possible that non-
genetic single cell heterogeneity contributes to the residual error in the model55. Yet despite 
these potential sources of unmeasured error, we explain most of the clinical phenotypes that we 
aimed to predict. 
 
The basic concept of evolutionarily informed treatment regimens that minimize drug resistance 
is not new. Theoretical evolutionary models10,11 support empirical clinical evidence56 that non-
cross-resistant combination therapy can result in durable responses for some patients. 
However, effective non-cross-resistant drug combinations are not available for many cancers 
and multiple drugs can cause overlapping off-target toxicities. To our knowledge, our study is 
the first to identify a quantitative evolutionary design principle for single agent therapy. When 
effective population sizes are small, evolution favors the most likely resistance mutation and so 
should drug discovery (Figure 5). This is not simply a matter of trying to reduce the absolute 
number of mutational paths to drug resistance. Prospective therapeutic leads can be prioritized 
for evolutionary optimality even when they have an identical absolute number of mutational 
liabilities (as in Figure 5A). Moreover, even when a combination can be identified, treatment 
non-adherence and other resistance risks would suggest that optimal single agents should 
enable combinations that are less evolutionarily risky. This would suggest that optimized single 
agents could help create optimized drug combinations. 
 
Predictive evolutionary models could also inform the design of frontline drugs with second- and 
third-generation drug liabilities in mind. Frontline therapies select for resistance variants that 
eventually determine the dominant tumor genotype upon treatment failure. The patient is then 
treated with next-generation drugs, if any exist, until they too fail. Every iteration of this process 
determines the genetic background that the next drug will face, as each treatment selects for 
subclones among the population of cells resistant to the treatment before it. Moreover, next 
generation drug discovery is currently entirely empirical as physicians and drug discovery 
scientists simply take the next step based upon the liabilities of their last step. Cancer offers a 
unique opportunity to escape this arms race because every new patient presents with drug 
naïve disease. Predictive modeling could be used to design drugs that will select for the most 
favorable genotype for the next line of treatment, and allow clinicians to more successfully 
shape the broader evolutionary trajectory of a tumor. Thus our discoveries could enable 
concepts like collateral sensitivity57 by providing a model-driven framework. 
 
In diseases with a high degree of heterogeneity, even one resistance liability is sufficient to 
virtually guarantee treatment failure. This is not true when genetic diversity is limited by the 
effective population size. In this study, we’ve predicted that targeting the most likely clinical 
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mutations during drug design is a potential strategy to minimize the prevalence of resistance 
across a population. This raises the possibility that targeted therapies that are used in the 
adjuvant setting may be designed differently than therapies developed to treat large metastatic 
disease burden. In the future, we believe that rational drug design will be synonymous with 
evolutionarily-informed drug design. Predictive evolutionary models will enable precision 
medicines that are more efficacious and longer lasting in the face of biological change. 
 
Methods 
Construct generation 
Following recombination-based cloning into pLVX-IRES-Puro, site directed mutagenesis was 
utilized to make the correct mutation in BCR-ABL. Mutation identity was confirmed by Sanger 
sequencing. 
 
Cell line generation 
BaF3 cells were ordered from DSMZ. BaF3 cells are maintained in 1640 (Sigma Aldrich) 
+10%FBS(Fisher)+1%Penn/Strep (Life Technologies) and 10ng/mL IL-3 (PeproTech). Lentiviral 
constructs were co-transfected with calcium phosphate alongside third generation packaging 
vectors that were pseudotyped with VSV-G. Viral supernatant was collected at 24 hours58. All 
BCR-ABL mutations were infected at limiting MOI to achieve the lowest viral titer required to 
produce IL-3 independence. After selection in the absence of IL-3, we tested for puromycin 
resistance. An assumption of BaF3 usage is that the sensitivity or resistance seen in a BaF3 cell 
is a reasonable approximation of the resistance and sensitivity seen in a human leukemia. This 
assumption has been shown to be a reasonable approximation in numerous prior studies30,33. 
Moreover, the number and diversity of mutants that were explored in this study could not be 
achieved by using primary samples. The rarity of CML and the limited patients observed make 
the collection of primary tissue harboring all mutations essentially impossible. All engineered cell 
lines were sequenced in the BCR-ABL kinase domain to confirm their identity. 
 
