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Abstract 
Summary: Single-cell sequencing data is often visualized in 2-dimensional plots, 

including t-SNE plots. However, it is not straightforward to extract biological 

knowledge, such as differentially expressed genes, from these plots. Here we introduce 

singleCellHaystack, a methodology that addresses this problem. 

singleCellHaystack uses Kullback-Leibler Divergence to find genes that are 

expressed in subsets of cells that are non-randomly positioned on a 2D plot. We 

illustrate the usage of singleCellHaystack through applications on several single-

cell datasets. singleCellHaystack is implemented as an R package, and includes 

additional functions for clustering and visualization of genes with interesting expression 

patterns. 

Availability and implementation: https://github.com/alexisvdb/singleCellHaystack 

Contact: alexisvdb@infront.kyoto-u.ac.jp  

1 Introduction 
The parallel sequencing of transcriptomes of single cells (scRNA-seq) has revealed 

considerable heterogeneity in gene expression among single cells. In recent years, a 

myriad of bioinformatics and machine learning tools have become available for 

processing, analyzing and interpreting scRNA-seq data (Zappia et al., 2018).  

The high dimensionality of scRNA-seq data makes interpretation and visualization 

difficult. The standard way of dealing with this problem is to apply t-distributed 

stochastic neighbor embedding (t-SNE), and represent the data in fewer dimensions (i.e. 

a 2D plot) (van der Maaten and Hinton, 2008). Arguably, t-SNE is the most widely used 

method in the analysis of scRNA-seq data. 

However, because of the high-dimensional raw data and the heterogeneity it contains, t-

SNE often results in plots where it’s hard to define boundaries between groups of cells. 

In some cases, there are exorbitant numbers of clusters, while in other cases there are 
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large agglomerates formed by many loosely connected subsets of cells. As a result, it is 

difficult to find interesting genes (i.e. genes that are detected in some subset of cells but 

not in others) in these plots, because it is unclear what subsets of cells to compare with 

each other.  

Here, we present singleCellHaystack, a methodology that addresses this 

problem. singleCellHaystack uses Kullback-Leibler Divergence (𝐷𝐾𝐿; also 

called relative entropy) to find genes that are expressed in subsets of cells that are non-

randomly positioned on a 2D plot (e.g. a t-SNE plot or plot of principal components) 

(Kullback and Leibler, 1951). The 𝐷𝐾𝐿  of each gene is compared with randomized data 

to evaluate its significance and estimate a p-value. singleCellHaystack does not 

rely on clustering of cells, and can detect any non-random pattern of expression in a 2D 

plot. An R package for running singleCellHaystack analysis and additional 

functions for visualization and clustering of genes is available at 

https://github.com/alexisvdb/singleCellHaystack. 

2 Materials and methods 
More details are given in Supplementary Material. 

2.1 singleCellHaystack methodology 

The main function, haystack, uses 𝐷𝐾𝐿  to estimate the difference between a reference 

distribution of all cells on a 2D plot (distribution 𝑄) and the distributions of the cells in 

which a gene 𝐺 was detected (distribution 𝑃(𝐺 = 𝑇)) and not detected (distribution 

𝑃(𝐺 = 𝐹)).  

To do so, first the 2D plot is divided into a grid along both axes. Next, a Gaussian 

kernel is used to estimate the density of cells at each grid point. Summing the 

contributions of all cells gives us 𝑄; the subset of cells in which 𝐺 is detected 𝑃(𝐺 =

𝑇); and the subset of cells in which 𝐺 was not detected 𝑃(𝐺 = 𝐹). A small pseudo 

count is added to each grid point, and each distribution is normalized to sum to 1. 

The divergence of gene 𝐺,  𝐷𝐾𝐿(𝐺), is calculated as follows: 

𝐷𝐾𝐿(𝐺) = ∑ ∑ 𝑃(𝐺 = 𝑠, 𝑥)log⁡(𝑃(𝐺=𝑠,𝑥)
𝑄(𝑥)

)𝑥∈𝑔𝑟𝑖𝑑⁡𝑝𝑜𝑖𝑛𝑡𝑠𝑠∈{𝑇,𝐹}      Eq. 1 

where 𝑃(𝐺 = 𝑠, 𝑥) and 𝑄(𝑥) are the values of 𝑃(𝐺 = 𝑠) and 𝑄 at grid point 𝑥, 

respectively. 

