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Summary  20 
 We characterized grapevine inflorescence architecture (the rachis and all branches 21 
without berries) to describe variation among 10 wild Vitis species, assess phylogenetic 22 
signals underlying inflorescence architecture traits, and interpret this variation in the 23 
context of breeding objectives.  24 
 Three-dimensional X-ray tomography scans of grapevine inflorescences were used 25 
to measure geometric traits and inflorescence topology using persistent homology, a 26 
mathematical approach that can comprehensively measure and compare shapes. We 27 
simulated potential space available for berry growth within a given inflorescence 28 
architecture by evaluating expanding spheres attached to pedicels, referred to as “berry 29 
potential.” Lastly, we performed phylogenetic analysis and mapped trait variation. 30 
 We detected wide variation in inflorescence architecture features among Vitis 31 
species. Hierarchical clustering and correlation analyses revealed relationships among 32 
traits. Multivariate analyses identify traits contributing the most to variation and 33 
distinguish between species with high accuracy. Phylogenetic analyses revealed 12 34 
morphological traits with strong phylogenetic signal. 35 
 Morphometric analysis uncovered novel differences in inflorescence architecture 36 
among clades and between Vitis species. Cluster density is an important trait for assessing 37 
crop quality and forecasting yield; analyses presented here can be used to tease apart 38 
subtle, heritable features and environmental influences on this major agronomic trait.  39 
 40 
Key words: berry potential; inflorescence; morphology; persistent homology; phylogenetic 41 
analysis; topological data analysis; Vitis spp.; X-ray tomography 42 
 43 
Introduction 44 
 45 
Inflorescences are major adaptations of the angiosperm lineage whose architectural 46 
variation affects fertilization, fruit development, dispersal, and crop yield (Wyatt, 1982; 47 
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Hake, 2008; de Ribou et al., 2013; Kirchoff & Claßen-Bockhoff, 2013; Périlleux et al., 2014; 48 
Chanderbali et al., 2016). These branched reproductive structures with multiple flowers 49 
reflect the extraordinary diversity across angiosperm species, from an ear of corn to palms 50 
with inflorescences measuring five meters long (Hodel et al., 2015). Yet seemingly simple 51 
processes give rise to these vastly different shapes - during development reproductive 52 
meristems may either switch to floral identity or proliferate additional inflorescence 53 
meristems and branches (Prusinkiewicz et al., 2007). Complex topologies reflect the 54 
evolution of this functional diversity, but have proven difficult to quantify with 55 
conventional tools.  56 
 57 
Detailed descriptions of inflorescences by trained experts are often unique to specific 58 
research communities or groups of taxa, and are not always readily transferable, hindering 59 
meaningful comparative analysis (Endress, 2010). Inflorescences are sometimes described 60 
typologically: indeterminate or determinate, simple or compound, as a raceme, cyme, 61 
panicle or spike, etc. (Wyatt, 1982; Weberling, 1992). Other approaches describe 62 
qualitative attributes of inflorescences such as the presence or absence of certain 63 
structures (Weberling, 1992; Doebley et al., 1997; Feng et al., 2011; Hertweck & Pires, 64 
2014). A third method for characterizing inflorescences is through quantification of 65 
component structures (e.g., branch length, inflorescence length and width, angular traits; 66 
Kuijt, 1981; Marguerit et al., 2009; Landrein et al., 2012; Le et al., 2018). Although these 67 
classical quantitative approaches facilitate comparative statistical analyses, the three-68 
dimensional (3D) complexity of inflorescences is largely undescribed. Furthermore, 69 
descriptions may be confounded by developmental stage at the time of measurement, and 70 
distinguishing between vegetative and reproductive branching structures can be difficult 71 
(Wyatt, 1982; Weberling, 1992; Guédon et al., 2001). Thus, new technological and 72 
analytical approaches that can represent comprehensive, multi-dimensional information 73 
about inflorescence diversity are needed to normalize and enrich analysis of these 74 
structures.  75 
 76 
One promising approach for capturing 3D shapes of inflorescences and other plant 77 
structures is X-ray tomography (XRT). XRT generates high quality reconstructions of the 78 
internal and external shapes of plants, preserving nearly complete geometric and 79 
topological information in 3D. These 3D digital models then can be used to extract 80 
quantitative data (features) from plant structures. X-rays have been used to quantify wheat 81 
and rice seed and inflorescence traits from intact samples for non-destructive yield 82 
calculations (Hughes et al., 2017; Jhala & Thaker, 2015), internal anatomy of willow trees 83 
(Brereton et al., 2015), stem morphology and anatomy in sorghum (Gomez et al., 2018), 84 
root structure of barley seedlings (Pfeifer et al., 2015), leaf anatomy in monocots and dicots 85 
(Mathers et al., 2018) and dynamic starch accumulation in living grapevine stems (Earles et 86 
al., 2018), among others. Most critically, whereas manual measurements can be laborious 87 
and destructive, non-destructive sampling for XRT analysis facilitates comprehensive 88 
quantification of complex morphological traits.  89 
 90 
Quantifying complex shapes with XRT requires appropriate analytical approaches. 91 
Topological modeling, a mathematical field concerned with the connectedness of branching 92 
structures, can quantify inflorescence architecture by parsing geometric 3D structures into 93 
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distinct, yet connected, components (Godin & Caraglio, 1998). Topological modeling has 94 
yielded important insights into inflorescence development, functional analysis, and crop 95 
improvement in a variety of plant species (e.g., Arabidopsis thaliana, Capsicum annuum, 96 
Malus pumila, and Triticum; Godin et al., 1999; Letort et al., 2006; Kang et al., 2009). While 97 
powerful, these reductionist approaches rely on an a priori understanding of the 98 
mechanisms that contribute to complexity (e.g., branching patterns), and lose power when 99 
shapes vary drastically from one another (e.g., comparing a corn tassel to a grape cluster). 100 
Approaches that capture emergent properties of complex structures without presupposing 101 
the importance of individual structural components are complementary to traditional 102 
topological models (Bucksch et al., 2017). 103 
 104 
An emerging mathematical approach to interpret topological models is persistent 105 
homology (PH). PH extracts morphological features from two- or three-dimensional 106 
representations and can be used to compare very different shapes. PH has been applied to 107 
explain a wide range of features including atomic structures, urban and forested areas, 108 
