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Summary 
Theoretical treatments of evolutionary dynamics tend to model the probability that a single 
“resistant” species will arise in a population. However, experimental studies have identified a 
diversity of mutations that can lead to genetic resistance. By quantitatively predicting mutations 
that occur across an entire drug target during treatment, we identify and bridge a fundamental 
gap in drug resistance theory: that nucleotide/codon substitution biases can dictate which 
resistant variants arise in the clinic. We find that the likeliest mutation can beat the most 
resistant mutation. This creates a new paradigm in drug resistance that we term “survival of the 
likeliest”. We use epidemiological evidence in leukemia, isogenic experiments, stochastic 
dynamics, and large-scale simulations to support this theory. In addition, this work has strong 
implications for drug design because not all resistance liabilities are created equal. In 
pathogenic populations that exhibit survival of the likeliest, exploiting the least likely evolutionary 
path can minimize resistance across a population during widespread drug use, even when a 
vulnerability-free molecule or combination cannot be made. 
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Introduction 
Over the last 150 years, the most powerful demonstration of natural selection is the 
pervasiveness of genetic resistance following the adoption of new drugs for viruses, 
prokaryotes, eukaryotes, and cancers1–7. There are two scales that determine which variants 
arise: the host-level variables affecting de novo resistance generation and the community level 
variables affecting the global spread of resistance. The de novo variables include growth rates 
in the presence and absence of drug (which are often measured) as well as mutation rate, 
codon structure, genetic context and pharmacology (which are seldom measured). Importantly, 
human cancers offer a unique opportunity to investigate the process of parallel de novo 
resistance evolution in individual hosts because they lack community level variables that can 
spread variants across a population (Figure 1A).  
 
In examining the theory surrounding de novo drug resistance evolution, foundational stochastic 
models of evolutionary dynamics have stressed the strong probability that drug resistance 
mutations pre-occur in large tumors1,8–12. Resistance probabilities for some processes can be 
calculated analytically1,10,13, and have been used to offer important principles of successful 
combination therapy10. Moreover, deeper measurements of tumor heterogeneity have measured 
levels of genetic diversity that are consistent with theory14. Experimental studies of genetic drug 
resistance typically examine the identity and number of the individual resistant mutations that 
are identified in patients. Then, they test the amount of drug resistance conferred in an 
experimental system15–17. But the fact that multiple resistance mutations have been detected 
and validated across patients with a given disease suggests that it is not only the single fittest 
mutation that grows out. Thus, a fundamental gap in our theoretical understanding of resistance 
evolution keeps us from rationalizing the molecular diversity that is observed in the clinic.  
 
This gap in theory also creates a gap in patient care. In the targeted therapy of cancer, as first-
generation drugs are used and resistance liabilities are identified, drug discovery scientists have 
raced to develop second-generation drugs that can target resistance mutations18–21. Second-
generation inhibitors can improve clinical outcomes in drug resistant and drug naïve patients, 
but vulnerabilities persist because unmet need drives rapid drug development in the face of 
immature patient data18,20,21. Thus, molecular design occurs before we know the true prevalence 
of a specific mutation in the population. Structure-based drug design is now the industry 
standard to create potent second-generation inhibitors and has succeeded in ABL1+ 
leukemias19,22, c-KIT/PDGFR mutated GIST23, ALK/EGFR+ lung cancers24,25, and TRK 
fusions26. But rational design is based upon the biophysics of binding and not evolution. Thus, it 
can often identify whether a mutation can cause resistance, but it can’t determine how often we 
would expect to see that mutation in the clinic27. Using evolutionary theory to prospectively 
identify which mutations (and with what frequency) occur after real-world drug use will improve 
pharmaceutical design by developing a broader picture of drug resistance evolution before 
clinical data has matured and the true population incidences are known.  
 
In this study, we observed that in the 17-year parallel evolution experiment of global imatinib 
treatment for chronic myelogenous leukemia (CML), the substitution probability of a mutation in 
BCR-ABL is more significant in shaping the real-world incidence of resistance mutations than 
the degree of resistance conferred by the mutation. We found that the survival of the “fittest”, or 
most drug resistant, allele can be beaten in the real world by the survival of the “likeliest” allele. 
We also reformulated and expanded a clinically parameterized stem cell model of imatinib 
treatment as a multi-mutation stochastic process. Then we used parameters that were fixed 
from in vitro experiments to demonstrate that we can a priori predict the distribution of real-world 
mutations from a mechanistic model and in vitro data. This model can forecast the global 
abundance of specific amino acid mutations from first principles evolutionary mechanisms 
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(without fitting to prevalence data) with surprising accuracy (Spearman correlation 0.78). Using 
our evolutionary model to examine current second-generation inhibitors as well as hypothetical 
drugs, we show that an evolutionarily-enabled approach to structure-based drug design could 
prioritize the most likely mutants to grow out in a population, and not just potency as measured 
by changes in free energy. Using evolution to guide drug design can allow one to select the 
evolutionarily optimal mutation when forced to choose between similar thermodynamic or 
phenotypic outcomes. 
 
