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Abstract: 11 

Background/ Motivation: 12 

In the era of affordable next generation sequencing technologies we are facing an exploding amount 13 

of new phage genome sequences. This requests high throughput phage classification tools that meet 14 

the standards of the International Committee on Taxonomy of Viruses (ICTV). However, an 15 

accurate prediction of phage taxonomic classification derived from phage sequences still poses a 16 

challenge due to the lack of performant taxonomic markers. Since machine learning methods have 17 

proved to be efficient for the classification of biological data we investigated how artificial neural 18 

networks perform on the task of phage taxonomy. 19 

Results: 20 

In this work, 5,920 constructed and refined profile Hidden Markov Models (HMMs), derived from 21 

8,721 phage sequences classified into 12 well known phage families, were used to scan phage 22 

proteome datasets. The resulting Phage Family-proteome to Phage-derived-HMMs scoring matrix 23 

was used to develop and train an Artificial Neural Network (ANN) to find patterns for phage 24 

classification into one of the phage families. Results show that using the 100 fold cross-validation 25 

test, the proposed method achieved an overall accuracy of 84.18 %. The ANN was tested on a set of 26 

unclassified phages and resulted in a taxonomic prediction. The ANN prediction was benchmarked 27 

against the prediction resulting of multi-HMM hits, and showed that the ANN performance is 28 

dependent on the quality of the input matrix. 29 

Conclusions: 30 

We believe that, as long as some phage families on public databases are 31 

underrepresented, multi-HMM hits can be used as a classification method to populate 32 

those phage families, which in turn will improve the performance and accuracy of the 33 

ANN. We believe that the proposed method is an effective and promising method for 34 

phage classification. The good performance of the ANN and HMM based predictor 35 

indicates the efficiency of the method for phage classification, where we foresee its 36 

improvement with an increasing number of sequenced viral genomes. 37 

Keywords:  38 

Phage; Classification; HMM; Machine Learning; Artificial Neural Networks 39 
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Introduction: 41 

Bacteriophages, bacterial viruses infecting bacteria, are of utmost importance due to the role they 42 

play in bacterial evolution (Roux et al. 2016). Virus classification is based on the idea of an 43 

evolutionary relationship between viruses and groups of viruses having more ability to exchange 44 

genetic material (Hans-W Ackermann 2011). Virus taxonomy is currently the responsibility of the 45 

International Committee on the Taxonomy of Viruses (ICTV). As of March 2017, there exist 4,404 46 

approved Species, 735 Genera, 35 Subfamilies, 122 Families and 8 Orders (Lefkowitz et al. 2017). 47 

The traditional method for the classification of phages is based on deciphering the type of nucleic 48 

acid and virion morphology using Transmission Electron Microscopy (TEM)(Rohwer & Edwards 49 

2002). Experimental identification and classification of phages is based on physiological data and 50 

needs time to perform the experiments and expertise on the culture conditions of the corresponding 51 

host and phage system. However, within the explosive growth of phage sequences in the era of next 52 

generation sequencing technologies, there is an increasing amount of phage derived sequences that 53 

lack physiological data and knowledge on the host of the phages, especially in the case of 54 

metagenome data. This poses challenges to the successful implementation of a method which 55 

correctly classifies phages(Skewes-cox et al. 2014). Therefore, the development of a sequence 56 

based computational method, with the flexibility to integrate newly sequence derived phage 57 

descriptors, is necessary to allow rapid and accurate classification. 58 

It is a known fact that phages do not have a ribosomal gene to place them on the tree of life 59 

(Rohwer & Edwards 2002).Phage classification based nucleotide pairwise comparison limits the 60 

process to similarities to phages found within reference databases (Bolduc et al. 2017). This poses a 61 

challenge to phage sequences identified from metagenomic datasets, where in one study by Paez-62 

Espino et al (Paez-Espino et al. 2016), they identified over 125,000 contigs which revealed no 63 

sequence similarity to known viruses.  64 

To that extent, taxonomic systems based on phage proteomes were suggested; however they come 65 

with their limitations (Meier-Kolthoff & Göker 2017). Clustering techniques optimized for viral 66 

classification were applied by Lima-Mendez et al. (Lima-Mendez et al. 2008)and Roux et al. (Roux 67 

et al. 2015), which showed the efficiency of the use of phage clustering as a basis of classification.  68 

Profile HMMs proved to be a powerful method to model the sequence diversity of a set of 69 

orthologs, and thus are sensitive and more effective than pairwise alignment methods in detecting 70 

divergent viral sequences (Skewes-cox et al. 2014; Reyes et al. 2017). Additionally, Chibani et al. 71 

2019 (accepted) showed that the use of a combination of phage derived profile HMM hits proved to 72 

be efficient to classify previously unclassified phage genomes into different phage families. 73 
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The emerging fields and use of machine learning and data mining in different biological fields are 74 

proving to be instrumental in answering challenging questions by looking into millions of biological 75 

data produced in the last decade. Because of their success with big data, ANNs and other machine 76 

learning models have gained a considerable amount of interest as a promising framework for 77 

biology. When combined with genomic information, novel machine learning and data mining 78 

techniques can advance the extraction of critical information and predict future observations from 79 

big data. Considerable progress has been made in the application of Support Vector Machines 80 