cancers, cell shapes, and jaw shape, among others (Edelsbrunner & Morozov, 2013). In 109 
plants, PH has been used to estimate shapes that are otherwise difficult to measure 110 
including leaves, leaflet serration, spikelet shape, stomatal patterning, and root 111 
architecture (Li et al., 2018a,b; Haus et al., 2018; McAllister et al., 2019; Migicovsky et al. 112 
2018). Previous work showed that PH could capture more quantitative variation than 113 
traditional plant morphological measures (described above) resulting in the identification 114 
of otherwise latent quantitative trait loci (Li et al., 2018b). PH is especially well-suited for 115 
quantifying branching topology as it can quantitatively summarize complex variation with 116 
a single measure (Li et al., 2017; Delory et al., 2018). Rachis, pedicel, and branches include 117 
inherently topological features that can be especially well-analyzed with PH-based 118 
methods. 119 
 120 
Grape clusters (or bunches) are branched structures supporting berries produced by 121 
grapevines (Vitis spp.) and are an ideal system in which to apply XRT and PH. Grape 122 
infructescences are historically, culturally, and economically important and vary 123 
extensively in nature and in cultivation (Iland et al., 2011). Cluster architecture determines 124 
bunch density, and is defined as “arrangement of berries in a cluster and the distribution of 125 
free space” (Richter et al., 2018). The density of berries in a cluster is an important 126 
breeding feature because it determines yield, wine character, and disease resistance 127 
(amount of air flow between berries is a primary determinant of pests and pathogens on 128 
the fruit). Cluster density is a characteristic identified by the Organization Internationale de 129 
la Vigne et du Vin, and varies from “berries clearly separated” (loose clusters) to “berries 130 
deformed by compression” (very dense clusters; OIV, 2001). As one of the primary 131 
determinants of yield, end-product characteristics, and disease resistance cluster 132 
architecture has been studied extensively in grapevine (reviewed in Tello & Ibáñez, 2018). 133 
These studies have shown that wine grape cultivars (Vitis vinifera) display distinct bunch 134 
densities (Shavrukov et al., 2004). However, less is known about cluster architecture in 135 
wild Vitis species, an important source of natural variation used by breeders in the 136 
development of hybrid grapevine varieties.  137 
 138 
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Historically, researchers have focused on a suite of cluster traits such as cluster size, shape, 139 
weight, and density/compactness to characterize bunch density quantified in grapevines 140 
(Rovasenda, 1881; Pulliat, 1888; Bioletti, 1938; Galet, 1979; Bettiga, 2003). Measurements 141 
are made primarily using traditional tools including rulers, digital calipers, volume 142 
displacement, and/or through human judging panels. More recently, automated image-143 
based approaches have been implemented to capture aspects of cluster architecture in the 144 
lab and field (Ivorra et al., 2015; Aquino et al., 2017, 2018; Rist et al., 2018). However, these 145 
image-based methods cannot penetrate the internal inflorescence structure. Therefore 146 
resulting models are based only the visible surface and the underlying topology cannot be 147 
fully captured, limiting an understanding of how inflorescence architecture and berry 148 
features co-vary. XRT and PH applications offer an important opportunity to understand 149 
grapevine bunch density through detailed analyses of inflorescence architecture. This work 150 
will deepen our understanding of natural variation of inflorescence structure, identify 151 
priority targets for breeding, and permit connecting 3D structure to underlying processes 152 
and genetics of inflorescence development. 153 
 154 
We use X-ray tomography, geometric measurements, persistent homology, and 155 
computational simulation to characterize wild grapevine inflorescence architecture. We 156 
target the branching architecture of the mature inflorescence: the rachis and all branches 157 
that remain following the removal of ripe berries (Fig. 1). Specifically, we aim to: 1) 158 
characterize variation in component traits of inflorescence architecture within and among 159 
Vitis species; 2) assess phylogenetic signals underlying inflorescence architecture traits; 160 
and 3) interpret inflorescence trait variation in the context of breeding objectives. This 161 
work represents an important advance for the characterization of 3D plant architecture 162 
using a powerful combined imaging and computational approach.  163 
 164 
Materials and Methods 165 
 166 
Plant Material 167 
 168 
In this study, we sampled grapevine bunches from 136 unique genotypes representing 10 169 
wild Vitis species living in the USDA germplasm repository system (Geneva, NY; Table 1, 170 
Fig. S1). Grapevines have a paniculate inflorescence that consists of a rachis with several 171 
primary and secondary branches, tapering towards the terminus of the organ (Iland et al., 172 
2011). Wild grapevines are dioecious; consequently, unbalanced sample sizes for different 173 
species reflect numbers of female genotypes available in the germplasm collection. Each 174 
unique genotype is represented in the germplasm collection by two clonally replicated 175 
vines. For most of the 136 genotypes, we collected a total of three clusters from the two 176 
clonal replicates combined, representing average cluster morphology. We avoided clusters 177 
that were visibly damaged or indirectly altered (e.g., tendril or trellis interference). For 178 
each vine, clusters were removed from separate canes at the point of peduncle attachment 179 
(Fig. 1a). In total, 392 clusters were collected in September 2016 when berries were soft, 180 
equivalent to EL38 developmental stage (Coombe, 1995; Fig. 1b). Berries were manually 181 
removed from clusters in the field, and the remaining inflorescence stalks (including rachis, 182 
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branches, and pedicels; hereafter referred to as inflorescence or inflorescence architecture) 183 
were used to assess inflorescence architecture.  184 
 185 
X-ray tomography and data preprocessing 186 
 187 
Grapevine inflorescences were scanned at the Donald Danforth Plant Science Center (St. 188 
Louis, MO) using a North Star Imaging X5000 X-ray tomography instrument (NSI; Rogers, 189 
MN) equipped with a 16-bit Varian flat panel detector (1536 x 1920 pixels with 127um 190 
pixel pitch) and 225kV microfocus reflection target X-ray source. Each inflorescence was 191 
held between two pieces of construction-grade expanded polystyrene, clamped in a 192 
panavise, and positioned on the X-ray turntable in one of two configurations (Fig. 1c): 193 
725mm from the source, generating 1.26x magnification and 101um voxel resolution, or 194 
766mm from the source, generating 1.19x magnification and 107um voxel resolution. Each 195 
scan used X-ray wattage set to 60kV and 1200uA at 10 frames per second, collecting 1200 196 
