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Abstract

RNA sequencing (RNA-seq) technologies have been popularly applied to study gene
expression in recent years. Identifying differentially expressed (DE) genes across
treatments is one of the major steps in RNA-seq data analysis. Most differential
expression analysis methods rely on parametric assumptions, and it is not guaranteed
that these assumptions are appropriate for real data analysis. In this paper, we develop
a semi-parametric Bayesian approach for differential expression analysis. More
specifically, we model the RNA-seq count data with a Poisson-Gamma mixture model,
and propose a Bayesian mixture modeling procedure with a Dirichlet process as the
prior model for the distribution of fold changes between the two treatment means. We
develop Markov chain Monte Carlo (MCMC) posterior simulation using Metropolis
Hastings algorithm to generate posterior samples for differential expression analysis
while controlling false discovery rate. Simulation results demonstrate that our proposed
method outperforms other popular methods used for detecting DE genes.

Introduction 1

During the past decade, RNA sequencing (RNA-seq) technologies have revolutionized 2

transcriptomic studies. In a typical RNA-seq experiment, messenger RNA (mRNA) 3

molecules are extracted from samples, fragmented, and converted to a library of 4

complementary DNA (cDNA) fragments. The cDNA fragments are then amplified and 5

sequenced on a high-throughput platform, such as HiSeq by Illumina or SOLiD by 6

Applied Biosystems. Millions of DNA fragment sequences, called reads, are obtained for 7

each sample and mapped to a reference genome. The number of reads aligned to a given 8

gene measures the expression level for that gene. Thus, RNA-seq generates discrete 9

count data rather than continuous data serving as measurements of mRNA expression 10

levels. 11

In the statistical analysis of RNA-seq data, detecting differentially expressed (DE) 12

genes across treatments or conditions is one of the major steps and often the main goal. 13

A gene is considered to be DE if the expression levels change across treatment groups. 14

Otherwise, the gene is said to be equivalently expressed (EE). Generally, negative 15

binomial (NB) distribution is used for modeling RNA-seq count data. Many statistical 16

methods based on the NB distribution have been proposed for detecting DE genes with 17

RNA-seq data, including edgeR [1–4], DESeq [5] and DESeq2 [6]. Methods that do not 18

assume NB models typically involves transformation of the count data to continuous 19

scale, such as the Voom and limma pipeline [7], which models the mean-variance 20

relationship of the log-transformed count data and produces a precision weight for each 21
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observation, then applies the limma method based on normal distributions [8] for the 22

detection of DE genes. 23

The comparison among all the popular methods for RNA-seq data analysis 24

mentioned above has been done through simulation studies [9, 10]. However, the 25

optimality of these existing testing procedures is inadequately studied. Si and Liu 26

(2013) [11] developed an optimal test for RNA-seq data anaysis while controlling FDR, 27

where optimal tests were defined as tests that achieve the maximum of the power 28

averaged across all genes for which null hypotheses are false. Furthermore, Si and Liu 29

(2013) [11] proposed an approximation to the optimal test, where hyper distributions 30

were estimated with mixture distributions, and such a test is called the approximated 31

most average powerful (AMAP) test. In the two-treatment comparison problem, Si and 32

Liu (2013) [11] modeled the gene-specific treatment means by the overall geometric 33

mean expression level across both treatments and the ratio of the two treatment means, 34

i.e., fold change ρg. They used a K-component mixture Gamma-Normal (MGN) 35

distribution to model the joint distribution of the overall geometric mean expression 36

level and the logarithm of the fold change. However, there are several limitations of 37

using MGN distribution, such as difficulty in selecting an appropriate number of 38

components K, and challenges in modeling the empirical distribution of all genes by 39

parametric models. 40

Bayesian nonparametric modeling is a more flexible way for distribution estimation 41

and is often applied to avoid critical dependence on parametric assumptions. The most 42

popular Bayesian nonparametric methods adopt Dirichlet process (DP) mixture 43

modeling, and such modeling framework has been utilized for DE analyses. For 44

instance, [12] chose DP mixtures to model the population of genes under two different 45

conditions and applied to a microarray dataset. Liu et al. (2015) [13] used the DP prior 46

for modeling the distribution of fold changes between two treatments, with a mixture of 47

a point mass at one and a Gamma distribution as the base distribution in the DP prior. 48