IC50 measurements 
Eleven serial dilutions were performed. Imatinib, dasatinib and nilotinib were all obtained from 
Selleck Chem. Starting points for dilutions were 10uM, 100nM, and 1uM respectively. 3000 
BaF3 cells with the indicated mutation were seeded into a 96 well plate in 150ul of RPMI 1640 
(Sigma Aldrich) +10%FBS (Fisher)+1%Penn/Strep (Life technologies). After addition of the 
drugs, cells were left in the incubator for 72 hours. At 72 hours Cell Titer Glo (Promega) was 
added at 1:4. This is less than the manufacturer’s instructions, because we have verified the 
sensitivity of the assay with this reduced protocol. Plates were read via a luminescence plate 
reader at 72 hours. 
 
Serum protein shifts 
HSA-AAG containing medium is RPMI 1640 growth medium with the addition of 341 mM HSA 
(human serum albumin, Sigma, Cat # A9511) and 1 mg/ml AAG (human a1-acid glycoprotein, 
Sigma, Cat # G9885). All medium is sterilized by filtration through a 0.22mm membrane. 
Following the formulation of HSA-AAG media, identical IC50 curve experiments are performed. 
The fold change of the IC50 across 3 mutants of varying affinities (M244V, E255V, and WT BCR-
ABL were used). Serum protein binding decreases the free drug concentration and shifts IC50 
values to numbers that are directly comparable to measured in vivo pharmaceutical exposures. 
 
Exome data analysis 
Data from the broad ExAC consortium (http://exac.broadinstitute.org/) for ABL1 was 
downloaded as of 11-17-2017. Raw data and processing code are available in Figure 3 in our 
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GitHub repository: 
https://github.com/pritchardlabatpsu/PredictiveResistanceEvolution/tree/master/Figures/Figure3/
Mutation%20probabilities  
We tallied each of the 12 possible nucleic acid substitutions (not six) because transcription 
coupled repair has been shown to cause biases in the mutational spectrum of the transcribed 
strand, and ABL1 is widely expressed. We also compared the distribution of substitutions across 
ABL1 in the ExAC data to genome wide mutation biases measured in CML exomes, as well as 
simple transition/transversion biases from the literature, and we did not observe significant 
differences. 
 
Clinical data 
Clinical data was identified from six studies and the Wellcome Trust. The Sanger Wellcome 
Trust download was as of 12-01-2017. (https://cancer.sanger.ac.uk/cosmic/csamples/details). 
 
Theoretical Model of Competing Resistance Alleles: See Appendix S1 and code repository. 
.m files are included under the Figure 2C folder on GitHub. 
https://github.com/pritchardlabatpsu/PredictiveResistanceEvolution/tree/master/Figures/Figure2 
 
Epidemiological Analysis. See Supplemental R markdown files and code repository for Figure 
3. Files were written in R markdown. Raw data and analysis code (.Rmd and knitted .html files) 
are provided on GitHub: 
https://github.com/pritchardlabatpsu/PredictiveResistanceEvolution/tree/master/Figures/Figure3 
 
CML Model: See Appendix S2 and code repository. All raw input data, source code, and 
simulation outputs are available on GitHub for Figures 4. .m files, simulation outputs, and .Rmd 
files for imatinib, nilotinib, and dasatinib are available in the Figure 4 folder: 
https://github.com/pritchardlabatpsu/PredictiveResistanceEvolution/tree/master/Figures/Figure4 
The analysis of maxitinib in figure 5 can be found at GitHub: 
https://github.com/pritchardlabatpsu/PredictiveResistanceEvolution/tree/master/Figures/Figure5 
 
Adjuvant Therapy Model: See Appendix S3 and code repository. All code, parameters, 
outputs, and a LaTeX file describing the models are available at 
https://github.com/pritchardlabatpsu/PredictiveResistanceEvolution/tree/master/Figures/Figure6 
 