(SVM) (Manavalan, Tae H. Shin, et al. 2018; Tan et al. 2018)  and Naïve Bayes (Feng et al. 2013) 81 

machine learning algorithms to identify phage virion proteins and in the application of ANN to 82 

classify tailed phages (currently deprecated) (Lopes et al. 2014). However, the use of machine 83 

learning for phage taxonomic classification has not been reported so far. Therefore, it is necessary 84 

to apply meaningful feature extraction and selection methods to investigate the classification 85 

method. 86 

In order to address the limitations of current phage taxonomic classification software, we focused 87 

on the question of how profile HMMs (Chibani et al 2019 (accepted)) perform within a machine 88 

learning approach for the automated classification of phage genome sequences. We designed and 89 

developed an ANN, a well known supervised Machine Learning (ML) algorithm, which has been 90 

applied to several biological problems (Arango-Argoty et al. 2018; Seguritan et al. 2012). The ANN 91 

takes protein hits scores to phage derived profile HMMs per phage family as input, by applying a 92 

set of thresholds to select optimal features for a phage classification method. The performance of 93 

supervised prediction algorithms depends on the quality of the training data set. We therefore 94 

generated a training data set to train an ANN to classify new phage genomes and whether the public 95 

available phage genomes are sufficient. To our knowledge, this is the first ever reported use of 96 

ANN for the classification of phages into phage families with a trusted performance to accuracy 97 

ratio for the predictions.  98 
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Materials and Methods: 99 

A five-step guideline has increasingly been endorsed (Manavalan, Tae Hwan Shin, et al. 2018) in a 100 

series of recent publications, to develop a sequence-based predictor for a biological system that can 101 

easily be used, which goes as follow:  102 

(i) generating a solid benchmarking dataset to train and test the prediction model; (ii) formulate the 103 

biological sequence samples with an effective mathematical expression that can truly reflect their 104 

intrinsic correlation with the target to be predicted; (iii) develop a powerful algorithm to generate a 105 

prediction; (iv) implement cross-validation tests to objectively evaluate the performance of the 106 

predictor; and finally, (v) establish a user-friendly web-server for the predictor that is accessible to 107 

the public. Below, we describe the achieved steps. 108 

Data Collection 109 

The raw phage dataset used in this research were retrieved from millardlab database 110 

(http://millardlab.org/bioinformatics/bacteriophage-genomes/). 111 

As of 20 March 2018, the database contained in total 8,721 phage genomes (Table S1) belonging to 112 

21 phage families summarized in Table 1. 113 

Table 1: Summary table of the phage families and number of phages belonging to each phage 114 
family found in the millardlab database as of 20 March 2018 115 

ds/ss DNA/RNA Phage Family Number 
Classified Phages 
ds DNA Ampullaviridae 6 
ds DNA Bicaudaviridae 10 
ds DNA Myoviridae 1,766 
ds DNA Podoviridae 1,066 
ds DNA Siphoviridae 3,466 
ds DNA Corticoviridae 2 
ds RNA Cystoviridae 15 
ds DNA Fuselloviridae 22 
ds DNA Globuloviridae 4 
ds DNA Guttaviridae 1 
ds DNA Haloviruses 30 
ss DNA Inoviridae 119 
ss RNA Leviviridae 40 
ds DNA Ligamenvirales (Lipothrixviridae and Rudiviridae) 49 
ss DNA Microviridae 734 
ds DNA Plasmaviridae 2 
ds/ss unclassified Pleolipoviridae 16 
ds DNA Salteproviridae 2 
ss DNA Spiraviridae 1 
ds DNA Tectiviridae 19 
ds DNA Turriviridae 4 
Unclassified Phages 
- - Generally unclassified phages 1,175 
ds DNA unclassified phages 105 
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ds DNA Caudovirales unclassified phages 67 
 116 
 117 
The first two columns represent the nucleic acid structure of the phage family. The third column represents the phage 118 
family and the fourth column represents the number of phages belonging to every phage family. ds: double stranded, ss: 119 
single-stranded, DNA: Deoxyribonucleic acid,  RNA: Ribonucleic acid. 120 

Data Construction 121 

For the purpose of obtaining a reliable benchmark dataset, the following steps were considered. 122 

Phage families which had less than 15 phage genomes were excluded, in order to ensure diverse 123 

phages with diverse proteins for HMM generation. This step is crucial in order to differentiate 124 

between the highly biased number of Siphoviridae phages and least abundant ones. This resulted in 125 

12 of the 21 phages families (Cystoviridae, Fuselloviridae, Haloviruses, Inoviridae, Leviviridae, 126 

Ligamenvirales, Microviridae, Myoviridae, Pleolipoviridae, Podoviridae, Siphoviridae and 127 

Tectiviridae) used for the benchmark dataset construction. 128 

 129 

Figure 1: Overall framework of Phage_input_matrix construction. 

s: 
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Non-redundant CDS, extracted from classified phage gbk files, were used as input for the Markov 

Clustering algorithm (MCL-edge). Clusters including more than 5 proteins were used to generate 

profile HMMs. Profile HMMs were subjected to refinement steps after rescanning the input 

extracted CDS. Refinement included 1) proteins not reaching the coverage threshold of 50% of the 

HMM consensus sequence were removed, and if were hit again, added to the model; 2) proteins 

removed due to redundancies were not added to the model; 3) proteins used to create the HMMs 

themselves if were hit were kept, if not hit thus were removed from the model; 4) not yet assigned 

proteins were added to the model. Rescanning the input and refinement steps were repeated until no 

change was observed. Resulting HMM scan bit-scores were normalized, and a set of input features 

were extracted, using the generated HMMs scanning the input data set, resulting in a cross-scan 

matrix of HMM-Phage-Family correlation to Protein-Phage correlation, we call 

Phage_input_matrix. 