16-bit TIFF projections over 360 degrees of rotation during a 2min continuous standard 197 
scan. Projections for each scan (Fig. 1d) were combined into a single 3D volume using NSI 198 
efX-CT software, converted to a density-based surface rendering Polygon file (PLY), and 199 
exported for analysis (Fig. 1e). The full PLY data set for this work is 7.85GB, and can be 200 
downloaded from: https://www.danforthcenter.org/scientists-research/principal-201 
investigators/chris-topp/resources. 202 
 203 
We exported the surface mesh data (.ply files) into Meshlab (v1.3.3, (Cignoni et al., 2008) 204 
and performed the following processing steps to remove topological noise: 1) deleted the 205 
vertices where branches touch using “Select Vertexes” and “Delete Selected vertices” filters; 206 
2) removed duplicates and isolated vertices and faces using the filters “Remove Duplicated 207 
Vertex,” “Remove Duplicate Faces,” “Remove Isolated pieces (wrt Diameter),” and “Remove 208 
Unreferenced Vertex.”  209 
 210 
Geometric inflorescence architecture traits 211 
 212 
We extracted 15 geometric traits from scanned inflorescences (Fig. 2, Fig. S2). Detailed trait 213 
descriptions and calculations are explained in Table S1. Trait illustrations, including 214 
examples of low and high values for each trait, are available in Fig. 2 and Fig. S2. Traits 215 
were organized in one of three trait groups: global-size features, local-branching features, 216 
and size-invariant features (Table 2). PedicelDiameter and PedicelBranchAngle were 217 
measured using the software DynamicRoots (Symonova et al. 2015) on a subset of detected 218 
pedicels from the raw 3D volume data. All other traits were derived from Matlab 219 
algorithms. Branch length traits (i.e., TotalBranchLength, RachisLength, PedicelLength, and 220 
AvgBranchLength) were derived from the persistence barcode (see next subsection).  221 
 222 
Quantifying branching topology using persistent homology, a topological data 223 
analysis method 224 
 225 
Persistent homology measures shapes based on a tailored mathematical function, such as 226 
geodesic distance, which we used here to capture both curved length and topology of the 227 
branches (Fig. 3, Video S1). The geodesic distance of a point is the length of the shortest 228 
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curve connecting the point and the base (e.g. purple curves, Fig. 3a), where the tailored 229 
base can be set as the first node or ground level (the brown line in Fig. 3a). For each branch, 230 
the tip always has the largest geodesic distance from the base (Fig. 3b). A level represents 231 
the collection of points whose geodesic distances are the same (e.g. geodesic distance=90, 232 
pink curve in Fig. 3a). A superlevel set, for example, at 90, is all the points whose geodesic 233 
distances are greater than 90 (black branch tips, Fig. 3a). Changing the level value from 234 
largest to smallest (x axis, Fig. 3c), the sequence of nesting superlevel sets can be formed, 235 
which is named superlevel set filtration (top panel, Fig. 3c). During the change of the level 236 
value, bars record the connected components for each of the superlevel sets. When a new 237 
component arises, a new bar starts (e.g. at level 112, purple branch, Fig. 3c). When two 238 
components merge (e.g. at level 65, orange branch merges into purple branch, Fig. 3c), the 239 
shorter bar stops (e.g. the orange bar stops at level 65, Fig. 3c). This bar graph, called the 240 
persistence barcode, summarizes topological information such as branching hierarchy, 241 
branch arrangement, and branch lengths. In our study, we set the base as the junction 242 
between peduncle and rachis (the lowermost node, indicated by a brown line in Fig. 1e, Fig. 243 
3d, f) and use this base to compute the persistence barcode for the inflorescence 244 
architecture (Fig. 3e, g).  245 
 246 
The persistence barcode can be used to compare topological similarity between any two 247 
inflorescences. To compute pairwise distance among persistence barcodes for the entire 248 
inflorescence population, we used the bottleneck distance (Cohen-Steiner et al., 2007). 249 
Bottleneck distance is a robust metric that calculates the minimal cost to move bars from 250 
one persistence barcode to resemble another (Li et al., 2017). We performed 251 
multidimensional scaling (MDS) on the pairwise bottleneck distance matrix and projected 252 
the data into lower dimensional Euclidean space by preserving the pairwise distance as 253 
well as possible. The Matlab (R2017a) MDS function cmdscale() projects the data so that 254 
MD1 acts as PC1 representing the most variation. The first three PCs (MDs) explained 255 
about 80% of the total variation and were included as traits: PersistentHomology_PC1 256 
(PH_PC1, explained about 54% variation), PersistentHomology_PC2 (PH_PC2, explained 257 
about 20% variation), and PersistentHomology_PC3 (PH_PC3, explained about 6% 258 
variation). Those traits not only measure the topological structure, but also relate to 259 
geometric variation (e.g. global size) as the data were not normalized (Fig. 2, Table S1).  260 
 261 
Next, we normalized the persistence barcode by the TotalBranchLength (summation of the 262 
bar lengths) so that the TotalBranchLength was 1. By a similar procedure, we derived the 263 
first three PCs named PersistentHomologyNormalizedByTotalBranchLength_PC1 264 
(PHn_PC1, explained about 45% variation), 265 
PersistentHomologyNormalizedByTotalBranchLength_PC2, (PHn_PC2, explained about 266 
21% variation), and PersistentHomologyNormalizedByTotalBranchLength_PC3 (PHn_PC3, 267 
explained about 7% variation) for the normalized inflorescence topological structure (Fig. 268 
2, Table S1).  269 
 270 
Berry potential, an approach to indirectly explore the space limited by inflorescence 271 
architecture  272 
 273 
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An ongoing question in grapevine cluster architecture is the relationship between 274 
inflorescence architecture and berry number and size. Inflorescence architecture is one of 275 
several factors determining the number of berries that can form, due to the number of 276 
pedicels and the available space for berry development. In this study, berries were 277 
removed because of concerns about berry integrity during transport from New York to 278 
Missouri, and the time between harvest and scanning. Instead of looking directly at berries 279 
on the cluster, we used inflorescence architecture as a starting point to simulate potential 280 
space available for berry growth by evaluating expanding spheres attached to pedicels. The 281 
extent of sphere expansion allowed by each pedicel is referred to as “berry potential” (Fig. 282 
4, Video S2).  283 
 284 
We first determined the growth direction for each berry potential based on the pedicel 285 
orientation. When spheres expand, the center moves along the pedicel direction (Fig. 4a). 286 
This step can be achieved by performing principal component analysis (PCA) on the near-287 
berry segment of the pedicel. The first principal axis is the pedicel direction. We adjusted 288 