Results 
A single salt bridge in ABL1 suggests that clinical abundance may not be predicted by 
the amount of drug resistance conferred. 
We first examined two drug resistance mutations identified in the literature that exist at the same 
amino acid in the BCR-ABL oncogene: E255. E255 forms a salt bridge interaction with K247, 
stabilizing the phosphate binding loop (P-loop) that clamps over the ATP competitive inhibitor in 
the active site of the molecule (Figure 1B). E255 can mutate to become either E255V or K, both 
of which abolish the charge interaction and promote imatinib resistance (Figure 1C). 
Interestingly, tallying the abundance of E255V and E255K mutations across clinical studies 
suggested that E255K was more prevalent (21 patients) than E255V (10 patients) (p<0.05, chi-
square test).  
 
Next we sought to examine why E255K might be more prevalent than E255V. We made BaF3 
cells that harbored wild type, E255V and E255K BCR-ABL (a common model for BCR-ABL 
targeted therapies), and we examined their relative sensitivity to imatinib. As expected, both 
mutations provided resistance to imatinib, but E255K provided significantly less resistance to 
imatinib than E255V (Figure 1D). While further investigation into the biophysics of P-loop 
dynamics could reveal the molecular mechanism behind this difference in drug resistance, we 
aimed to explore how a mutation that is worse at conferring drug resistance (regardless of the 
biophysical mechanisms) might become more prevalent in humans. Because the less drug 
resistant variant appeared to grow out more often, we examined the relative growth rate of 
E255V and K in the absence of drug. If E255V grows significantly slower before imatinib 
exposure, that might help to explain its lower incidence in a human population. However, the 
relative growth rates for E255V, E255K and wild type BCR-ABL cells were indistinguishable 
(Figure 1E).  
 
Thus, we hypothesized that a mutation from E>K might be more likely to occur than a mutation 
from E>V. Examining the genetic code, E>K requires a transition from G>A, while mutating from 
E>V requires a transversion from A>T. No other single nucleotide substitutions can cause these 
two mutations. While transitions are usually more likely than transversions, we sought a direct 
measurement of the mutation bias in ABL1. To do this, we turned to the Broad ExAC data (see 
Methods, Supplemental Table 1) to estimate ABL1 mutation bias. Using this data set we 
identified 224 synonymous mutations in the ABL1 gene (Figure 1F). Splitting these mutations by 
nucleotide type on the transcribed strand to account for biases due to transcription coupled 
repair, we quantified the nucleotide substitution biases in the ABL1 gene. The measured bias 
was consistent with a classic transition-transversion bias, i.e. G>A mutations were much more 
likely than A>T mutations (34 times more frequently observed), supporting the hypothesis that 
E255K mutations are more probable than E255V mutations. 
 
An analytical model of stochastic dynamics identifies parameter regimes in which 
survival of the likeliest can occur. 
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Because E255K was more likely to occur than E255V but not more fit in the presence or 
absence of drug treatment, we asked whether it makes theoretical sense that a more likely 
mutation can beat a more resistant one to create de novo drug resistance. To do this we 
developed a probability model for the stochastic evolutionary dynamics of a hypothetical drug 
target with two possible resistance alleles. Allele A is more resistant (more fit in the presence of 
drug) but less likely; Allele B is less resistant but more likely. The probability that either allele 
drives relapse was calculated from the allele-specific probabilities of seeding a detectable 
resistance clone. In cases where both resistance clones of both alleles are present, the first 
allele to reach clinical detection was considered to dominate relapse. This “race” to detection 
was formulated as two steps: mutation and growth. While Allele A is expected to grow out 
faster, Allele B is expected to mutate first, giving it a head start (Figure 2B). From this model, we 
derived an asymptotic solution for the probability that either allele drives relapse (Supplemental 
Appendix 1). 
 
We then evaluated these probabilities across a region of the effective population size/mutation 
rate parameter space to identify parameter regimes where Allele B (the less fit, more likely 
allele) is more likely to drive relapse. This phenomenon of “survival of the likeliest” is strongest 
in the region of the phase plane with low mutation rates and a small effective population (Figure 
2C), corresponding to populations with low heterogeneity. In low heterogeneity circumstances 
where the opportunity for mutation is limited, unlikely mutants may not spawn at all, regardless 
of the degree of fitness. Thus, under these conditions, it is more important for a resistance 
mutant to be likely than to be fit. However, as mutation rate and effective population size 
increase, Allele A is more likely to dominate, reflecting the classic “survival of the fittest” model 
of natural selection. Thus, the degree of heterogeneity, as shaped by population size and 
mutation rate, determines when substitution bias can play a driving role in drug resistance 
evolution. 
 
These theoretical results point towards the apparent significance of mutation probability 
observed in real-world CML resistance incidence. The population structure of CML includes a 
well-characterized leukemic stem cell population of 105-106 cells that give rise to peripheral 
differentiated leukemic cells (Figure 2D). This hierarchy effectively restricts the population size, 
since only resistance mutations that occur in leukemic stem cells have any clinical 
consequence. Thus, CML can be placed in the “low heterogeneity” regime of the parameter 
space. Together, theory and empirical data support the principle that low heterogeneity 
populations are most strongly influenced by “survival of the likeliest.” 
 
Epidemiologic incidences of ABL1 resistance mutations are best predicted by how likely 
they are. 
 