Clinical adjuvant therapy analysis: We compiled count data for resistance variants in c-KIT, 
ESR1, and AR for GIST, breast cancer, and prostate cancer, respectively, and classified each 
by the associated pyrmidine substitution (C>A, C>G, C>T, T>A, T>C, and T>G; mutation class). 
For cases when an amino substitution could be caused by multiple single nucleotide mutation 
paths, we classified them when nucleotide substitution resolution was available in the literature 
and excluded the counts otherwise. Under the null model, these variants were randomly 
reassigned mutation classes and the sum of all counts for each mutation class was noted. Since 
our data only considers mutations that result in an amino acid change, the mutation class 
assignments were weighted by the number of mutations in each class that are nonsynonymous 
(68 C>A; 76 C>G; 58 C>T; 64 T>A; 59 T>C; 68 T>G). 10,000 replicates were simulated for 
each data set. The Mahalanobis distance of each simulation from the mean of all simulations 
was calculated; the Mahalanobis distance of the observed mutation class counts from the 
simulation mean was also determined. An empirical p-value was obtained as 𝑝𝑝 =  𝑟𝑟/𝑛𝑛, where 𝑛𝑛 
is the number of simulations and 𝑟𝑟 is the number of simulations with a Mahalanobis distance 
greater than or equal to that of the observed data. Identical approaches were taken for 
resistance variant counts for ABL1 in CML and EGFR in NSCLC. Raw data and processing 
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code are available in our GitHub repository: 
https://github.com/pritchardlabatpsu/PredictiveResistanceEvolution/tree/master/Figures/Figure6 
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Figure 1: A salt bridge in ABL1 suggests that clinical abundance may not be predicted by 
the amount of drug resistance conferred.  
(A) A schematic of factors affecting the evolutionary dynamics of drug resistance. Without 
transmission, intra-tumoral variables are the only factors involved in cancer evolutionary 
dynamics and are limited to the host level. (B) ABL1 crystal structure. Ribbon diagram of 
secondary structure is shown. Image is zoomed in on the kinase P-loop. Loss of the E225-K247 
salt bridge is associated with imatinib resistance. (C) Prevalence of E255K/V mutations in six 
imatinib clinical trials. A cross-trial sum is included, p-value is for chi-square test. (D) Imatinib 
IC50 curves for BCR-ABL transformed BaF3 cells. Relative viability is measured by Cell-Titer Glo 
relative to a DMSO control. N=3 per concentration, error bars are standard deviations. (E) 
Relative growth rates of BCR-ABL BaF3 variants. Each dot is an independent transduction and 
selection. N=11-14, error bars are standard deviations. (F) Upper: Codon structure of E255 and 
various measurements of nucleotide substitution frequencies. These measurements include 
counts of substitutions across the ABL1 gene identified in the Broad ExAC database; noncoding 
substitutions in ABL1 identified in the Broad ExAC database; and substitutions across the 
exome in CML patients. Lower: Different measurements of substitution likelihood were highly 
correlated. 
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Figure 2: An analytical model of stochastic dynamics identifies where survival of the 
likeliest can occur.  
(A) Evolutionary landscape for a theoretical drug target gene with two potential resistance 
alleles. Allele A is assigned a high fitness and low probability; Allele B is assigned a low fitness 
and high probability. (B) A schematic of a general timeline for mutation and outgrowth for either 
allele given the assigned evolutionary profiles. In cases where both mutations occur, the first 
resistant clone to reach detection drives relapse. (C) A phase plane of the results of our 
probability model across many mutation rates and effective population sizes. Color indicates 
whether Allele A (dark blue) or Allele B (red) is more likely to drive relapse. In regions where 
Allele B is more dominant, we expect mutation bias to be a primary evolutionary force. (D) 
Schematic of general leukemic cell population hierarchy. Only mutations in leukemic stem cells 
can form stable resistance clones, effectively limiting the population size to 105-106. 
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Figure 3: Epidemiologic incidences of ABL1 resistance mutations are best predicted by 
how likely they are. 
(A) A crystal structure ribbon diagram of the ABL1 kinase domain and distribution of the 19 most 
prevalent BCR-ABL resistance mutants. These 19 variants account for approximately 95% of 
resistance mutations observed clinically in the six studies from Figure 1C. (B) Drug-dose 
response was measured by Cell-Titer Glo and is plotted in the heatmap. N=3 independent 
infections for all 20 cell lines (WT and mutants). Each BCR-ABL BaF3 line was dosed with 11 
serial dilutions of imatinib in triplicate. All cell lines are ordered by sensitivity. Raw data and 
code are available on GitHub. (C) A table that includes values used to build regression models: 
the frequency of each resistant mutant as determined by our clinical meta-analysis, imatinib 
IC50s (in nM) normalized for genetic background, and substitution likelihood calculated from 