the arrow of the direction to make sure berry potential increases outward along the pedicel 289 
orientation. Then the berry potential increases until one of three situations is encountered 290 
(Fig. 4b): 1) if two berry potentials touch to each other, both berry potentials will stop 291 
increasing; 2) if a berry potential touches any part of the inflorescence, it will stop 292 
increasing; 3) if the diameter of the berry potential reaches the maximum size known for 293 
that species (Table 1), it will stop increasing. For each species, the maximum size is defined 294 
as the maximum berry diameter, a number estimated from known ranges of berry sizes for 295 
each species, based on values obtained from (Galet, 1988; Moore & Wen, 2016). 296 
 297 
Berry potential does not reflect true berry growth; rather, berry potential is a derived 298 
attribute of inflorescence architecture, an indirect estimate of the space potentially 299 
available for berry growth. It also does not account for the possibility of branches bending 300 
or otherwise becoming re-oriented due to pressure from growing berries. Berry potential 301 
is based on the number of neighbor pedicels, neighbor pedicel lengths, and neighbor 302 
pedicel mutual angles. Larger values for berry potential are associated with fewer neighbor 303 
pedicels, and/or longer pedicel lengths, and/or larger mutual angles. From the berry 304 
potential simulation, we calculated three features, TotalBerryPotentialVolume, 305 
AvgBerryPotentialDiameter, and BerryPotentialTouchingDensity, which is the berry 306 
potential touching number (i.e., touching either another berry potential or any part of the 307 
inflorescence) divided by the number of berry potential (Fig. 2, Table S1).  308 
 309 
Phylogenetic analysis 310 
 311 
Phylogenetic analyses were conducted to understand evolutionary trends in inflorescence 312 
architecture in Vitis. Single nucleotide polymorphism (SNP) markers were generated as 313 
part of a separate study of the USDA Grapevine Germplasm Reserve in Geneva, NY (Klein et 314 
al., 2018). The original dataset consisted of 304 individuals representing 19 species that 315 
were sequenced using genotyping-by-sequencing (GBS; Elshire et al., 2011). Briefly, Klein 316 
et al. (2018) filtered data to retain biallelic sites with a minimum allele frequency of 0.01, a 317 
minimum mean depth of coverage of 10x, and only sites with <20% missing data and 318 
individuals with <20% missing data. SNP data for 99 individuals from this study that were 319 
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also genotyped in (Klein et al., 2018); Table 1) were extracted using custom scripts. We 320 
performed phylogenetic analysis on the sequence data extracted for 99 individuals using 321 
SVDquartets (Chifman & Kubatko, 2014), a maximum likelihood approach designed to 322 
address ascertainment bias associated with reduced representation sequencing techniques 323 
like GBS. We analyzed all possible quartets and carried out 100 bootstrap support runs 324 
(Fig. S1) using PAUP* version 4.0a (Swofford, 2003). The three main clades recovered in 325 
the tree were consistent with previous phylogenetic work in Vitis: 1) an Asian Clade (V. 326 
amurensis and V. coignetiae), 2) North American Clade I (V. riparia, V. acerifolia, and V. 327 
rupestris), and 3) North American Clade II (V. vulpina, V. cinerea, V. aestivalis, V. labrusca, 328 
and V. palmata) (Tröndle et al., 2010; Zecca et al., 2012; Miller et al., 2013; Zhang et al., 329 
2015; Klein et al., 2018).  330 
 331 
To visualize trait distributions on a phylogenetic tree using branch lengths, we used Mega X 332 
(Kumar et al., 2018) to generate a neighbor joining tree with 2000 bootstrap replicates. All 333 
measurements were averaged across the three replicates per genotype to produce an 334 
average value for each trait for each genotype. We computed Pagel’s lambda to estimate 335 
phylogenetic signal for each morphological trait and mapped each trait onto the phylogeny 336 
(Fig. S3a-x) using the R package phytools (v. 0.6-44; Revell, 2012). We calculated variation 337 
of each morphological trait for each clade based on the mean value for each species (Fig. 338 
S4).  339 
 340 
Statistical analysis 341 
 342 
PCA, MDS, and hierarchical cluster analysis generating a hierarchical tree were performed 343 
in Matlab using functions pca(), cmdscale(), and clustergram(). The R function cor.mtest() 344 
and package corrplot (Wei & Simko, 2017) were used for significance tests and correlation 345 
matrix visualization. The function lda() in R package MASS (Venables & Ripley, 2002) was 346 
used for the linear discriminant analysis (LDA) with a jackknifed ‘leave one out’ cross 347 
validation method.  348 
 349 
Code availability  350 
 351 
All Matlab functions used to calculate persistence barcodes, bottleneck distances, 352 
simulation for berry potential, other geometric features used in this study, and the script 353 
for extracting phylogenetic information can be found at the following GitHub repository: 354 
https://github.com/Topp-Roots-Lab/Grapevine-inflorescence-architecture.  355 
 356 
Results 357 
 358 
Inflorescence morphological variation and trait correlation within Vitis species 359 
 360 
We investigated 24 morphological traits (15 geometric traits, six PH traits, and three berry 361 
potential traits) of inflorescence architecture in 10 wild Vitis species (136 genotypes, 392 362 
samples) and detected wide variation in morphological features within and between 363 
species (Fig. 2, Fig. S2, and Table S2). In particular, of all the species examined, V. aestivalis 364 
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has the largest variance for TotalBerryPotentialVolume. V. labrusca has the largest variance 365 
for ten traits (i.e., pedicel features, Sphericity, AvgBranchDiameter, 366 
AvgBerryPotentialDiameter, and normalized topological traits). V. cinerea has the largest 367 
variance for six traits (i.e., most global-size features, PH_PC2, and PH_PC3). In comparison, 368 
V. palmata has smallest variance for eight traits (i.e. pedicel features, Sphericity, 369 
AvgBranchDiameter, TotalBerryPotentialVolume, PH_PC3, and PHn_PC3), as does V. 370 
amurensis (global-size features, RachisLength, PH_PC1, and PH_PC2). 371 
 372 
All traits were hierarchically clustered based on the mean trait values for each species, 373 
classifying traits into two main categories: mostly size-invariant + local-branching features 374 
(PHn_PC3 to PedicelLength), versus global-size features (AvgBranchLength to 375 
BerryPotentialTouchingDensity) (Fig. 5a). Hierarchical clustering (Fig. 5a) and pairwise 376 
correlation for morphological traits (Fig. 5b) show that global-size features 377 
(ConvexHullVolume, SurfaceArea, Volume, NumberOfPedicel, and TotalBranchLength), 378 
PH_PC1, and RachisLength are all highly positively correlated. We refer to these seven 379 
traits as size-associated features. Size-associated features are negatively correlated with 380 