To approach this problem more comprehensively, we gathered data from hundreds of parallel 
clinical evolution experiments in BCR-ABL+ leukemias across four continents over 17 years 
(Supplemental Data 1)28–33. Specifically, we identified clinical trials with clear clinical resistance 
criteria and codon level resolution. 268 high confidence clinical cases of resistance were 
identified in these studies. Tallying mutations at individual amino acid positions, we found that 
the top 19 amino acid mutations account for ~95% of the resistance mutations identified (Figure 
3A). Notably, 85% of the resistance prevalence captured by this set of mutations is caused by a 
mutation other than the fittest (T315I; imatinib IC50 8711 nM). We generated three independent 
isogenic BaF3 cell lines for each of these 19 amino acids and measured the IC50 of imatinib in 
each cell line in triplicate across 11 serial drug dilutions (Figure 3B). While this set of 19 clinical 
point mutations in ABL1 is the most systematically assembled in vitro data set to date (regarding 
clinical abundance), many of these mutations have had their IC50s measured in other resistance 
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studies in other labs. Thus, the literature presents us with an opportunity to estimate how 
genetic context and experimental conditions might affect drug response. Supplemental Figure 1 
shows that cross study correlations are high (Pearson’s rho~0.9 or higher for four studies), but 
systematic shifts in slope exist between studies. Systematic shifts across studies might suggest 
that the genetic drift in cell lines in an individual lab can influence drug potency and is consistent 
with recent findings34. Thus, we have an opportunity to account for the effects of genetic 
background upon drug resistance. To do this, we normalized all systematic differences between 
the data sets into one “mean” data set and combined all the data from the literature with our 
data (see Methods and Supplemental Data 1). This cross-study approach leverages the genetic 
drift across cell lines to get the best estimate of the average isogenic effect of BCR-ABL 
mutations.  
 
Beyond IC50 measurements normalized for genetic background, we also measured the drug-
free growth rates of all ABL1 mutants from 6-10 independent infections (Supplemental Figure 
2A). Many independent infections were critical because individual clonal selections have a high 
variance. For each amino acid substitution, we also calculated the mutational probability given a 
resistance mutation event occurs (Figure 3D, see Methods, GitHub repository). Negative 
binomial regression was used (Supplemental Figure 2B, R-markdown file on GitHub) to predict 
the incidence of individual resistance mutants across the human population. After considering 
all possible single variable models, we built multivariate models by identifying the best N-
variable model by leave-one-out-cross validation (LOOCV) (Supplemental Figure 2C). A two-
variable model that contained normalized IC50 values across 19 isogenic mutant cell lines and 
the substitution biases in individual codons within the drug target was well supported by the data 
(Figure 3E). While the statistical model suggested that the amount of drug resistance and the 
substitution bias were both significant and predictive (Figure 3E and Supplemental Figure 2, R-
markdown file in GitHub) the substitution bias across individual codons was the most significant 
predictor of the abundances of individual resistance mutations across all patients (p=3.3e-5 for 
substitution bias vs p=0.016 for IC50). Notably, a regression model that included only growth 
rates in the presence and absence of drug (no substitution bias) was much less predictive 
(Figure 3C). To verify that our result wasn’t overfit, we also identified an independent data set 
curated by the Sanger Institute that catalogs the abundance of different ABL1 mutations. While 
the mutations recorded in this data set have a less clear clinical provenance than our analysis, 
we decided to use them as a “test set” because they had significantly more data. The same two 
variables performed well in this independently generated model (Figure 3F, Supplemental 
Figure 2D), highlighting the significance of substitution bias as the most important predictive 
variable. 

 
A stochastic, multi-mutation model of imatinib treatment predicts the prevalence of 
resistance mutations across ABL1. 
 
Our experiments and epidemiology indicate that substitution probabilities that incorporate both 
nucleotide substitution biases and the mutational paths dictated by codon architecture are 
necessary to predict the distribution of specific mutations that grow out. Because of this, we 
wanted to know if we could predict the distribution of mutations from a mechanistic model built 
from first principles. We began by identifying a simple, clinically-parameterized model of CML 
hematopoietic stem cell division and differentiation35. To adapt the system to our question, we 
modified the model with our 19 resistance variants of interest (Figure 4A). Each mutant was 
parameterized with an allele-specific substitution probability (conditioned upon a resistance 
mutation event occurring) and drug kill term. The drug kill rates measured in our in vitro 
experiments were linearly scaled by the ratio of net growth rates of BaF3s and in vivo LSCs, 
under the assumption that the qualitative phenotype of resistance was preserved across the in 
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vitro and in vivo systems. We used cell-based measurements in the presence of human serum 
to appropriately scale drug exposures to the effective in vivo levels (see Methods and 
Supplemental Appendix 2). 
 
Importantly, this methodology does not rely on fitting the model to the prevalence of specific 
resistance mutations. Therefore, it only requires a mechanistic model of treatment (i.e. 
birth/death rates), a list of candidate mutations (which could be generated from structure-based 
design or mutagenesis), measurements of mutation bias and a tractable in vitro system to 
measure the effects of putative resistance mutations. 
  
We simulated this system of 60 differential equations stochastically (Figure 4B) for 10,000 
virtual CML patients treated with imatinib (see Methods). Each patient was assigned a 
pharmacokinetic profile from clinically-observed distributions of in vivo drug concentration36. 
Similarly, patient-specific tumor detection sizes were drawn from real-world distributions37 (See 
Supplemental Appendix 2). Across these 10,000 simulations, we totaled the number of in silico 
patients that relapsed with each mutation. 
 