HMM profiles from the 12 phage families were generated as described by Chibani et al. 2019 130 

(accepted) (see Figure 1 for an overview of the methodology). In summary, protein coding 131 

sequences were extracted from the phage Gbk files, and sequences containing non-standard amino 132 

acid residues were excluded, as their meanings are ambiguous. To avoid biases and over-fitting, 133 

redundant proteins defined by CD-HIT (v.4.5.4)(Li & Godzik 2006) program by applying a 100% 134 

sequence identity cut-off, were removed during HMM generation steps. It should be noted that 135 

redundant proteins were removed only from the dataset used for HMM construction and not for the 136 

testing dataset. MCL-edge (v12-068) (Enright 2002) was used to generate protein clusters out of a 137 

BLASTp scan of all-against-all input protein sequences. For the clusters which had more than 5 138 

proteins, multi-sequence alignment (MSA) files were generated. Profile HMMs were generated, per 139 

MSA file, using “hmmbuild” from HMMER (v3.1b1) (Finn et al. 2011) with default parameters. 140 

Removed proteins were stored for later refinement.  141 

The initially generated HMMs were then refined considering the following steps: 142 

Firstly, the function "hmmemit" was used to create a consensus sequence from a generated profile 143 

HMM. This consensus sequence is closest in similarity to the majority of sequences used to create 144 

the respective HMM. Using "BLASTP" to align each protein of a cluster against the consensus 145 

sequence, proteins not reaching the coverage threshold of 50% were removed and stored for later 146 

refinement as well.  147 

Secondly, the command "hmmpress" was used to create binary compressed data files (.h3m, .h3i, 148 

.h3f and .h3p) from a "profile HMM". With "hmmscan" the binary files were used to look for 149 

orthologous protein hits in the scanned dataset. Created profile HMMs were used to scan the input 150 

fasta files where protein hits could be mapped to a) proteins removed due to redundancies b) 151 

proteins used to create the HMMs themselves c) not yet assigned proteins.  152 
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Lastly, proteins which are hit and have not yet been assigned were added to the profile HMM. 153 

Proteins that were used to create the HMM and were not hit, were removed from the profile HMM. 154 

Proteins that are hit but were previously removed due to redundancies were not added. Whenever 155 

multiple HMMs hit the same sets of proteins as well as their inputs, they were merged. Refined 156 

HMMs were used to rescan the input fasta and, if needed, refinement steps of merging were 157 

repeated until no changes occur. Resulting HMM scan bit-scores were lastly normalized (see Data 158 

normalization section) for further analysis. 159 

Feature extraction 160 

The aim of this experiment was to train ANN Machine Learning (ML)-based model to accurately 161 

map input features generated from HMM scans, to predict the phage family a phage sequence 162 

belongs to, which is considered a multiclass classification problem. The key is to extract a set of 163 

informative features. We generated a set of input features for the ANN predictor, by scanning the 164 

proteomes of the 7,342 phages, of the remaining 12 phage families, using the generated 5,920 165 

refined profile HMMs, which resulted in a cross-scan matrix of HMM-Phage-Family correlation to 166 

Protein-Phage correlation. The resulting bit-scores per HMM were extracted to generate input 167 

feature vectors for the training dataset with the phage family as the label.   168 

For each individual phage of the phage family, one row is set up in the matrix, with the first two 169 

columns containing the bacteriophages name, which was later dropped, and phage family, which 170 

was used as the label. All other columns contain the bit-score value of the 5,920 HMM profiles scan 171 

of this phage protein sequences, or a default value of zero for no hit of that profile. We name our 172 

input matrix Phage_input_matrix.  173 

Data normalization 174 

The bit-score values were normalized by dividing the resulting HMM scan bit-score by the number 175 

of amino acids of the consensus sequence of every HMM cluster. Hits of insufficient quality were 176 

filtered (e-score value <1e-10,(Amgarten et al. 2018; Arango-Argoty et al. 2018)). Additionally, if 177 

the bias of a hit was larger than the bit-score it produced, or if the bit-score was below zero in the 178 

first place, the corresponding HMM profile hit was omitted. If negative bit-score values were 179 

allowed, this would increase the value of empty hit cells in the final input matrix to a value greater 180 

than zero, creating values of HMM profile hits in the training dataset where there are none in the 181 

input.  182 

After the creation of the matrix is completed and prior to the training of the ANN, its values are 183 

normalized to range from of [0,1], by employing “Minmax” formula described in (Manavalan et al. 184 

2014): 185 
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� � � ���� ��	 ��
⁄ ��	 ������	 ������	 

that can be used to reduce a k-dimensional array with any range to an array of the same shape 186 

covering a range from 0 to 1. 187 

Artificial Neural Network   188 

We employed ANN as our algorithm, the objective of which is to learn to recognize patterns in a 189 

given dataset. Once it has been trained on samples of your data, it can make predictions by 190 

detecting similar patterns in future data(Schmidhuber 2015)). The “softMax” function (Manavalan, 191 

Tae H. Shin, et al. 2018), which is defined as � � �

 ���	 �⁄ �

���	(Andrew Skabar, Dennis 192 

Wollersheim 2006),  with a being a k-dimensional array. The resulting array, b, of the same shape 193 

as a, holds values ranging from 0 to 1 where all values in b add up to 1. Softmax was implemented 194 

as the activation function of the ANN’s output layers. 195 

Based on the difference between the model’s predictions and the correct values, an error rate is 196 

calculated and the weights in each layer of the network are adjusted to reduce the error of the 197 

prediction. This procedure is performed from the output layer through the entire network to the 198 

input layer, hence the term back-propagation. The extent to which weights are adjusted is controlled 199 

by a learning rate. While linear and exponential decay functions did result in an increase of 200 

accuracy, the decay had to be gradual for the model to reach good prediction accuracy. This was 201 

achieved with high numbers of training epochs. We adapted the cosine decay, as discussed by 202 

(Loshchilov & Hutter 2016), proved to be the most efficient approach to decay the learning rate in 203 

our tested ANN architecture. In this study, we used the TensorFlow 1.10 package. 204 

Cross-Validation and Independent Testing 205 

Usually, the benchmark dataset comprises a training dataset for training and a testing dataset for 206 

testing the model. Here, we performed 100-fold cross-validation on the training dataset and the 207 

trained model was tested on the independent dataset to confirm the generality of the developed 208 

method. For that, the benchmark dataset is split into 100 subsets, where 1/100th of the initial data 209 

used for each of the testing subsets and the remainder used for training and cross-validation is 210 

performed using each of these 100 subsets as the testing dataset. The model trains for 100 211 

individual sessions, once for each subset, as it must not have trained on any entry it later classifies 212 

in a testing set. 213 

Here, all entries of the initial set are classified after the classification has ended, but the results can 214 

still vary due to the random distribution of entries in each training/testing subset. It should be noted 215 
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that we performed 5 independent 100-fold cross-validations to confirm the robustness of the ML 216 

parameters.  217 
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Performance Evaluation Criteria 218 