PedicelLength/RachisLength, Solidity, Sphericity, and PHn_PC1. Some traits are relatively 381 
independent such as 2nd/LongestBranchLength, PedicelLength, PedicelBranchAngle, 382 
PH_PC2, PHn_PC2, and PHn_PC3 (Fig. 5b). PH_PC3 has some negative relation with size-383 
invariant features. PHn_PC1 positively correlates with Sphericity, Solidity, and 384 
AvgeBerryPotentialDiameter (Fig. 5b). Pairwise correlations of morphological features 385 
(allometric relationships) for each of the species vary widely (Fig. 5c; for all traits see Fig. 386 
S5a-x). For example, more pedicels typically result in smaller berry potential diameters, 387 
except for V. aestivalis. Longer branches tend to be thinner, except for V. coignetiae, and 388 
correlate with larger inflorescences, except in V. acerifolia.  389 
 390 
Hierarchical clustering of 10 Vitis species based on the 24 morphological traits resolved 391 
four groups: 1) V. cinerea, 2) V. aestivalis, 3) V. coignetiae/ V. vulpina/ V. palmata/ V. 392 
acerifolia/ V. riparia/ V. rupestris, and 4) V. amurensis/ V. labrusca (Fig. 5a). Among the 10 393 
Vitis species examined in this study, the largest variance in mean trait values are seen in V. 394 
cinerea (Fig. 5a). V. cinerea samples are generally larger than those from the other species, 395 
as reflected in size-associated traits. Topology traits such as PHn_PC3 and size-invariant 396 
traits like Sphericity and Solidity are lower in the mean trait value for V. cinerea than for 397 
other species. Similarly, mean trait values are larger for size-associated traits in V. aestivalis 398 
(Fig. 5a). Compared to other species, topology and berry potential traits are larger in V. 399 
aestivalis. Mean trait values of the third group (V. coignetiae/ V. vulpina/ V. palmata/ V. 400 
acerifolia/ V. riparia/ V. rupestris, Fig. 5a) tend to be nearer to middle values compared to 401 
the other species. Within this group, V. acerifolia/ V. riparia/ V. rupestris typically are larger 402 
in the mean trait value for berry potential touching (i.e., denser berry potentials). These 403 
three species and V. palmata tend to have large, first primary branches (i.e., wings; Fig. 1e). 404 
V. coignetiae has thicker branches and V. vulpina has longer pedicels compared to other 405 
species in this group. The final group, V. amurensis and V. labrusca, have relatively smaller 406 
inflorescences with thicker branches compared to the other species sampled here. These 407 
general features are reflected in larger mean values for several size-invariant and local-408 
branching features and smaller mean values for many branch length dependent and size-409 
associated features, respectively (Fig. 5a).  410 
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 411 
Multivariate, discriminant analysis of Vitis species based on inflorescence 412 
architecture 413 
 414 
In order to understand how overall inflorescence architecture varies among Vitis species, 415 
we performed PCA using all 24 morphological features and all samples. PC1 explained 416 
37.12% of the total variation in the measured architecture (Fig. 6a). The traits with the 417 
largest values for PC1 loadings, indicating that they contributed most to variation, are size-418 
associated features, Solidity and Sphericity. PC2 explained 15.4% of the total variation in 419 
the measured inflorescence architecture, with variation primarily explained by local-420 
branching features such as PedicalDiameter, PedicelLength, PedicelLength/RachisLength, 421 
AvgBranchLength, BranchDiameter, three berry potential traits, and PHn_PC1 (Fig. 6a). 422 
Although inflorescences from each species occupy different regions of morphospace, these 423 
regions overlap considerably. 424 
 425 
LDA performed on the first 18 PCs, explaining 99.5% of the variation, distinguished 426 
between species with a classification accuracy rate of 78.32%. A confusion matrix (Fig. 6b) 427 
shows the proportion of samples correctly predicted for each species. LD1 primarily 428 
separates V. cinerea, V. labrusca, and V. amurensis from the other species while LD2 429 
primarily separates V. vulpina and V. coignetiae. The traits that are most important for 430 
distinguishing these species, as indicated by LD loadings, are TotalBerryPotentialVolume 431 
and PHn_PC1 for LD1, and AvgBranchLength and AvgBerryPotentialDiameter for LD2 (Fig. 432 
6b). The most important predictors for correctly separating any two species are shown as 433 
the grey scaled boxes in Fig. S6, and Table S3. For example, BranchDiameter and 434 
PedicelDiameter are key when contrasting V. coignetiae and V. vulpina, suggesting that 435 
different branch thickness easily distinguishes these two species. This method correctly 436 
determined species classifications with 100% accuracy when contrasting V. aestivalis and 437 
V.cinerea, V. aestivalis and V.palmata, V. aestivalis and V. vulpina, V. amurensis and V. cinerea, 438 
V. amurensis and V. palmata, V. cinerea and V. coignetiae. Other combinations of species are 439 
harder to distinguish on the basis of inflorescence characters. For example, the 440 
classification accuracy rate was only 80% when distinguishing between V. amurensis and V. 441 
labrusca and 82% for V. aestivalis and V. coignetiae. 442 
 443 
Phylogenetic signal of inflorescence architecture within clades 444 
 445 
The phylogeny dataset (N=99) is generally well-supported at the species level and 446 
correlates well with current taxonomy. Using average trait values per individual, Pagel’s 447 
lambda shows 12 morphological traits (seven size-associated features along with 448 
PedicelDiameter, TotalBerryPotentialVolume, Sphericity, PH_PC2, PHn_PC1) have strong 449 
phylogenetic signal (lambda>0.8, Fig. 7, Table S4). While most species sampled tend to 450 
have small values for the seven size-associated features, V. aestivalis, V. cinerea, and V. 451 
vulpina tend to have values that are either close to median, or larger. On average, V. 452 
labrusca has larger values for Sphericity and PHn_PC1 compared to other species sampled, 453 
while V. cinerea generally has some of the smallest values for these traits. Only two 454 
morphological traits (2nd/LongBranchLength, lambda=0.06 and 455 
BerryPotentialTouchingDensity, lambda=0.25) lack phylogenetic signal (Fig.7, Table S4).  456 
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 457 
We observe differences in Vitis inflorescence architecture among clades and between 458 
species. For North American (NA) clade I (V. acerifolia, V. riparia, V. rupestris), variation in 459 
the 24 morphological traits measured have similarly small values among species, 460 
particularly for several size-associated traits, although there is relatively large variation for 461 
PH_PC3 and BerryPotentialTouchingDensity (Fig. 7). Within NA Clade I, we observe 462 
differences among clade members for traits such as Sphericity and PHn_PC1 (larger in V. 463 
rupestris compared to other clade members) and PedicelDiameter and BranchDiameter 464 
(slightly larger in V. acerifolia compared to other clade members; Fig. 7). NA Clade II 465 
appears to be more variable among clade members. V. cinerea has larger values for size-466 