We conducted these simulations for a null model without substitution bias, where individual 
mutations were assigned the same probability, and compared its predictive value to that of a 
model parameterized with mutation biases. When we compared our results to previous clinical 
trials, we found that the total percentage of patients who acquired any resistance to imatinib was 
consistent with the literature in both sets of simulations (resistance incidence of 7.8% in model 
with mutational bias; 7.4% in model without). However, when we examined the distribution of 
mutations across the ABL1 kinase, a model that considered substitution biases was required to 
accurately predict the abundances of individual mutations (Figure 4C,D; Pearson’s correlation = 
0.78 vs 0.14). 
 
A stochastic model of second-generation inhibitors predicts a decrease in the amount of 
drug resistance 
 
A fundamental question in drug development is whether next-generation drugs with improved 
pharmacology and fewer in vitro resistance liabilities create better evolutionary outcomes when 
they are moved to the frontline. Beyond surrogate clinical endpoints, we asked whether a drug 
with fewer mutational liabilities can decrease the incidence of drug resistance in a population. If 
even imperfect drugs with clear mutational failure points can improve the outcomes of drug 
resistance evolution in patients, then coupling evolutionary theory to drug design could have 
immense practical output. 
 
This is especially interesting because second-generation BCR-ABL inhibitors nilotinib and 
dasatinib have been previously evaluated in frontline clinical trials. BCR-ABL malignancies are 
the only indications in which the incidence of resistance mutations for first- and second-line 
inhibitors have been evaluated in head to head trials. Interestingly, while it has been claimed 
that nilotinib decreases the amount of drug resistance mutations32, this has not been 
demonstrated via the use of statistical hypothesis testing. In both the ENESTnd phase 3 trial32 
for frontline nilotinib treatment and the DASISION phase 3 trial30 for frontline dasatinib 
treatment, the reduction in resistance mutation frequency in the second-generation TKI arms vs 
imatinib control failed to reach statistical significance (p>0.1, chi-square test). Notably, the 
prevalence of resistance mutations in either arm of both trials was small (21/283 = 7.4% and 
11/282 = 3.9% for imatinib and nilotinib, respectively, in the ENESTnd trial; 18/260 = 6.9% and 
17/259 = 6.6% for imatinib and dasatinib, respectively, in the DASISION trial). Given the low 
frequency of resistance, both trials were considerably underpowered to detect a significant 
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difference in resistance incidence between the imatinib and second-generation TKI arms (Figure 
5A). With large implications, but without sufficient data on clinical primary resistance to nilotinib 
or dasatinib, we turned to in vitro experiments and computational simulations to predict the 
difference in drug resistance between imatinib and second-generation TKIs. 
 
We measured nilotinib and dasatinib IC50s for the same 19 mutants and re-parameterized our 
treatment model (Supplemental Appendix 2 and GitHub). Then, we assessed the functional 
effects of protein binding upon IC50 measurements, allowing us to parameterize the birth and 
death rates across all mutants for each drug. Analysis of the entire resistance profiles of 
imatinib, nilotinib, and dasatinib (Figure 5B) across all 19 mutations yields the cumulative 
probability of any resistance-conferring mutation for each drug, a quantity we term the 
mutational liability. Performing simulations in an identical manner, we examined the overall 
proportion of patients with resistance mutations at the end of an in silico clinical trial. This allows 
us to estimate whether a second-generation drug with fewer liabilities can reduce the incidence 
of resistance when used in the frontline. The simulation results predict that nilotinib and 
dasatinib reduce the frequency of resistance relative to imatinib (Figure 5C). Notably, the 
reduction in resistance incidence reflects the mutational liability for each drug. Nilotinib, with a 
mutational liability of 0.70, yielded a 46% reduction in resistance frequency; dasatinib, with a 
mutational liability of 0.45, reduced resistance frequency by 54%. Thus, we predict that an 
appropriately powered clinical trial would be able to measure a decrease in the rate of drug 
resistance for both nilotinib and dasatinib. 
 
Evolution-guided drug design could inform principled decisions between mutational 
vulnerabilities. 
 
To further investigate how an evolutionarily-informed approach to drug design might affect the 
clinical prevalence of resistance, we imagined a hypothetical BCR-ABL TKI, which we call 
“maxitinib”, designed with mutational liability in mind. We simulated a cohort of in silico frontline 
CML patients for several target profiles of our hypothetical drug maxitinib; we name these 
distinct versions of maxitinib K1 to K15. Each of hypothetical drugs K1-K15 denote a version of 
maxitinib that was designed to target a different set of five of the 19 previously-discussed 
imatinib-resistant mutants. The top five most likely mutants are sensitive to maxitinib K1; the 
second through sixth most likely mutants are sensitive to maxitinib K2; and so on (Figure 5D). 
Except for the maxitinib-sensitive variants for each chemotype of maxitinib, drug-killing 
parameters for each mutant were identical to those of imatinib. Drug killing rates for maxitinib-
sensitive variants matched that of wild-type BCR-ABL treated with imatinib. 
 
The model predicts a 67% reduction in resistance incidence relative to imatinib for maxitinib K1, 
the hypothetical chemotype that targets the five most likely mutants (Figure 5E). The predicted 
resistance frequency of each maxitinib chemotype closely reflects its mutational liability. 
 
Considerations relating to structure, conformation, and intermolecular interactions complicate 
drug design and likely preclude the development of a drug that targets the N most likely 
resistance mutants. Nevertheless, the results demonstrate the principle that second-generation 
drugs designed to exploit differences in the probability of resistance mutations should minimize 
the prevalence of resistance in a clinical population. 
 