To provide a simple method to measure the prediction quality, the following three metrics, 219 

sensitivity (Sn), specificity (Sp) and accuracy (Acc) were used and expressed as: 220 

   (i) �� � �� ��� � ��	⁄  221 

    0 � �� � 1 222 

   (ii) �
 � �� ��� � ��	⁄  223 

    0 � �
 � 1 224 

   (iii) ��� � ��� � ��	 ��� � �� � �� � ��	⁄  225 

    0 � ��� � 1 226 

where TP is the number of phage correctly predicted to be of their corresponding phage families; 227 

TN is number of non-classified phages predicted to be not belonging to any phage family; FP in the 228 

number of is the number of non-classified phages predicted to belong to a phage family; and FN in 229 

the number of classified phages predicted not to belong to any phage family. 230 

To further evaluate the performance of the ANN and determine suitable thresholds for the 231 

prediction values of the different families, we employed receiver operating characteristic (ROC) 232 

curves for the classification of each family. The ROC curve was plotted with the specificity as the 233 

x-axis and sensitivity as the y-axis by varying threshold. The area under the curve (AUC) was used 234 

for model evaluation, with higher AUC values corresponding to better performance of the classifier. 235 

The quality of the proposed method can be objectively evaluated by measuring the AUC. 236 

Results 237 

Data Construction 238 

This method resulted in 5,920 refined profile HMMs, derived from 7,342 phages classified into 12 239 

phage families (Table 2).  240 

Table 2: Summary table of the number of refined HMMs resulting per phage family 241 

Phage Family Refined HMMs 
Cystoviridae 2 
Fuselloviridae 21 
Haloviruses 48 
Inoviridae 21 
Leviviridae 4 
Ligamenvirales 70 
Microviridae 11 
Myoviridae 2,851 
Pleolipoviridae 3 
Podoviridae 701 
Siphoviridae 2,170 
Tectiviridae 18 
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 242 
The first represents the phage family. The second column represents the number of refined HMMs generated per phage 243 
family. 244 

The cross scan matrix resulting from the scan of HMMs derived from one phage family against the 245 

proteome of the 11 other phages families resulted in 60,560 protein hits by input HMM (Table S2). 246 

Neural Network Training and Classifications 247 

The accuracy of the model during training was monitored using a scatter plot, which records the 248 

models performance on the testing set at every 10th epoch of model training. Further collected 249 

metrics, the accuracy of the classification of the training and the testing data, as well as the learning 250 

rate at the given training epoch, were collected and plotted when training was complete (Figure 2).  251 

An overall prediction accuracy of 84.18 % was achieved by adopting ANN with a 100-fold cross-252 

validation method on all phages in the dataset. 253 

 254 

Figure 2: ANN performance on input matrix over training epochs. 

The plot displays the trends of the learning rate, training set accuracy and testing set accuracy over 

500 epochs. The high learning rate in early epochs shows the high fluctuation of accuracies between 

epochs, as the adjustment of the model’s weights modifies it heavily. In the final epochs, the 

accuracy of the testing data classification reached 84.18%. 

The scatter plot shows that the chosen batch size of 100 yielded the best result. We do not see  255 

information about possible issues with over- or under-fitting data. The model does not performs 256 

poorly on the testing set compared to the training set and thus did not result in over-fitting. Over-257 

fitting results in a fluctuating training performance and low testing performance. Additionally, the 258 
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model did not result in a poorer performance on both the training and the testing set. Under-fitting 259 

of the model to the training set results in a training performance curve that is constantly higher than 260 

the testing curve. The learning rate displays a decrease with an increasing number of epochs, to 261 

reach 0, when the accuracy of the testing reaches its high of 84.18%. We conclude there is no 262 

reason to assume issues with an over- or under-fitting model. 263 

Model performance and Metrics 264 

The main output of the neural network is the label of the testing set and predictions of the model for 265 

each entry recorded at any training epoch. Using this information, the performance of the neural 266 

network can be accessed in detail for different stages of training. The labels of testing data are 267 

compared to the models assignments of the last recorded prediction by taking the maximum value 268 

of the models assignments. 269 

As shown in Table 3, the TP, TN, FP, FN, Sp, Sn and Acc were calculated for the classification 270 

into the different phage families by using all 5,920 features.  271 

Table 3: Predictive performance of the ANN per phage family 272 

Phage Family TP TN FP FN Sensitivity Specificity Accuracy 
Cystoviridae 0 7,790 0 22 0 1 0.9971838 
Fuselloviridae 0 7,782 0 15 0 1 0.9980762 
Haloviruses 4 7,782 0 25 0.137931 1 0.9967994 
Inoviridae 88 7,633 0 91 0.4916201 1 0.9883513 
Leviviridae 25 7,776 0 11 0.6944444 1 0.9985919 
Ligamenvirales 8 7,742 0 35 0.1860465 1 0.9955042 
Microviridae 59 7,057 13 173 0.2543103 0.9981612 0.9745275 
Myoviridae 577 6,548 40 647 0.4714052 0.9939284 0.9120584 
Pleolipoviridae 0 7,796 0 16 0 1 0.9979519 
Podoviridae 605 7,001 21 185 0.7658228 0.9970094 0.9736303 
Siphoviridae 3,693 2,691 214 944 0.7964201 0.9325984 0.8517665 
Tectiviridae 3 7,776 0 25 0.1071429 1 0.9967965 