associated traits compared to clade members V. labrusca, V. palmata, and V. vulpina. 467 
Meanwhile, V. labrusca typically has larger values for local features (e.g., Sphericity, 468 
PedicelDiameter, AvgBerryPotentialDiameter, PedicelBranchAngle) compared to the other 469 
clade members (Fig. 7). 470 
 471 
We calculated the mean value for each species of each morphological trait to study 472 
variation within the three clades and detect subtle signatures (Fig. 7). We computed the 473 
variance for the multivariate trait (combining all the 24 traits), and each of these 24 traits 474 
for each clade (Fig. S4, Table S5). Overall, based on the samples used in this analysis, 475 
variance of the multivariate trait for the NA Clade I (variation=0.14) is much smaller than 476 
the NA Clade II (variation=0.64), while the variation for Asian Clade is 0.39. Some traits 477 
have almost no variance in Asian Clade such as PedicelDiameter, PHn_PC2, PH_PC3, and 478 
2nd/LongestBranchLength. However, North American species (8/~19 taxa) in this study 479 
are better represented than Asian species (2/~37 taxa), so we are cautious not to 480 
overinterpret this finding. Traits with the greatest variance in the Asian Clade included 481 
PedicelLength/RachisLength, RachisLength, and PH_PC1, while NA Clade I has greatest 482 
variance in PHn_PC2. All the other traits have greatest variance in the NA Clade II (Fig. S4, 483 
Table S5). Traits with the smallest variance in the Asian Clade included PHn_PC3, PHn_PC1, 484 
PedicelDiameter, BranchDiameter, NumberOfPedicel, 2nd/LongestBranchLength, PH_PC3, 485 
and BerryPotentialTouchingDensity. The other traits had small variance in NA Clades I (Fig. 486 
S4, Table S5). Our results highlight clade-specific variation in inflorescence architecture for 487 
previously undescribed traits. 488 
 489 
Discussion  490 
 491 
Inflorescence architecture provides the scaffold on which flowers and fruits develop, and 492 
consequently is a primary trait under investigation in many crop systems. Studies extend 493 
into interspecific variation, pollen dispersal, genetic architecture, evolution, regulation, and 494 
development of inflorescence structures (e.g., Bradley et al., 1996; Friedman & Harder, 495 
2004; Kellogg, 2007; Morris et al., 2013; Han et al., 2014; Hodge & Kellogg, 2015; Whipple, 496 
2017; Stitzer & Ross-Ibarra, 2018; Ta et al., 2018; Richter et al., 2018). Yet the challenge 497 
remains to analyze these complex 3D branching structures with appropriate tools. High 498 
resolution data sets are required to represent the actual structure and comprehensive 499 
analysis of both the geometric and topological features relevant to phenotypic variation 500 
and to clarify evolutionary and developmental inflorescence patterns.  501 
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 502 
Our results demonstrate the power and potential of X-ray imaging and advanced 503 
morphometric analysis for investigating complex 3D phenotypic features. We analyzed the 504 
phenotypic variation in inflorescence architecture of 10 wild Vitis species using computer 505 
vision and an emerging biological shape analysis method, persistent homology, which 506 
allowed comprehensive comparisons of shape. Although samples analyzed here represent 507 
only a subset of the known variation in Vitis, which includes an estimated 60 species, our 508 
analyses demonstrate significant variation within and among Vitis species and among 509 
clades. Correlation analysis (Fig. 5b) showed that PH is a complementary feature, as it is 510 
relatively independent from most geometric features. We were able to assign widely 511 
differing architectures to biological species with high accuracy (Fig. 6) from the 24 512 
different morphometric traits surveyed in this study. PH provides an important 513 
contribution to this discriminatory power, as does berry potential (Fig. 6b). We observed 514 
that traits such as the rachis length, the sum of all branches, the space encompassing the 515 
inflorescence architecture (ConvexHullVolume), and PH can be indicative of  species and 516 
clade (Fig. 7). Our results suggest meaningful, comprehensive information about the 517 
inflorescence structure was captured with a single measure (i.e., the persistence barcode) 518 
and that PH is a valuable method for quantifying and summarizing topological information.  519 
 520 
Persistent homology analysis has led to a deeper understanding of trait genetic variation 521 
and architecture in plants. Li et al. (2018a) used PH to analyze two-dimensional (2D) leaf 522 
shape and predicted family identity with accuracy greater than expected by chance in over 523 
140 plant families, outperforming other widely-used methods of digital shape analysis. Li et 524 
al. (2018b) showed that PH-based, topological data analysis distinguished between 525 
genotypes and identified many new quantitative trait loci (QTL) with 2D tomato leaf shape 526 
and root architecture data. This work sets a precedent for measuring observable, yet 527 
previously undescribed, phenotypes. In grapevine, QTL analysis indicates a genetic basis to 528 
inflorescence architecture and berry compactness (Correa et al., 2014; Richter et al., 2018). 529 
Deploying PH-based, topological modeling to grapevine mapping populations could lead to 530 
the rapid identification of additional inflorescence trait QTL for breeding. For example, we 531 
observed total branch length (a proxy for bigger or smaller clusters) correlates with 532 
number of pedicels (a proxy for berry number; Fig. 5), an informative relationship to assess 533 
potential yield. However, selecting for total branch length might lead to a negative 534 
correlation with the average berry potential diameter (i.e., smaller berries). Although this 535 
correlation may be desirable for wine grapes, it is not for table grapes.  536 
 537 
Grapevine cluster architecture is a composite feature that reflects multiple subtraits 538 
including stalk traits (inflorescence architecture) and berry features (Richter et al., 2018). 539 
OIV 204 uses “bunch: density” to describe variation in clusters, ranging from (1) berries 540 
clearly separated with many visible pedicels to (9) berries deformed by compression (OIV, 541 
2001; Rombough, 2002). Other authors have deconstructed traits contributing to cluster 542 
architecture primarily through individual measurements taken by hand (e.g., Shavrukov et 543 
al., 2004; Tello et al., 2015; Zdunić et al., 2015; Tello & Ibáñez, 2018) and more recently, 544 
with image-based technologies (Cubero et al., 2014; Roscher et al., 2014; Ivorra et al., 2015; 545 
Aquino et al., 2017, 2018; Rist et al., 2018). Here, we are able to describe traits of interest 546 
that contribute greatly to the morphological features captured by the OIV scale (e.g., 547 
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NumberOfPedicel, PedicelLength, PedicelBranchAngle, RachisLength, overall shape using 548 
PH; Fig 2, Fig. S2). This method could facilitate precision breeding for both whole 549 