 
Discussion 
Previous evolutionary theory implies (based upon predictions of pre-existing mutation 
probabilities) that the single fittest drug resistant variant should be selected for during drug 
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treatment9,10,12,13,38,39. However, this “survival of the fittest” principle fails to account for the 
extraordinary diversity in resistance mutations observed in the clinic28–33,40,41. In our work, we 
show that the probability of specific amino acid substitutions is absolutely required to predict the 
prevalence of imatinib-resistant mutations (Figure 3,4). We conclude that differences in 
substitution biases can shape the structure of intra-population heterogeneity. This structure then 
determines how often individual amino acid variants arise across a population. To be clear, it is 
inaccurate to say that drug selection is unimportant. Certainly, a variant that grows out during 
treatment must be drug resistant. Our analysis of CML epidemiological data (Figure 3) indicates 
that the degree of drug resistance conferred by a mutation is still a significant predictor of 
mutation prevalence. Moreover, our theoretical model (Figure 2) identifies parameter spaces 
where we predict natural selection will play a larger evolutionary role than substitution biases. 
However, in cases where heterogeneity is limited, drug resistance will prefer the path of least 
evolutionary resistance. In circumstances where “survival of the likeliest” is the dominant 
evolutionary force, the magnitude of resistance is secondary to if and when a mutation arises. 
  
Drug resistance allows us to study parallel evolution under strong selective pressures. Previous 
work on adaptive parallel evolution has tended to discount the role of codon structure and 
biases in mutation generation in favor of natural selection42. In the population genetics literature, 
the fate of competing alleles is often referred to as clonal interference; clonal interference 
arguments tend to describe the outcome of evolution as time approaches infinity. At infinite time, 
the fittest allele will always win43,44, and so mutation is regarded as a weak evolutionary force. In 
the clinic, time is not infinite. Resistance clones only appear during the limited lifetime of the 
pathogenic population, and once the host dies, the evolutionary experiment is over. In the case 
where one resistance clone has already resulted in treatment failure, the appearance of a 
second competing resistance clone is relatively inconsequential.  
 
Some studies45–47 in systems that are as diverse as phage48 and Andean wrens49 have begun to 
challenge the notion that amino acid substitution biases don’t play a role in the evolutionary 
outcomes of traits under strong selective pressure in the real world. However, even these 
important prior studies have lacked the ability to quantify fitness differences in the presence of 
adaptive pressures (a known confounding factor)50,51, have ignored biases due to codon usage, 
or have not demonstrated quantitative relationships with real world abundances52. Here, we can 
approximate these parameters in a real-world system where parallel evolution is definitely de 
novo. Our ability to use mechanistic models built on these parameters to accurately predict 
clinical mutational abundances strongly supports the idea that evolutionary trajectories of drug 
resistance can be influenced by amino acid substitution bias. 
 
Identifying and quantifying regimes where survival of the likeliest plays a dominant evolutionary 
role is critical to the broad applicability of our work. Our model of a two-allele system 
underscores the importance of a small effective population size as a precondition for survival of 
the likeliest (Figure 2). In CML, this precondition is satisfied by the tumor hierarchy, where only 
a small population of tumor-initiating cells can seed resistant disease. Interestingly, the opposite 
seems likely in EGFR+ non-small-cell lung cancers (NSCLCs) treated with erlotinib; a literature 
survey suggests that T790M is by far the dominant resistance mutation in NSCLCs treated with 
erlotinib, and exhibits dramatic resistance in experimental systems53. However, there are other 
clinically relevant situations in which effective population sizes are likely restricted, and there are 
other cancer types that exhibit broad distributions of acquired resistance mutations in response 
to targeted therapy (i.e. GastroIntestinal Stromal Tumors, GIST)54,55. This suggests that fitness 
in the presence of drug is not the sole evolutionary factor in other indications as well. Chief 
among the variables that could restrict the effective population size in solid tumors is spatial 
heterogeneity. It is well accepted that solid tumors are not well-mixed and that, because of 
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physical and biological microenvironmental factors, only a portion of the population is mitotically 
active (Figure 6A). Only this actively dividing fraction of the tumor has the potential to seed 
resistant clones. Moreover, many therapies are given in the adjuvant setting where tumors are 
debulked surgically, and the remaining (smaller) tumor burden is then dosed to prevent relapse 
of residual tumor cells (Figure 6B). Finally, in infectious disease, transmission bottlenecks 
restrict the opportunity for a resistance mutant to be passed from one infected individual to the 
next (Figure 6C). All the aforementioned mechanisms could favor an likelier mutant over a more 
resistant one. 
  
An understanding of the biology of the disease is paramount to identifying cases where survival 
of the likeliest can benefit drug design. Most importantly, the effective population size and 
mutation rate govern the degree of heterogeneity. While an ideal drug (or drug combination) 
would inhibit all possible mutations, no liability-free inhibitor is currently approved for frontline 
use18,22. Structural constraints on molecular design can create biophysical zero-sum games in 
which the ability to gain activity against a resistance mutation in a drug target inevitably comes 
with an off-target effect or the loss of activity against another mutation in the target56–58. In the 
future, analyses like ours should help navigate these difficult tradeoffs by prioritizing chemical 
matter that targets the most likely drug resistance mutations. 
  