    273 

True or wrong phage classification prediction was assumed when the taxonomic prediction matched 274 

or did not match respectively the taxon that was given by the authors of the genome sequence. The 275 

number of correctly predicted phages (TP) of Siphoviridae (79.6%), Podoviridae (76.6%), 276 

Leviviridae (69.4 %), Inoviridae (49.1%), Myoviridae (45,5%), Microviridae (25.4%), Haloviruses 277 

(13.79%), Ligamenvirales (18.6%) and Tectiviridae (10.71%). Neither Cystoviridae, nor 278 

Fuselloviridae, or Pleolipoviridae were correctly predicted (TP = 0). 279 

On the other hand, phage families where FP was predicted were Microviridae, Myoviridae, 280 

Podoviridae and Siphoviridae. All four phage families are known to infect bacterial hosts, however 281 

Microviridae are ss/DNA phages, whereas Myo-, Podo- and Sipho- are ds/DNA tailed phages 282 

belonging to the order of Caudovirales.  283 
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The clearest trend is the misclassification of entries to the Siphoviridae family. This occurs in 284 

families that are closely related to Siphoviridae (Myoviridae, Podoviridae), but also in structurally 285 

very distinct families such as Fuselloviridae and Inoviridae. This could indicate unexpected gene 286 

flux between unrelated phage species (Shapiro & Putonti 2018). 287 

ROC curves and thresholds 288 

It is important to note that the confidence values in the final output of the model are not a 289 

percentage of likelihood for the corresponding entry. For example, a value of 0.7 as the highest 290 

value for an entry does not mean that the classification has a probability of 70% to be true. 291 

However, it makes it possible to set a threshold value to distinguish between more and less 292 

significant predictions. A higher threshold can improve the specificity of classification while a 293 

lower threshold results in highly sensitive classification. One threshold may have different effects 294 

on families, as the prediction scores are not calibrated between them. Thus, one score may be suited 295 

to distinguish true positives from false positives in one family but inappropriate to do this in another 296 

(Fawcett 2006). To determine suitable thresholds for the prediction values of different families, 297 

ROC curves for the classification of each family were created and plotted using the R package 298 

pROC (Figure 3). 299 

 300 

Figure 3: ROC curve resulting from the ANN classification. 
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ROC curves out of the input matrix dataset prediction. The performance of the neural network 

ranges from near perfect prediction (AUC of 0.97 for the Leviviridae family) to almost random 

(AUC of 0.682 for the Pleolipoviridae family). The varying trends of the individual curves reflect 

that classifications of different families benefit from thresholds that are unique to them 

From the ROC curves, AUC (Area Under the Curve) values were calculated, which provided 301 

insight into the prediction performance without a specific threshold. As the area in a ROC plot is 302 

always 1, the area under the curve can range from 0 to 1, with 0.5 representing no predictive power 303 

and 1 perfect prediction. It can be interpreted as an average performance metric for the classifier. 304 

All calculated AUCs for were displayed in the legend of the ROC curves (AUC of 0.719 for 305 

Cystoviridae, 0.765 for Fuselloviridae, 0.682 for Haloviruses, 0.921 for Inoviridae, 0.952 for 306 

Leviviridae, 0.934 for Ligamenvirales, 0.931 for Microviridae, 0.935 for Myoviridae, 0.829 for 307 

Pleolipoviridae, 0.945 for Podoviridae, 0.95 for Siphoviridae and 0.88 for Tectiviridae). 308 

External dataset test   309 

The proteomes of (~1,347) unclassified phages (Generally unclassified phages, ds/DNA 310 

unclassified phages and ds/DNA/Caudovirales unclassified phages) were scanned using the set of 311 

5,920 refined profile HMMs. A matrix using the resulting bit-scores per HMM was generated, 312 

where the bit-scores were normalized as was described previously. We used the generated ANN to 313 

test the ability of the ClassiPhage 2.0 model to predict the phage family classification of the 314 

unclassified phages. Out of 1,175 generally unclassified phages, predicted phage families were 315 

Inoviridae, Microviridae, Myoviridae, Pleolipoviridae, Podoviridae, Siphoviridae and Tectiviridae. 316 

Out of 105 ds/DNA unclassified phages, predicted phage families were Microviridae, Myoviridae, 317 

Podoviridae, Siphoviridae and Tectiviridae. Finally, out of 67 ds/DNA/Caudovirales unclassified 318 

phages, predicted phage families were Halovirus, Microviridae, Myoviridae, Podoviridae and 319 

Siphoviridae (Table S8). Haloviruses and Microviridae can’t be a classification for 320 

ds/DNA/Caudovirales, which shows that ClassiPhage 2.0 misclassifies phages where cross hits 321 

occur and enough family specific HMM hits.  322 

We generate a heatmap of the prediction of the same set of unclassified vibriophages classified by 323 

Chibani et al 2019 (accepted) (Figure 4). 324 
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 325 

 326 

Figure 4: Heatmap of ClassiPhage 2.0 prediction of unclassified vibriophages. 327 

A heatmap based on a phage family prediction of a set of unclassified vibriophages by the ClassiPhage 2.0 328 
model, displaying the phage labels (y-axis) and  phage family prediction (x-axis). 329 

 330 
22 classified phages were consistent with the classification resulting in Chibani et al. 2019 331 

(accepted). 23 phages which had an unclear classification were classified as Siphoviridae by 332 

ClassiPhage 2.0. Lastly, out of 17 phages which were not consistent between the two methods, the 333 

clearest trend was the misclassification of entries to the Siphoviridae phage family (Table S9). 334 

Comparison to other methods 335 

To the best of our knowledge, there exists no theoretical method for phage classification into phage 336 

families. Therefore, we cannot provide the comparison to analysis with published results to confirm 337 

that the model proposed here is superior to other methods. However, we generated a matrix out of 338 

the expected phage classification, as described in Chibani et al 2019 (accepted), to which we 339 
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compare the prediction of ClassiPhage 2.0 of the unclassified dataset. We display phage predictions 340 

resulting from ClassiPhage and ClassiPhage 2.0 (Figure 5). 341 

 342 

Figure 5: Barplot representing the classification of the unclassified phage dataset based on 343 
ClassiPhage 2.0 and ClassiPhage. 344 