inflorescence structure topology and specific desirable geometric traits.  550 
 551 
While several studies have quantified cluster structure in cultivated grapevines, similar 552 
studies of wild Vitis inflorescence architecture are lacking. Munson (1909) and Galet 553 
(1979) describe North American Vitis cluster structure qualitatively, commenting on 554 
compactness, size, shape, and the presence of large first primary branches 555 
(wings/shoulders). Taxonomic descriptions typically do not examine inflorescence 556 
architecture beyond categorical type, position on the vine, and the average number of 557 
berries per cluster (Comeaux et al., 1987; Moore, 1991; Moore & Wen, 2016). Descriptions 558 
of the position of the inflorescence are useful for identification and are included in 559 
dichotomous keys; however, to our knowledge, other inflorescence architecture traits have 560 
not been rigorously quantified among wild Vitis species. Although qualitative descriptions 561 
are valuable and accessible, powerful phenotyping tools are required to associate complex 562 
phenotypes with evolutionary and developmental patterns. 563 
 564 
Using 3D imaging and PH with a topological modeling approach, we identified attributes of 565 
inflorescence architecture that vary within and among Vitis species that, to our knowledge, 566 
have not been previously described. Differences in inflorescence architecture among clades 567 
mirror other phenotypic differences among members of North American Vitis. For example, 568 
members of NA Clade I (V. acerifolia, V. riparia, and V. rupestris) have small values for size-569 
associated features (e.g., RachisLength, ConvexHullVolume, NumberOfPedicel, 570 
TotalBranchLength, SurfaceArea, Volume) and relatively large values for PH_PC3 and 571 
BerryPotentialTouchingDensity (Fig. 7). These species share suites of other morphological 572 
characters (nodal diaphragm, branch, and leaf surface traits, and large stipules; Moore 573 
1991, Moore and Wen 2016, Klein et al., 2018). It is possible that among closely related 574 
species conserved pathways generate vegetative and reproductive similarities.  575 
 576 
Sample size is low for the Asian Clade and most of NA Clade II, limiting our ability to assess 577 
variation in these species; however, members of NA Clade II do not have suites of shared 578 
inflorescence traits (V. aestivalis, V. cinerea, V. labrusca, V. vulpina; Klein et al., 2018). 579 
Rather, V. labrusca has very small values for size-associated traits and larger values for 580 
local features compared to the other clade members, whereas V. cinerea has larger values 581 
for size-associated features and smaller values for local features (Fig. 7). This is consistent 582 
with the observation that aside from core phenotypic synapomorphies in the genus 583 
(tendril, bark, lenticel, and nodal diaphragm characters), members of NA Clade IIb (V. 584 
aestivalis, V. cinerea, V. labrusca, and V. vulpina) do not share morphological traits unique to 585 
the clade (Klein et al., 2018). These species mostly co-occur across their distributions 586 
(Callen et al., 2016) and additional sampling of Vitis taxa is necessary to further explore 587 
these complex evolutionary patterns. We observe V. amurensis grouping with V. labrusca 588 
and V. coignetiae grouping with North American species in hierarchical cluster analysis 589 
(Fig. 5a). The former two species have relatively smaller inflorescence architectures with 590 
thicker branches compared to the other species sampled here. Taxonomic relationships 591 
among North American and Asian Vitis species have been historically challenging, with 592 
clades comprised of species with disjunct distributions (Mullins et al., 1992). Since current 593 
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taxonomy resolves separate Asian and North American clades (Klein et al., 2018), 594 
morphological similarity between these species likely reflects convergent evolution.  595 
 596 
 597 
Future Directions  598 
 599 
Three-dimensional imaging through XRT and advanced mathematical approaches like 600 
persistent homology provide new ways to visualize and interpret complex biological 601 
structures including inflorescences, and to understand the genetic and environmental 602 
factors underlying variation in their architecture. In grapevines, cluster density is an 603 
important trait that is used to assess grapevine crop quality and to forecast yield, in part 604 
because of the association between bunch density and fungal infestations such as Botrytis 605 
(Hed et al., 2009; Iland et al., 2011; Molitor & Beyer, 2014; Molitor et al., 2018). This study 606 
expands on previous work identifying variation in inflorescence architecture among 607 
cultivars (Shavrukov et al., 2004), finding notable differences in cluster architecture among 608 
species. A logical next step may be to use 3D images and PH with topological modeling to 609 
trace the development of inflorescences across multiple growing seasons in a mapping 610 
population. Methods presented here are also amenable to scanning with berries, provided 611 
some noteworthy technical challenges are first addressed (e.g. minimizing berry damage 612 
and rotting during transportation, cluster stabilization during scanning, and segmentation 613 
of 3D volumes with features that vary widely in their X-ray absorbance). This work would 614 
provide a more complete representation of cluster structure, as well as inform our berry 615 
potential simulation with genotype-specific empirical data. We plan to develop predictive 616 
structural models of grapevine cluster development using these techniques. 617 
 618 
Imaging and shape analysis approaches presented here can also be used to tease apart 619 
subtle environmental influences on inflorescence architecture, and the major agronomic 620 
trait of bunch density. Identifying environmental effects on phenotypic variation has 621 
important implications both for vineyard management and the assessment of intra-clone 622 
variation across geographic space. Cluster compactness can be manipulated through a 623 
variety of agronomic practices (Molitor et al. 2012; Gil et al. 2013; Frioni et al. 2017; 624 
Gourieroux et al. 2017; Poni et al. 2018; Reeve et al. 2018). Techniques described here can 625 
be used to quantify influences of specific treatments on cluster architecture. In addition, 626 
because grapevines are clonally propagated, clusters from the same widespread clones can 627 
be collected from different geographic locations, scanned and analyzed for variation. High 628 
resolution assessment of inflorescence architecture offers important insights into natural 629 
variation in bunch density and the genetic and environmental factors that influence it.  The 630 
capacity to capture 3D variation in this complex trait over space and time represents a 631 
promising advance for a valuable potential target of selection in one of the most 632 
economically important berry crops in the world.     633 
 634 
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Tables 652 
 653 
 654 