In circumstances where survival of the likeliest is expected to be a dominant evolutionary force 
in drug resistance, an approach like the one used in this study could be implemented by drug 
developers to predict “must-hit” resistance variants. Thermodynamic calculations and in 
vitro mutagenesis experiments (Supplemental Figure 3) can nominate potential liabilities of 
drugs27. Mutations shown to confer resistance can then be included in a computational model 
that is parameterized with allele-specific substitution biases, growth rates, and drug-kill rates to 
predict which variants will be the most prevalent. In identifying the most likely evolutionary paths 
to resistance, drug developers can focus on drug candidates that reduce the overall burden of 
resistance by hitting the most likely mutations, and not just the most thermodynamically 
unfavorable ones (Figure 6D). 
  
Our work is the first study to quantitatively predict interpatient heterogeneity with a completely 
mechanistic model of intratumoral heterogeneity. Our predictive accuracy in clinical data 
definitively shifts the paradigm in studies of drug resistance and drug design. However, our 
predictions are still an imperfect step forward. There is unfit variance in our statistical model of 
the epidemiological data, and our mechanistic model has a correlation of 0.78 with clinical data. 
While the accuracy of these models is surprisingly high given their simplicity, there are other 
variables that could explain the small amount of residual variance. The first is that the genetic 
background in a tumor outside of ABL1 can alter the phenotypic drug resistance. Moreover, in 
vivo niches can provide protection from drug effects and/or exposure59,60.  
  
In diseases with a high degree of heterogeneity, even one resistance liability in a drug design is 
sufficient to virtually guarantee treatment failure. This is not true when heterogeneity is limited, 
since it is unlikely that every point mutant will be generated in the lifetime of the pathogenic 
population. In these cases, the magnitude of liability can determine the likelihood of resistance 
arising. In this study we’ve demonstrated that mitigating mutational risk is a potentially powerful 
strategy in minimizing the prevalence of resistance. Identifying qualitative phenotypes is an 
important aspect of understanding drug vulnerabilities27, but ultimately evolutionary dynamics 
dictate what grows out in the clinic and defines what the patient needs. Quantitative evolutionary 
modeling enables us to anticipate these needs and minimize the burden of drug resistance 
across the population. 
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Methods 
Construct generation 
Following recombination-based cloning into pLVX-IRES-Puro, site directed mutagenesis was 
utilized to make the correct mutation in BCR-ABL. Mutation identity was confirmed by Sanger 
sequencing. 
 
Cell line generation 
BaF3 cells were ordered from DSMZ. BaF3 cells are maintained in 1640(Sigma Aldrich) 
+10%FBS(Fisher)+1%Penn/Strep(Life Technologies) and 10ng/mL IL-3 (PeproTech). Lentiviral 
constructs were co-transfected with calcium phosphate alongside third-generation packaging 
vectors that were pseudotyped with VSV-G. Viral supernatant was collected at 24 hours61. All 
BCR-ABL mutations were infected at limiting MOI to achieve the lowest viral titer required to 
produce IL-3 independence. After selection in the absence of IL-3, we tested for puromycin 
resistance. An assumption of BaF3 usage is that the sensitivity or resistance seen in a BaF3 cell 
is a reasonable approximation of the resistance and sensitivity seen in a human leukemia. This 
assumption has been shown to be a reasonable approximation in numerous prior studies19,22. 
Moreover, the number and diversity of mutants that were explored in this study could not be 
achieved by using primary samples. The rarity of CML and the limited patients observed make 
the collection of primary tissue harboring all mutations essentially impossible. All engineered cell 
lines were sequenced in the BCR-ABL kinase domain to confirm their identity. 
 
IC50 measurements 
Eleven serial dilutions were performed. Imatinib, dasatinib and nilotinib were all obtained from 
Selleck Chem. Starting points for dilutions were 10uM, 100nM, and 1uM respectively. 3000 
BaF3 cells with the indicated mutation were seeded into a 96 well plate in 150ul of RPMI 
1640(Sigma Aldrich) +10%FBS(Fisher)+1%Penn/Strep(Life technologies) . After addition of the 
drugs, cells were left in the incubator for 72 hours. At 72 hours Cell Titer Glo (Promega) was 
added at 1:4. This is less than the manufacturer’s instructions, because we have verified the 
sensitivity of the assay with this reduced protocol. Plates were read via a luminescence plate 
reader at 72 hours. 
 
Serum protein shifts 
HSA-AAG containing medium is RPMI 1640 growth medium with the addition of 341 mM HSA 
(human serum albumin, Sigma, Cat # A9511) and 1 mg/ml AAG (human a1-acid glycoprotein, 
Sigma, Cat # G9885). All medium is sterilized by filtration through a 0.22mm membrane. 
Following the formulation of HAS-AAG media, identical IC50 curve experiments are performed. 
The fold change of the IC50 across 3 mutants of varying affinities (M244V, E255V, and WT BCR-
ABL were used). 
 
Exome data analysis 
Data from the broad ExAC consortium (http://exac.broadinstitute.org/) for ABL1 was 
downloaded as of 11-17-2017. Data was filtered for synonymous mutations because they are 
more likely to be neutral than coding changes. Raw data and processing code are available in 
Figure 3 in our GitHub repository: 
https://github.com/pritchardlabatpsu/SurvivalOfTheLikeliest/tree/master/Figures/Figure3/Mutatio
n%20probabilities  
We tallied each of the 12 possible nucleic acid substitutions (not six) because transcription 
coupled repair has been shown to cause biases in the mutational spectrum of the transcribed 
strand, and ABL1 is widely expressed. We also compared the distribution of substitutions across 
ABL1 in the ExAC data to genome wide mutation biases measured in CML exomes, as well as 
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simple transition/transversion biases from the literature, and we did not observe significant 
differences. 
 