A bar plot summarizing phage classification prediction of 1) ds/DNA/Caudovirales, 2) ds/DNA unclassified 345 

phages and 3) generally unclassified phages based on ClassiPhage 2.0 (yellow bars) and ClassiPhage (blue 346 

bars). Displaying the count number (y-axis), and the grouped phage family prediction (x-axis). 347 

 348 

HMM based phage classification, resulted in the classification of 835 out of 1,175 generally 349 

unclassified phages into 5 of the 12 phage families (3 Fuselloviridae, 3 Haloviruses, 261 350 

Myoviridae, 307 Podoviridae and 261 Siphoviridae), and resulted in the classification of 67 out of 351 

105 ds/DNA (1 Halovirus,10 Myoviridae,16 Podoviridae and 40 Siphoviridae) and 48 out of 67 352 

ds/DNA/Caudovirales (26 Myoviridae, 20 Podoviridae and 2 Siphoviridae) (Tables S5 and S9).The 353 

performance of ClassiPhage 2.0 prediction in comparison to HMM based phage classification was 354 
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skewed towards Siphoviridae prediction, which is a consequence of the skewed input matrix of the 355 

ANN. 356 

Discussion: 357 

Phage classification based on phage sequencing data has long been a challenge, since phages have 358 

no conserved gene to place them on the tree of life (Rohwer & Edwards 2002). Although many 359 

pipelines exist for classification of prophages, these methods are based on the assumption that 360 

phages are monophyletic in origin and thus based on pairwise-alignment hits (Meier-kolthoff & Go 361 

2018). This makes the classification of newly sequenced phages biased towards phage sequences 362 

available in the databases (Bolduc et al. 2017) and which is mostly skewed towards Caudovirales 363 

(Skewes-cox et al. 2014). Therefore it is necessary to develop comprehensive computational 364 

methods for phage classification.  365 

As stated by (Reyes & Gruber 2016), profile HMMs have an advantage over pairwise alignment in 366 

detecting remote homologs that are not part of the original MSA file used for the model’s 367 

generation. Thus profiles HMMs are more sensitive when dealing with the highly complex and 368 

diverse phages and have the potential to increase the spectrum of detectable entities. On the other 369 

hand, since HMMs rely, to some degree, on the similarity to already known sequences available in 370 

the database, and since they represent a few sequences for a few over represented viral families, 371 

means that characterizing a greater number of viral sequences and regularly updating sequence 372 

databases are crucial for this method to be effective in the future (Skewes-cox et al. 2014; Reyes et 373 

al. 2017; Reyes & Gruber 2016).Although no HMMs exist for all phage proteins, the high scoring 374 

hits to a number of HMMs derived from a phage family were enough to classify a phage based on 375 

sequence information (Chibani et al. 2019, accepted). This means that combining multiple HMM 376 

hits is crucial since no single profile HMM can assess the true viral diversity of any sequenced 377 

dataset. 378 

To this end, we developed and applied a novel ML approach called ClassiPhage 2.0, which allows 379 

the classification of phages based on their hits into one of 12 phage families. We demonstrate that 380 

by using multiple profiles HMM as input features, derived from phage proteins out of 12 phage 381 

families, we were able to predict the phage’s taxonomic classification. Overall, we found that the 382 

method proved to be quite robust, within a range of reasonable parameter values, for the 383 

classification of the testing phage dataset, and for the assignment of a taxonomic classification of 384 

the unclassified phage dataset. However, supervised learning algorithms highly depend on the 385 

amount and quality of input data (Schmidhuber 2015). As it has been shown, phage information 386 

available in public databases is heavily biased with sequenced Caudovirales (Skewes-cox et al. 387 

2014; Reyes et al. 2017; Grazziotin et al. 2017) and a large proportion of phage families are 388 
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underrepresented. This further emphasizes the importance of better and more comprehensive viral 389 

databases, enriching sequence representation of each of the viral taxa, which in turn will lead to 390 

robust models constructions and thus more sensitive and comprehensive input for ML classifiers 391 

(Manavalan, Tae H. Shin, et al. 2018; Arango-Argoty et al. 2018; Amgarten et al. 2018). A 392 

misclassification resulting from this approach is due to the random split nature of k-fold cross-393 

validation. This creates the risk for the model to predict an entry of a family that was entirely absent 394 

from its training data, due to the presence of phage families with low number of HMMs associated. 395 

As our method’s accuracy is highly dependent on the quality and accuracy of the input data, the 396 

better and more diverse the HMM models are, the better the neural network performs. That is to say 397 

that 1) whenever HMM hits are generally shared between multiple phage families such as 398 

“polymerases“  or 2) if no HMM score was generated when scanning a phage proteome with the 399 

profile HMM models, then predictions are ambiguous in the first or cannot be made in the latter 400 

case. When scan outputs are not generated, the cause is that the phage belongs to a new phage 401 

family or is distant from the known phages (Roux et al. 2015). Finally, we expect the population of 402 

phage families with low abundant phages, from viral metagenomic datasets analysis. Since ANNs 403 

are known to perform better with an increasing size of a benchmark dataset (Morota et al. 2018), we 404 

foresee the improvement of ClassiPhage 2.0. 405 

Conclusion: 406 

In this study, we introduced a novel method which we call ClassiPhage 2.0. The method predicts a 407 

taxonomic phage family classification, resulting from multi-HMM hits of phages proteomes. We 408 

constructed ClassiPhage 2.0 using 5,920 refined profile HMMs as input features, derived from 409 