In the method proposed by Liu et al. (2015) [13], one treatment condition was set as 49

the reference condition (i.e., baseline) and they used DP as the prior for the distribution 50

of fold changes of the other condition versus the reference. When they changed the 51

reference treatment group, the declared differential expression status were not exactly 52

the same for all genes. 53

To address this issue that the model is not invariant to the choice of reference 54

condition, we propose a method using a mixture of three components as the base 55

distribution in the DP prior for the distribution of the fold changes between two 56

treatment conditions. The three components are a point mass at one, a Gamma, and an 57

inverse-Gamma distribution, so that the model becomes invariant no matter which 58

treatment group is set to be the reference. In addition, we model RNA-seq count data 59

via a Poisson-Gamma mixture model, which is equivalent to a NB model. Similar to Liu 60

et al. (2015) [13], this paper shows how our mixture modeling procedure can be 61

accommodated to provide meaningful posterior probabilities of simple or composite null 62

hypothesis. Also, we show that the posterior inference can be viewed as an 63

approximation for the optimal test in Si and Liu (2013) [11], thus our approach is an 64

approximated optimal test. 65

The article is organized as follows. In the Methods section, we describe our proposed 66

Bayesian mixture modeling pipeline and the prior models, then present the MCMC 67

sampling scheme for posterior inference and FDR estimation. In the Results section, we 68

generate several simulation studies based on NB distributions, and compare our 69

proposed method to some popular methods for DE analysis. We also analyze a real 70

dataset using our proposed method. The Discussion section summarizes our results and 71

provides some discussion. 72
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Methods 73

In this section, we first describe the framework of our mixture modeling, and then 74

introduce the prior models employed in our method. 75

A Poisson-Gamma Mixture Model 76

Suppose that an RNA-seq experiment measures G genes. Let Ygij denote the number of
reads mapped to gene g from biological replicate j of treatment i, where g = 1, . . . , G,
i = 1, 2, j = 1, . . . , ni, and ni is the number of biological replicates in treatment i. As
we mentioned in the introduction section, NB distribution has been popularly applied to
such data. In the development of our modeling framework, we use a Poisson-Gamma
mixture model parameterization instead of the NB model directly, where the RNA-seq
read counts follow a Poisson distribution conditioning on the true expression mean, and
the true gene abundances follow a Gamma distribution between replicate RNA samples.
Then read count data Ygij can be modeled as below,

Ygij |λgij ∼ Poisson(Sijλgij),

λg1j |αg, βg ∼ Gamma(αg, βg), and

λg2j |αg, βg, ρg ∼ Gamma(αg, βgρg), (1)

where Sij is a normalization factor that accounts for sequencing depth variation and 77

nuisance technical effects across the replicates, λgij is the normalized expression mean 78

of jth replicate of ith treatment in gene g, αg is the shape parameter which stands for 79

the reciprocal of the dispersion parameter for gene g, βg is the rate parameter for the 80

first treatment, and the product of βg and ρg is the rate parameter for the second 81

treatment. So the marginal expression mean for treatment 1 is αg/βg, while for 82

treatment 2 is αg/(βgρgi). Therefore, the mean ratio of treatment 1 over treatment 2 is 83

ρg, which refers to the fold change between treatment 1 versus treatment 2. 84

The goal of differential expression analysis is to test

Hg
0 : ρg ∈ ∆0 vs. Hg

1 : ρg ∈ ∆1, (2)

for each gene g, where ∆0 represents the null set of values for ρg, while ∆1 represents 85

the alternative set. ∆0 and ∆1 are assumed to be a partition of the positive real line R+
86

(∆0

⋃
∆1 = R+, ∆0

⋂
∆1 = ∅). The null space ∆0 can be defined in different ways 87

depending on the biological problems of interest. For example, if we are interested in 88

identifying DE genes across the two treatments, we set ∆0 = {1}. If we are interested in 89

whether the mean expression level in the first treatment is greater than the second 90

treatment, we set ∆0 = (0, 1]. If we are interested in genes whose expression changes are 91

large enough, for instance, the fold changes are greater than 1.5 [14], we set 92