Clinical data 
Clinical data was identified from six studies and the Wellcome Trust. The Sanger Wellcome 
Trust download was as of 12-01-2017. (https://cancer.sanger.ac.uk/cosmic/csamples/details). 
 
Epidemiological Analysis. See Supplemental R markdown files and code repository for Figure 
3. Files were written in R markdown. Raw data and analysis code(.Rmd and knitted .html files) 
are provided on GitHub; 
https://github.com/pritchardlabatpsu/SurvivalOfTheLikeliest/tree/master/Figures/Figure3 
 
Theoretical Model: See Supplemental Appendix 1 and code repository. .m files are included 
under the Figure 2C folder on GitHub. 
https://github.com/pritchardlabatpsu/SurvivalOfTheLikeliest/tree/master/Figures/Figure2/Figure2
C 
 
CML model: See Supplemental Appendix 2 and code repository. All raw input data, source 
code, and simulation outputs are available on GitHub for Figures 4 and 5. .m files, simulation 
outputs, and .Rmd files for imatinib are available in the Figure 4 folder; 
https://github.com/pritchardlabatpsu/SurvivalOfTheLikeliest/tree/master/Figures/Figure4 
 The analysis of nilotinib, dasatinib and maxitinib in figure 5 can be found at GitHub; 
https://github.com/pritchardlabatpsu/SurvivalOfTheLikeliest/tree/master/Figures/Figure5 
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Figure 1: A salt bridge in ABL1 suggests that clinical abundance may not be predicted by 
the amount of drug resistance conferred. 
(A) A schematic of factors affecting the evolutionary dynamics of drug resistance. Without 
transmission, intra-tumoral variables are the only factors involved in cancer evolutionary 
dynamics and are limited to the host level. (B) ABL1 crystal structure. Ribbon diagram of 
secondary structure is shown. Image is zoomed in on the kinase P-loop. Loss of the E225-K247 
salt bridge is associated with imatinib resistance. (C) Prevalence of E255K/V mutations in 6 
imatinib clinical trials. A cross-trial sum is included, p-val is for chi-square test. (D) Imatinib IC50 
curves for BCR-ABL transformed BaF3 cells. Relative viability is measured by Cell-Titer Glo 
relative to a DMSO control. N=3 per concentration, error bars are standard deviations. (E) 
Relative growth rates of BCR-ABL BaF3 variants. Each dot is an independent transduction and 
selection. N=11-14, error bars are standard deviations. (F) Substitution-specific counts of 
synonymous mutations in ABL1 from the Broad Institute ExAC data and the codon structure of 
E255. Indicated codons highlight the mutational path. 
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Figure 2: An analytical model of stochastic dynamics identifies where survival of the 
likeliest can occur.  
(A) In a theoretical drug target gene with two potential resistance alleles, Allele A is assigned a 
high fitness and low probability, Allele B is assigned a low fitness and high probability. (B) A 
schematic of a general timeline for mutation and outgrowth for either allele given the assigned 
evolutionary profiles. In cases where both mutations occur, the first resistant clone to reach 
detection drives relapse. (C) A phase plane that is modeled across many mutation rates and 
effective population sizes. Color indicates whether Allele A (dark blue) or Allele B (red) is more 
likely to drive relapse. In regions where Allele B is more dominant, we expect mutation bias to 
be a primary evolutionary force. (D) Schematic of general leukemic cell population hierarchy. 
Only mutations in leukemic stem cells can form stable resistance clones, effectively limiting the 
population size to 105-106. 
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Figure 3: An analysis of epidemiologic incidences of BCR-ABL mutations.  