7,342 phages classified into 12 phage families. 410 

The results indicated that ClassiPhage 2.0 can be applied to predict a phage taxonomic classification 411 

at the family level with high accuracy. While these results are promising when observing the 412 

classification performance of one family on its own, it has proven challenging to accurately 413 

represent them in the context of all investigated families. To further elevate the performance of the 414 

neural network, as more phage data becomes available, more specific profile HMMs could be 415 

generated, improving the input datasets. In addition, the model could also be extended to include 416 

more features than HMM profile hits. This method can be further applied, for the prediction of well-417 

delimited taxonomic groups such as subfamilies or families when profiles HMMs per subfamilies 418 

become well defined. Furthermore, the spectrum of potential applications of this approach is a 419 

general one and doesn’t have to be limited to viral classification, rather could be applied to many 420 

other classification problems in bioinformatics.  421 
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This is a tool under active development to be made available as a publicly accessible easy-to-use 422 

web service, and we envisage its growing application on a variety of forthcoming projects. 423 

Supplementary Data: 424 

Supplemental Figure 1: 425 

 426 

Figure S 1: Heatmap of phage family prediction of Caudovirales unclassified phages 427 
depending on combination of HMM hits. 428 

The scan of the protein sequences derived from unclassified phages, was conducted by the profile 429 

HMMs of 12 phage families. The heatmap is split into 3 subplots (Generally unclassified phages, 430 

ds/DNA unclassified phages and ds/DNA/Caudovirales) where the phage family prediction is 431 

presented on the y-axis. The bit-score of the HMM matches was normalized by the size (in bp) of 432 

the HMM’s consensus sequence (data see Table S5). The results are color-coded from blue (low-433 

score) to red (high-score). 434 

Supplemental Table S1: All phage dataset information 435 
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Phages test dataset downloaded from the millardlab database. The table contains information for the 436 

phage, its classification and subclassification, size and accession number. 437 

Supplemental Table S2: InputFamily generated HMMs scanning TargetFamily CDS 438 

Refined HMMs derived from classified phages scanning all downloaded classified phage 439 

proteomes. This table contains information for the cluster and its length, protein hit information, 440 

which phage the protein is extracted from, the phages host, the input phages classification, the 441 

scanned CDS phage classification and hmmscan information. 442 

Supplemental Table S3: ClassiPhage 2.0 input matrix 443 

Input matrix generated used as input to train and test ClassiPhage 2.0. This table contains 444 

information of the phage, its classification and bit-score values resulting from refined HMMs scan 445 

of the phage derived CDS. 446 

Supplemental S4: Prediction layout of the ANN performed on the input matrix 447 

ClassiPhage 2.0 predicted classification of classified phages. This table contains information about 448 

the phage, it's published classification and ClassiPhage's 2.0 classification value ranging from [0,1]. 449 

An output close to 1 is ClassiPhage's 2.0 best predicted taxonomic classification.  450 

Supplemental Table S5: InputFamily generated HMMs scanning unclassified phage CDS 451 

Refined HMMs derived from classified phages scanning all downloaded classified phage 452 

proteomes. This table contains information for the cluster and its length, protein hit information, 453 

which phage the protein is extracted from, the phages host, the input phages classification and 454 

hmmscan information. 455 

Supplemental Table S6: Unclassified phage dataset matrix input for ClassiPhage 2.0 456 

Input matrix generated used as an external dataset for classification using ClassiPhage 2.0 model. 457 

This table contains information of the phage, unknown classification tag classification and bit-score 458 

values resulting from refined HMMs scan of the phage derived CDS. 459 

Supplemental Table S7: Prediction layout of the ANN for the unclassified phages dataset 460 

ClassiPhage 2.0 predicted classification of unclassified phages. This table contains information 461 

about the phage, 0 values for published classification and ClassiPhage's 2.0 classification values 462 

ranging from [0,1]. An output close to 1 is ClassiPhage's best predicted taxonomic classification.  463 
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Supplemental Table S8: Unclassified phage dataset predicted taxonomic classification via 464 

ClassiPhage 2.0 and ClassiPhages methods.  465 

Supplemental Table S9: ANN prediction of unclassified Vibriophage dataset classified in Chibani et 466 

al. 2019(accepted).  467 

Excerpt out of Table S7, which contains information about ClassiPhage 2.0 output of the same set 468 

of unclassified vibriophages classified by Chibani et al. 2019(accepted).  469 

  470 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558171doi: bioRxiv preprint 

https://doi.org/10.1101/558171
http://creativecommons.org/licenses/by-nc-nd/4.0/


References: 471 

Amgarten, D. et al., 2018. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Frontiers 472 
in Genetics. 473 

Andrew Skabar, Dennis Wollersheim, T.W., 2006. Multi-label Classification of Gene Function using MLPs. In 474 
International Joint Conference on Neural Networks. 475 

Arango-Argoty, G. et al., 2018. DeepARG: A deep learning approach for predicting antibiotic resistance genes from 476 
metagenomic data. Microbiome. 477 

Bolduc, B. et al., 2017. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and 478 
Bacteria. PeerJ. 479 

Enright, A.J., 2002. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research, 30(7), 480 
pp.1575–1584. 481 

Fawcett, T., 2006. An introduction to ROC analysis Tom. Pattern Recognition Letters, (27), pp.861–874. 482 
Feng, P.M. et al., 2013. Naïve bayes classifier with feature selection to identify phage virion proteins. Computational 483 

and Mathematical Methods in Medicine. 484 
Finn, R.D., Clements, J. & Eddy, S.R., 2011. HMMER web server: Interactive sequence similarity searching. Nucleic 485 