∆0 = [1/1.5, 1.5]. 93

Prior Specification 94

Since our main focus is to test the hypothesis about the fold change parameter ρg in (2) 95

for each gene, specifying an appropriate prior distribution for ρg is very crucial. The 96

empirical distribution of the fold change of all genes could be very irregular and differs 97

between various studies. To provide maximal flexibility, Bayesian nonparametric 98

modeling with DP is a common way for distribution estimation. DP is a stochastic 99

process whose realizations are probability distributions, i.e., each draw from a DP is 100

itself a distribution. The formal definition of DP is as follows. Given a measurable set 101

Ω, a base probability distribution F0 and a positive real number M called the 102
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concentration parameter, a random probability distribution F is generated by a DP if 103

for any measurable partition A1, . . . , Ak of Ω, the distribution of (F (A1), . . . , F (Ak)) is 104

Dirichlet D(M · F0(A1), . . . ,M · F0(Ak)). We denote this by F ∼ DP (M,F0). The 105

parameters F0 and M play intuitive roles in the definition of the DP. For any 106

measurable subset B of Ω, the base distribution F0 is the mean of the DP, i.e., 107

E[F (B)] = F0(B). Besides, the concentration parameter M defines the variance as 108

V ar[F (B)] = F0(B)(1− F0(B))/(M + 1). The larger M is, the smaller the variance, 109

and the DP will concentrate more of its mass around the mean. 110

Throughout our mixture modeling procedure, we use a DP to model the fold change 111

parameters (ρ1, . . . , ρG). Different from Liu et al. (2015) [13], we use a mixture of a 112

point mass at one, a Gamma and an inverse-Gamma distribution as the base 113

distribution in the DP prior for the distribution of the fold change parameters, so that 114

our modeling is invariant to the specification of the reference condition, and we call it 115

iSBA (where SBA stands for semiparametric Bayesian approach). Details of the proof of 116

reference level invariance are provided in S1 Appendix. 117

Therefore, the DP prior for gene g, g = 1, . . . , G, can be expressed as

ρg|F
i.i.d.∼ F,

F ∼ DP (M,F0),

F0 ∼ p0δ{1} +
1

2
(1− p0)Gamma(α0, β0) (3)

+
1

2
(1− p0)Inv-Gamma(α0, β0),

where p0 is the proportion of EE genes, and δ{x} denotes a point mass at x. In this 118

paper, we set p0 = 0.5 to give no prior preference to either DE or EE. The 119

concentration parameter M in the DP priors is fixed as M = 1, which is a common 120

choice used in application [12, 15, 16]. Throughout our paper, the simple null hypothesis 121

of our great interest is Hg
0 : ρg = 1. 122

Following Liu et al. (2015) [13], we use a Gamma distribution as the prior
distribution for βg due to its conjugacy, and an exponential distribution as the prior for
αg in order to reduce the computational complexity of the posterior distribution,

αg ∼ Exp(r), (4)

βg ∼ Gamma(a0, b0), (5)

where r, a0, b0, in addition to α0 and β0 in (3), are hyperparameters. We set r = 0.01, 123

a0 = 0.1, b0 = 0.1, α0 = 0.1, β0 = 0.1 so that the priors are non-informative and the 124

inference for αg and βg mainly relies on the observed data. For computational 125

simplicity, we set the priors for αg’s, βg’s, and ρg’s to be independent. 126

Markov Chain Monte Carlo Simulation 127

Posterior inference based on our proposed model is implemented by using Markov chain 128

Monte Carlo (MCMC) algorithm [17]. MCMC methods are usually employed to 129

generate samples from the posterior distribution by constructing a Markov chain that 130

has the target posterior distribution as its equilibrium distribution. We use an 131

MCMC-based sampling method in our proposed Bayesian mixture models. Gibbs 132

sampling is the most frequently used tool to perform MCMC algorithm for Bayesian 133

hierarchical models when dealing with conjugate priors. However, for addressing 134

non-conjugate priors, the simplest way is by using the Metropolis-Hastings 135

algorithm [18]. 136

The Metropolis-Hastings algorithm simulates samples from a target distribution π(x)
using a proposal distribution g(x∗|x), and updates the state x as follows. Generate a
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candidate state x∗ from the distribution g(x∗|x), then compute the acceptance
probability

a(x∗|x) = min

[
1,
g(x|x∗)π(x∗)

g(x∗|x)π(x)

]
.