Table 1 Number of samples/individuals each species and berry information used in the study 

  Number (N) 

Berry information (Galet (1988); Moore 

and Wen (2016)) 

  

Sam

ples 

Individ

uals 

Individuals used in 

phylogenetic analysis 

low 

diameter 

(mm) 

High 

diameter 

(mm) 

Berries per 

bunch 

V. 

acerifoli

a 32 11 9 8 12 >25 

V. 

aestival

is 5 2 1 8 20 >25 

V. 

amuren

sis 13 5 2 8 15 NA 

V. 

cinerea 45 15 13 4 8 >25 

V. 

coigneti

ae 6 2 1 NA 8 NA 

V. 

labrusc

a 62 22 12 12 23 <25 

V. 

palmat

a 3 1 1 8 10 >25 
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V. 

riparia 158 53 48 8 12 >25 

V. 

rupestri

s 41 16 10 8 12 <25 

V. 

vulpina 27 9 2 8 12 >25 

Total 392 136 99       

 655 
 656 

Table 2. Fifteen geometric traits were organized into three categories based on the type of shape 

information captured by the trait. See STable 1. for a more detailed description of each trait. 

Global-size features Local-branching features Size-invariant features 

Volume* RachisLength* Solidity 

ConvexHullVolume* PedicelLength Sphericity 

SurfaceArea* AvgBranchLength 2nd/LongestBranchLength 

TotalBranchLength* BranchDiameter PedicelLength/RachisLength 

NumberOfPedicel* PedicelDiameter 

 
PedicelBranchAngle 

    Size-associated features (traits with * +PH_PC1) 

 657 
 658 
Supporting Information 659 
 660 
Fig. S1 A maximum likelihood phylogenetic tree for ten Vitis species. 661 
Fig. S2 Summary of inflorescence geometric and topological traits and the distribution for 662 
ten Vitis species. 663 
Fig. S3 Morphological traits mapped on the phylogenetic tree. 664 
Fig. S4. Variation for each clade.  665 
Fig. S5 Pairwise correlations of morphological traits (allometric relationships) showing 666 
linear regression lines for each species. 667 
Fig. S6 Pairwise species classification. 668 
Table S1. Trait description and calculation. 669 
Table S2. Trait variance for each species. 670 
Table S3. Trait loadings for two species classification. 671 
Table S4. Trait Pagel’s lambda for phylogenetic analysis. 672 
Table S5. Trait variation for each clade. 673 
Video S1 Illustration of quantifying branching topology using persistent homology. 674 
Video S2 Berry potential simulation 675 
 676 
 677 
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 927 
 928 
Figure Legends 929 
 930 
Fig. 1 Sample preparation and imaging. (a) The ten Vitis species sampled for this study 931 
display diverse grape bunch morphology. (b) Inflorescence architectures after berry 932 
removal. (c) Inside the X-ray tomography instrument; the inflorescence is clamped in a 933 
panavise between two pieces of polystyrene on the X-ray turntable. (d) Two dimensional 934 
radiogram of grape inflorescence; X-rays, absorbed or passing through the inflorescence, 935 
are detected to create a silhouette. (e) Three dimensional reconstruction and the structure 936 
of the same inflorescence shown in (d) by taking radiograms at successive different angles 937 
and then computationally combining the images. 938 
 939 
Fig. 2 Examples of inflorescence geometric and topological traits and their distribution for 940 
ten Vitis species. Each panel shows one of the three traits categories (geometric traits, 941 
topological traits, and berry potential traits). Geometric traits are organized as global size 942 
features, local branching features, and size-invariant features. Each trait is listed at the top 943 
of the column and two inflorescence examples demonstrating low and high trait values 944 
listed to the left. At the bottom of each column is a boxplot indicating the distribution and 945 
variance within the ten Vitis species, represented in different colors. On each box, each dot 946 
indicates an outlier if it is more than 1.5 interquartile ranges; the central vertical line 947 
indicates the median; the left and right edges of the box represent the 25th and 75th 948 
percentiles; and the whiskers extend to the most extreme nonoutlier data. The label for 949 
each species is listed in the boxplot y axis of the leftmost plot, with the number of 950 
individuals sampled for each species shown in parentheses. For a more complete example 951 
and detailed description of each trait, see Fig. S2 and Table S1. 952 
 953 
Fig. 3 Persistent homology with geodesic distance comprehensively quantifies branching 954 
structures. (a) A level (pink solid line) defined by the same geodesic distance (length of any 955 
of the purple curves, in this case, set to 90) to the base of the inflorescence. The super level 956 
set is the pixels (in black) having greater geodesic distance than the pink level. (b) Pixels on 957 
a branching structure are colored by their geodesic distance to the base. They are colored 958 
with red 959 
representing the most distant through to blue for the closest ones. (c) A persistence 960 
barcode for each branching structure records the connected components for each level set 961 
at each geodesic distance value. The “birth” and “death” values for each bar represent the 962 
level where each branch starts and gets merged. Colored bars correspond to colored 963 
branches. (d) Above: example inflorescence. The stem is digitally cut at the base (brown 964 
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line) where it meets the first branch. Below: 3D surface on the example inflorescence as in 965 
(b). (e) Persistence barcode for the inflorescence in (d). (f) and (g), similar to (d) and (e), 966 
show a different inflorescence architecture. 967 
 968 
Fig. 4 Berry potential simulation to explore the space determined by inflorescence 969 
architecture. (a) Determine the growth direction for each berry potential. (b) Expand berry 970 
potential by increasing the size and moving the center along the growth direction until it 971 
meets any of these three cases: 1) two berry potentials touch each other; 2) a berry 972 
potential touches any part of the inflorescence; 3) the diameter of the berry potential 973 
reaches the maximum for the species..  974 
 975 
 976 
Fig. 5 Hierarchical cluster analysis and correlation analysis. (a) Cluster analysis based the 977 
mean value for each trait of 10 Vitis species. The heatmap shows values above (red) or 978 
below (blue) the mean for each trait. The morphological traits (rows) are clustered 979 
hierarchically with the name shown on the right and hierarchical tree listed on the left. The 980 
species (columns) are also clustered hierarchically with the name and hierarchical tree 981 
shown at the top. (b) Correlation matrix plot shows pairwise positively stronger 982 
correlation (green and larger circle) or negatively stronger correlation (purple and larger 983 
circle). Non-significant correlations (p>0.05) are crossed out. The traits are ordered in the 984 
same way as (a). (c) Selected pairs of traits showing linear regression lines for each species.  985 
 986 
Fig. 6 Classification for ten Vitis species based on inflorescence architecture. (a) Left: 987 
Principal component analysis (PCA) plot on 24 morphological traits. The percent variance 988 
for each PC explained is shown in parentheses. Species are shown in different colors. Right: 989 
The loadings for the traits that contribute to the variance are shown. (b) Left: Linear 990 
discriminant analysis (LDA) plot on the first 18 PCs (99.5% variance). Species are shown in 991 
different colors. The confusion matrix for predicted species is shown in the upper right 992 
corner. Right: The loadings for the traits that best distinguish species from each other are 993 
shown. Using a jacknifed ‘leave one out’ cross validation, we obtain a 78.32% classification 994 
accuracy rate.  995 
 996 
Fig. 7 Phylogenetic analysis. A Neighbor Joining phylogenetic tree for a subset of the Vitis 997 
data set (n=99). Node values denote bootstrap support for values greater than or equal to 998 
50. Ten Vitis species are highlighted in different colored backgrounds. Three clades (Asian 999 
Clade, NA Clade I, and NA Clade II) are labeled and marked by vertical bars. The barplot 1000 
showing values of Pagel’s lambda, an estimate of phylogenetic signal, overlaps with the 1001 
trait name on the right top panel. Below each trait, a rainbow colormap shows the values 1002 
for individuals (small values in red to large values in blue). Rectangles surround the trait 1003 
value map for species with more than five individuals. One trait (PHn_PC1) was randomly 1004 
selected to be projected onto the phylogenetic tree branches, and indicates trait variation 1005 
(red, lower values; blue, higher values) within individuals and among clades.  1006 
 1007 
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