(A) A crystal structure ribbon diagram of the ABL1 kinase domain and distribution of the 19 most 
prevalent BCR-ABL resistance mutants. These 19 variants account for approximately 95% of 
resistance mutations observed clinically in the six studies from Figure 1C. (B) Drug-dose 
response was measured by Cell-Titer Glo and is plotted in the heatmap. N=3 independent 
infections for all 20 cell lines (WT and mutants). The range of drug resistance conferred by 
these mutations is plotted in the heatmap. Each BCR-ABL BaF3 line was dosed with 11 serial 
dilutions of imatinib in triplicate. All cell lines are ordered by sensitivity. Raw data and code are 
available on GitHub. (C) A regression model of clinical mutation prevalence based upon the 
growth rates in the presence and absence of imatinib only. X-error bars are 95% binomial 
confidence intervals of abundance counts; Y error bars are 95% CI from LOOCV in our negative 
binomial regression. (D) A table that includes IC50s (in nM) fit from the data in Figure 3B. (E) 
Observed versus predicted plots for the regression model of clinical mutation prevalence 
(determined by our clinical meta-analysis) regressed against growth rate in the presence of drug 
and mutational probability (which is the final model). X-error bars are 95% binomial confidence 
intervals of abundance counts; Y error bars are 95% CI from LOOCV in our negative binomial 
regression. (F) Observed versus predicted plots as in 3E for independent Sanger data set. 
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Supplemental Figure 1: Analysis of IC50 measurements in BCR-ABL resistance mutants 
across studies 
We analyzed the IC50 of BaF3s transduced with BCR-ABL variants as reported in other studies. 
The diagonal of the figure shows the histogram of IC50s for each study. The correlations are 
reported in the off-diagonals. In general, four studies (ours, Gozgit 2013, Zabriskie 2014, and 
Redaelli 2012) exhibit high cross-correlation (Pearson’s rho ≥ 0.88). The Wylie 2017 study was 
excluded from further analysis given its low correlation with the remaining four studies. See 
Methods and Supplemental Table 1 for explanation of the normalization procedure. 
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Supplemental Figure 2: Construction of resistance mutation prevalence model 
A statistical model was developed to explain the variance in clinical prevalence of BCR-ABL 
resistance mutations. (A) To construct the model, we considered three potential predictor 
variables: imatinib IC50 (Figure 3B), growth rate in the absence of drug (Supplemental Figure 
2A), and amino acid substitution probability (Figure 3D). (B) The amino acid prevalence 
assembled from our meta-analysis of multiple clinical trials was analyzed to identify the 
appropriate generalized linear model to use for regression. The empirical CDF of the prevalence 
count data was compared to theoretical CDFs given a Poisson (left) and negative binomial 
distribution (right). The Poisson distribution was overdispersed, while the negative binomial 
distribution appeared to agree with the empirical data and so a negative binomial regression 
model was used. (C) Validation of the regression model trained on our clinical meta-analysis 
data set. Leave-one-out cross validation was used to estimate the test error of the N-variable 
model with the lowest AIC for each N. The N=1 model includes substitution bias; the N=2 model 
includes substitution bias and IC50; the N=3 model includes substitution bias, IC50, and growth 
rate in the absence of drug. The N=2 model had the lowest estimated mean square error. For a 
complete explanation of model construction see the Figure 3 R-markdown file on GitHub. (D) 
Validation of regression model as in (C) for model trained on the Sanger Institute data set. 
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Figure 4: A mechanistic and stochastic model of CML evolutionary dynamics.  

(A) Schematic of stochastic CML evolutionary dynamic model. The initial deterministic model of 
3 differential equations (shaded in blue) is from Fassoni et al. 201835 and is fit to phase 3 
clinical data. We reformulated a stochastic version of 60 differential equations parameterized 
from Fassoni et al. 201835 and our clinical data. Leukemic stem cells alternate between 
proliferating (P-LSC) and quiescent state (Q-LSC). P-LSC give rise to differentiated leukemic 
cells (DLC). P-LSCs may also spawn a resistant subclone P-LSCi when dividing. The allele-
specific mutational probability is given by ρi. Note that we added the ability for all 19 resistance 
mutations to occur, such that there are 20 sets of differential equations with 3 populations per 
mutant. The system is solved stochastically. (B) An example stochastic simulation of the model 
described in 3A. (C) Simulation results for the stochastic model without mutation bias (uniform 
ρi). The Pearson correlation between observed and predicted prevalences is 0.14. (D) 
Simulation results for the stochastic model with mutation bias (allele-specific ρi). The Pearson 
correlation is 0.78. 
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Figure 5: Drug-specific mutational liabilities and evolution guided drug design  

(A) Power curves for nilotinib and dasatinib frontline clinical trials. It depicts the power to reach 
an alpha of 0.05 for the comparison of the total number of resistant mutants in imatinib versus 
the second line inhibitor. Labeled points indicate the power of the ENESTnd (frontline nilotinib; 
N=282 and 1-β=0.43) and DASISION (frontline dasatinib; N=259 and 1-β=0.54) phase 3 clinical 
trials. The assumed effect size was estimated from our simulation results. (B) Experimentally 
measured IC50s create measured resistance profiles for imatinib, nilotinib, and dasatinib. (C) 
Mutational liabilities (defined as the sum of conditional probabilities of resistance-conferring 
mutations) and predicted resistance frequencies for imatinib, nilotinib, and dasatinib. (D) 
Resistance profiles for versions of a hypothetical drug, “maxitinib”. Maxitinib K1 targets the first 
through fifth most likely mutants; K2 targets the second through sixth most likely; and so on. (E) 
Maxitinib simulation results. Orange bars represent the resistance incidence of each maxitinib 
chemotype relative to imatinib. Green points indicate mutational liability. 
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Figure 6: Cases of restricted heterogeneity where survival of the likeliest may be 
prominent. (A) A spatially heterogeneous tumor with mitotically active cells in the periphery and 
a quiescent/necrotic core. The effect is a reduction in the number of cells able to spawn a 
resistant subclone. (B) Adjuvant therapy involves surgically debulking the tumor, restricting the 
effective population size. (C) In infectious disease, transmission bottlenecks constrain the 
number (and thus heterogeneity) of pathogens passed from one host to another. (D) A 
schematic of how the process of evolutionarily guided drug design would proceed. 
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Supplemental Figure 3: ENU mutagenesis qualitatively identifies resistance mutations 
but fails to quantitatively predict abundance 
Bradeen et al. 200662 have previously used ENU mutagenesis to nominate imatinib resistance 
mutations in BCR-ABL. The abundance of each mutation as predicted by the observation 
frequency in the mutagenesis experiment is given on the x-axis. The observed abundance of 
each mutation from our meta-analysis of clinical trials is given on the y-axis. The results indicate 
some qualitative concordance of resistance phenotypes between mutants predicted in the lab 
and those observed clinically. However, the in vitro mutagenesis experiment poorly predicts the 
quantitative frequency of mutations observed in vivo. 
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