Finally, the significance of 𝐷𝐾𝐿(𝐺) is evaluated using randomizations, in which the 

expression levels of 𝐺 are randomly shuffled over all cells. The mean and standard 

deviation of 𝐷𝐾𝐿(𝐺) in randomized datasets follow a clear pattern in function of the 

number of cells in which a gene was detected (see Supplementary Fig. S1 examples), 

which is modeled using B-splines (Schoenberg, 1946). P-values are calculated by 

comparing the observed 𝐷𝐾𝐿(𝐺) to predicted mean and standard deviations (log values). 
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2.2 singleCellHaystack advanced options 
The distribution 𝑄 and the randomizations described above ignore the fact that some 

cells have more detected genes than others. singleCellHaystack can be run in an 

advanced mode, in which both the calculation of 𝑄 and the randomizations are done by 

weighting cells by their number of detected genes (see Supplementary Material for more 

details). 

In addition, singleCellHaystack includes functions for visualization and 

clustering gene expression patterns in the 2D plot. 

2.3 scRNA-seq datasets and processing 
We downloaded processed data (read counts or unique molecular identifiers) of the 

Tabula Muris project (Smart-seq2: 20 sets; Microfluidic droplets: 28 sets), the Mouse 

Cell Atlas (Microwell-seq: 87 sets) and a dataset of several hematopoietic progenitor 

cell types (Schaum et al., 2018; Han et al., 2018; Nestorowa et al., 2016). For each 

dataset, cells and genes were filtered, the 1,000 most variable genes were selected, and 

principal component analysis (PCA) and t-SNE analysis were conducted, following the 

recommendations by Kobak and Berens (Kobak and Berens, 2018). Finally, 

singleCellHaystack was run on each dataset to find interesting genes in its t-SNE 

plot. 

3 Results 
We applied singleCellHaystack on 136 scRNA-seq datasets of varying sizes 

(149 to 19,693 cells). Median runtimes were and 75 and 84 seconds using the simple 

and advanced mode, respectively. For datasets containing < 5,000 cells, runtimes follow 

an approximately linear function of the number of cells in each dataset (Supplementary 

Fig. S2). 

In all datasets, large numbers of genes were found to have significantly biased 

distributions on the t-SNE plot. This observation in itself is not surprising, since t-SNE 

reduces the distance between cells with similar gene expression profiles. Rather than 

interpreting singleCellHaystack p-values in the conventional definition, the 

ranking of genes is more relevant. 

Figure 1 summarizes the result of the Tabula Muris fat tissue dataset (Smart-Seq2). 

5,604 cells and 15,337 genes were used as input, and the singleCellHaystack run 

took 221s in the advanced mode. The t-SNE plot shows a typical mixture of clearly 

separated as well as loosely connected groups of cells, with considerable variety in the 

number of genes detected (Fig. 1A). The gene with the most significantly biased 

expression was Cd74, which is detected only in a few subsets of cells (Fig. 1B). To 

illustrate the variety in patterns, we grouped biased genes into 5 clusters based on 

hierarchical clustering of their density plot (Supplementary Fig. S3). Fig. 1C-F show the 

most significantly biased genes of the other 4 groups. 

Results for two other example datasets are shown in Supplementary Fig. S4 and S5.  
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Limitations of singleCellHaystack 
As noted above, singleCellHaystack returns inflated p-values because of the 

fundamental properties of PCA and t-SNE plots. In future updates we hope to address 

this issue. 

4 Implementation 
singleCellHaystack is implemented as an R package, available at 

https://github.com/alexisvdb/singleCellHaystack. The repository includes additional 

instructions for installation in R. 

 

Figure 1: Application of singleCellHaystack on fat tissue dataset. (A) t-SNE 

plot of the 5604 cells. The color scale shows the number of genes detected in each cell. 

(B-F) Expression pattern of five highly biased genes, representative of the five groups 

in which the genes were clustered. 
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