Acids Research, 39(SUPPL. 2), pp.29–37. 486 
Grazziotin, A.L., Koonin, E. V & Kristensen, D.M., 2017. Prokaryotic Virus Orthologous Groups ( pVOGs ): a 487 

resource for comparative genomics and protein family annotation. , 45(October 2016), pp.491–498. 488 
Hans-W Ackermann, 2011. Bacteriophage Taxonomy. Microbiology Australia, 32(2), pp.90–94. 489 
Lefkowitz, E.J. et al., 2017. Changes to taxonomy and the International Code of Virus Classification and Nomenclature 490 

ratified by the International Committee on Taxonomy of Viruses (2017), 491 
Li, W. & Godzik, A., 2006. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide 492 

sequences. Bioinformatics, 22(13), pp.1658–1659. 493 
Lima-Mendez, G. et al., 2008. Reticulate representation of evolutionary and functional relationships between phage 494 

genomes. Molecular Biology and Evolution. 495 
Lopes, A. et al., 2014. Automated classification of tailed bacteriophages according to their neck organization. BMC 496 

Genomics, 15(1), pp.1–17. 497 
Loshchilov, I. & Hutter, F., 2016. SGDR: Stochastic Gradient Descent with Warm Restarts. 498 
Manavalan, B., Lee, J. & Lee, J., 2014. Random forest-based protein model quality assessment (RFMQA) using 499 

structural features and potential energy terms. PLoS ONE. 500 
Manavalan, B., Shin, T.H. & Lee, G., 2018. DHSpred: support-vector-machine-based human DNase I hypersensitive 501 

sites prediction using the optimal features selected by random forest. Oncotarget. 502 
Manavalan, B., Shin, T.H. & Lee, G., 2018. PVP-SVM: Sequence-based prediction of phage virion proteins using a 503 

support vector machine. Frontiers in Microbiology. 504 
Meier-kolthoff, J.P. & Go, M., 2018. Phylogenetics VICTOR�: genome-based phylogeny and classification of 505 

prokaryotic viruses. , 33(July 2017), pp.3396–3404. 506 
Meier-Kolthoff, J.P. & Göker, M., 2017. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. 507 

Bioinformatics (Oxford, England), 33(21), pp.3396–3404. 508 
Morota, G. et al., 2018. BIG DATA ANALYTICS AND PRECISION ANIMAL AGRICULTURE SYMPOSIUM: 509 

Machine learning and data mining advance predictive big data analysis in precision animal agriculture1. Journal 510 
of Animal Science, 96(4), pp.1540–1550. Available at: https://academic.oup.com/jas/article/96/4/1540/4828311. 511 

Paez-Espino, D. et al., 2016. Uncovering Earth’s virome. Nature. 512 
Reyes, A. et al., 2017. Use of profile hidden Markov models in viral discovery: current insights. Advances in Genomics 513 

and Genetics, Volume 7(July), pp.29–45. Available at: https://www.dovepress.com/use-of-profile-hidden-514 
markov-models-in-viral-discovery-current-insight-peer-reviewed-article-AGG. 515 

Reyes, A. & Gruber, A., 2016. GenSeed-HMM�: A Tool for Progressive Assembly Using Profile HMMs as Seeds and 516 
its Application in Alpavirinae Viral Discovery from Metagenomic Data. , 7(March), pp.1–15. 517 

Rohwer, F. & Edwards, R., 2002. The phage proteomic tree: A genome-based taxonomy for phage. Journal of 518 
Bacteriology, 184(16), pp.4529–4535. 519 

Roux, S. et al., 2016. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature, 520 
537(7622), pp.689–693. Available at: http://dx.doi.org/10.1038/nature19366. 521 

Roux, S. et al., 2015. VirSorter: mining viral signal from microbial genomic data. PeerJ. 522 
Schmidhuber, J., 2015. Deep learning – An overview. International Journal of Applied Engineering Research. 523 
Seguritan, V. et al., 2012. Artificial Neural Networks Trained to Detect Viral and Phage Structural Proteins. PLoS 524 

Computational Biology. 525 
Shapiro, J.W. & Putonti, C., 2018. Gene co-occurrence networks reflect bacteriophage ecology and evolution. mBio. 526 
Skewes-cox, P. et al., 2014. Profile Hidden Markov Models for the Detection of Viruses within Metagenomic Sequence 527 

Data. , 9(8). 528 
Tan, J.X. et al., 2018. Identifying phage virion proteins by using two-step feature selection methods. Molecules, 23(8), 529 

pp.1–13. 530 
 531 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558171doi: bioRxiv preprint 

https://doi.org/10.1101/558171
http://creativecommons.org/licenses/by-nc-nd/4.0/


 532 

Funding: 533 

KAAD for stipend, Department of Genomics and Applied Microbiology, Open access fund of DFG. 534 

Availability of data and materials: 535 

HMMs download available on http://appmibio.uni-goettingen.de/index.php?sec=sw 536 

(To be made public once manuscript is accepted) 537 

Competing interests 538 

The authors declare that they have no competing interests. 539 

Author’s contributions 540 

CC performed research, designed algorithm, performed data analysis, wrote manuscript, FM designed algorithm, wrote 541 
program, performed data analysis, AF wrote program to refine Markov Models, SD designed algorithm, HL designed 542 
research, analyzed data, wrote manuscript.  543 

Acknowledgements 544 

We thank Tarek Morsi and Marc Dornieden for excellent IT-support. We thank the Goettinge Genomics Laboratory 545 
G2L for hosting. We acknowledge the support by the German research Foundation and the Open Access Fund of the 546 
Goettingen University. 547 

Consent for publication 548 

Not applicable. 549 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558171doi: bioRxiv preprint 

https://doi.org/10.1101/558171
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558171doi: bioRxiv preprint 

https://doi.org/10.1101/558171
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558171doi: bioRxiv preprint 

https://doi.org/10.1101/558171
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558171doi: bioRxiv preprint 

https://doi.org/10.1101/558171
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558171doi: bioRxiv preprint 

https://doi.org/10.1101/558171
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558171doi: bioRxiv preprint 

https://doi.org/10.1101/558171
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558171doi: bioRxiv preprint 

https://doi.org/10.1101/558171
http://creativecommons.org/licenses/by-nc-nd/4.0/