analysis of the Broad ExAC data in Figure 1F. (D) Observed versus predicted plot for a 
regression model of clinical mutation prevalence (determined by our clinical meta-analysis) 
regressed against growth rate in the presence of drug and substitution likelihood (which is the 
final model).  Points are specific ABL1 mutations; x-values are their observed frequency and y-
values are their frequency predicted by the model. Pearson correlation for observed and 
predicted prevalences is r = 0.76. (E) Observed versus predicted plot (as in Figure 3D) for the 
regression model of clinical mutation prevalence built only on the growth rates in the presence 
and absence of imatinib. Pearson correlation r = 0.27. (F) Observed versus predicted plot (as in 
Figure 3D) for independent Sanger Institute data set. Pearson correlation r = 0.71. 
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Figure 4: A stochastic, first principles, multi-mutation model of imatinib treatment 
predicts the clinical prevalence of resistance mutations across ABL1. 
(A) Schematic of stochastic CML evolutionary dynamic model. The initial deterministic model of 
three differential equations (shaded in blue) is from Fassoni et al. 201838 and is fit to phase 3 
clinical data. We reformulated a stochastic version of 60 differential equations parameterized 
from Fassoni et al. and our clinical data. Leukemic stem cells alternate between proliferating (P-
LSC) and quiescent state (Q-LSC). P-LSC give rise to differentiated leukemic cells (DLC). P-
LSCs may also spawn a resistant subclone P-LSCi when dividing. The allele-specific mutational 
probability is given by ρi. Note that we added the ability for all 19 resistance mutations to occur, 
such that there are 20 sets of differential equations with three populations per mutant. The 
system is solved stochastically. (B) An example stochastic simulation of the model described in 
Figure 4A. (C) Simulations were conducted (as in Figure 4B) 10,000 times for each of three 
BCR-ABL inhibitors: imatinib, dasatinib, and nilotinib. Resistance alleles were tallied across 
simulations for the three drugs.  (D) Simulation results for the stochastic model without mutation 
bias (uniform ρi). The Pearson correlation between observed and predicted prevalences is r = 
0.68. (E) Simulation results for the stochastic model with mutation bias (allele-specific ρi). The 
Pearson correlation is r = 0.86. 
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Figure 5: An evolution-guided approach drug design is predicted to minimize resistance 
prevalence 
(A) Resistance profiles for versions of a hypothetical drug, “maxitinib”. Maxitinib K1 targets the 
first through fifth most likely mutants; K2 targets the second through sixth most likely; and so on. 
(B) Maxitinib simulation results. Orange bars represent the resistance incidence of each 
maxitinib chemotype relative to imatinib. Red points indicate mutational liability, defined as the 
sum of conditional substitution likelihoods of mutations that confer resistance to each 
chemotype. (C) A proposed workflow for evolution guided drug design. Potential resistance 
mutations could be generated by structure driven simulation, unbiased mutagenesis, or CRISPR 
base editors. Mutations can then be analyzed as single IC50s or in a pooled format. Indication 
specific information on the substitution biases would require the mutational signature for a given 
disease. Fitness and bias estimates could then be coupled into a mechanistic model of drug 
resistance that would predict the clinically most abundant resistance mutations. 
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Figure 6: Restricted genetic heterogeneity in adjuvant therapy gives rise to survival of 
the likeliest 
(A) Adjuvant therapy evolutionary model example results. Simulation results for population 
before resection Mpre=109 and after resection Mpost=105 (left) and for Mpre=1012 and Mpost=108 
(right).  Points represent specific resistance variants and ρ values are the Spearman rank 
correlation between frequency and degree of resistance (top) and frequency and substitution 
likelihood (bottom).  (B) Summary of simulation results for various values of Mpre and Mpost.  
Colors represent the difference in correlation (substitution likelihood ρ –resistance ρ) for each 
set of parameters. (C) Schematic detailing clinical meta-analysis. For drug targets in GIST, 
prostate cancer, and breast cancer, acquired resistance mutations were tallied and classified by 
pyrmidine substitution. (D) Observed resistance allele distribution for the three cancer types. 
Colors indicate the pyrmidine substitution associated with each mutation. (E) The distribution in 
Figure 6D was simulated by reassigning the mutation class of each variant. Each simulations’ 
Mahalanobis distance from the distribution of all simulations was calculated. The histogram 
shows the distribution of those distances. The red arrow indicates the Mahalanobis distance of 
the observed data from the simulated null distribution (distance = 12.74). The empirical p-value 
of the real-world data is 0.02, suggesting that the observed data cannot be explained by a null 
model with no differences in substitution likelihood. 
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