Set the new state x′ to x∗ with probability a(x∗|x). Otherwise, reject the candidate x∗ 137

and let x′ be the same as x. 138

To simplify the use of DP prior, when F is integrated over its prior distribution (3),
the sequence of ρg’s follows a Polya urn scheme [19,20], that is,

ρg|ρ−g ∼
1

G− 1 +M

∑
k 6=g

δ{ρk} +
M

G− 1 +M
F0, (6)

where ρ−g is the vector of (ρ1, . . . , ρG) after deleting ρg. 139

Then the most direct approach to sample for our model is to perform
Metropolis-Hastings update for each of the ρg. However, this algorithm may not be very
efficient since it cannot change the ρg for more than one gene simultaneously. A change
to the ρg values occurs only when they are reallocated to new components. Thus it may
take long time to converge to the posterior distribution [21]. In order to improve the
efficiency of the MCMC algorithm, a modified Metropolis-Hastings updates and partial
Gibbs sampling method has been proposed by Neal (2000) [21] (Algorithm 7). Suppose
K is the number of distinct values in the vector (ρ1, . . . , ρG) and the distinct values are
denoted as ρ∗1, . . . , ρ

∗
K , respectively. Let ξ = (ξ1, . . . , ξG) be the configuration indicators

defined by

ξg = k if and only if ρg = ρ∗k = ρ∗ξg .

Therefore, we reparameterize the prior model for ρg’s with ρ∗k’s and ξg’s as follows,

ρ∗k
i.i.d.∼ F0,

F0 ∼ p0δ{1} +
1

2
(1− p0)Gamma(α0, β0)

+
1

2
(1− p0)Inv-Gamma(α0, β0),

(ξ1, . . . , ξG)|M ∼ CRP(M),

where the prior models for ρ∗k’s and ξg’s are independent and CRP stands for Chinese
Restaurant Process. CRP is a random distribution and the full conditional distribution
for ξg’s can be written as

ξg|ξl,M ∼
K(−g)∑
k=1

n
(−g)
k

G− 1 +M
δ{k} +

M

G− 1 +M
δ{K(−g)+1},

where K(−g) denotes the number of distinct values in the vector (ρ1, . . . , ρG) after 140

deleting ρg, and n
(−g)
k denotes the number of (ρ1, . . . , ρG) who equal ρ∗k after deleting 141

ρg. 142

The MCMC sampling scheme uses the modified Metropolis-Hastings updates and 143

partial Gibbs sampling method to repeatedly sample the following parameters step by 144

step. The procedure for generating the full conditionals of all parameters and how we 145

apply Metropolis-Hastings algorithm are shown in S2 Appendix. 146

(1) Draw samples of λgij ’s from their full condition distributions,

λg1j |· ∼ Gamma(Yg1j + αg, S1j + βg),

λg2j |· ∼ Gamma(Yg2j + αg, S2j + βgρg).
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(2) Draw samples of βg’s from their full conditional distributions,

βg|· ∼ Gamma
(
αg(n1 + n2) + a0,

n1∑
j=1

λg1j +

n2∑
j=1

λg2jρg + b0

)
.

(3) There is no closed-form full conditional distribution for αg’s. Since the conditional 147

posterior distribution for each gene g is a log-concave function with respect to αg, 148

we could draw posterior samples based on adaptive rejection sampling method [22]. 149

(4) Obtain posterior samples for ρg’s by getting the Markov chain for (ξ1, . . . , ξG) and 150

(ρ∗1, . . . , ρ
∗
K) as follows: 151

(i) Update the configuration vector (ξ1, . . . , ξG). 152

• For g = 1, . . . , G, repeat the following: If ξg = ξl for some l 6= g, let ξ∗g
be a newly created component, with ρ∗ξ∗g drawn from F0. Set ξg to ξ∗g
with probability

a(ξ∗g , ξg) = min
[
1,

M

G− 1
· e−βg

∑n2
i=1 λg2j(ρ

∗
ξ∗g
−ρ∗ξg )

(ρ∗ξ∗g
ρ∗ξg

)n2αg]
.

Otherwise, if ξg 6= ξl for all l 6= g, draw ξ∗g from ξ−g, choosing ξ∗g = ξ

with probability
n
(−g)
ξ

G−1 . Set the new ξg to this ξ∗g with probability

a(ξ∗g , ξg) = min
[
1,
G− 1

M
· e−βg

∑n2
j=2 λg2j(ρ

∗
ξ∗g
−ρ∗ξg )

(ρ∗ξ∗g
ρ∗ξg

)n2αg]
.

• For g = 1, . . . , G, if ξg 6= ξl for all l 6= g, do nothing. Otherwise, choose a
new value for ξg from {ξ1, . . . , ξG} with probabilities

p(ξg = ξ|ξ−g, rest) = b ·
n
(−g)
ξ

G− 1

n2∏
j=1

λ
αg−1
g2j e−βgρ

∗
ξλg2j (βgρ

∗
ξ)
αg

Γ(αg)
,

where b is the appropriate normalizing constant. 153

(ii) Update (ρ∗1, . . . , ρ
∗
K). For k = 1, . . . ,K, repeat the following: Draw ρ∗∗k from

F0. Set the new value of ρ∗k to ρ∗∗k with the probability

a(ρ∗∗k , ρ
∗
k) = min

[
1, e

∑
{g:ξg=k}

∑n2
j=1 βgλg2j(ρ

∗∗
k −ρ

∗
k) ·
(ρ∗∗k
ρ∗k

)∑
{g:ξg=k} n2αg

]
.

Otherwise, let the new ρ∗k be the same as the old value. If we have 154

duplicated ρ∗k, delete it and combine ξg. 155

Bayesian FDR Control 156

In genomic studies, tens of thousands of hypotheses are simultaneously tested, each 157

relating to a gene. Thus multiple testing procedures that control the number of false 158

significant results are commonly used in the analysis. False discovery rate (FDR) [23], 159

defined as the expected proportion of false positives among the rejected hypotheses, has 160

been the common choice of error criterion in RNA-seq data analysis. Within the 161

Bayesian framework, one can estimate the FDR with Bayesian FDR [24,25] by using 162

posterior probability. 163
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For each gene g, g = 1, . . . , G, the posterior probability that gth null hypothesis is
true is denoted by P (ρg ∈ ∆0|Yg). If we are interested in detecting DE genes, with
∆0 = {1}, P (ρg ∈ ∆0|Yg) is the posterior probability that gene g is EE. P (ρg ∈ ∆0|Yg)
can be estimated by the proportion of the posterior samples obtained from MCMC for
gene g that fall into the null set ∆0, i.e.,

v̂g = P̂ (ρg ∈ ∆0|Yg) =
1

N

N∑
m=1

I(ρmg ∈ ∆0|Yg),

where N is the number of posterior samples. We reject Hg
0 if the estimated posterior

probability v̂g is smaller than a critical value c∗. The critical value c∗ is chosen based on
controlling the FDR at a target level γ, for example, 0.05, i.e.,

c∗ = sup{c : F̂DR(c) < γ},

where

F̂DR(c) =

∑G
g=1 v̂gI(v̂g < c)∑G
g=1 I(v̂g < c)

.

So the Bayesian FDR controlled at level γ can be calculated by

B̂FDR(γ) =

∑G
g=1 v̂gI(v̂g < c∗)∑G
g=1 I(v̂g < c∗)

.

Results 164

In this section, we adopt the simulation settings in Liu et al. (2015) [13] to assess the 165

performance of our proposed method (iSBA), and compare to their semi-parametric 166

Bayesian (SBA) method along with other popular methods for differential expression 167

analysis of RNA-seq data, such as edgeR [3], voom and limma pipeline [7], and 168

DESeq [5]. To mimic the distributions of real RNA-seq count data, we sampled 169

gene-specific mean and dispersion parameters from the estimated values based on a 170

maize study [26] that compared gene expression between bundle sheath and mesophyll 171

cells of corn plants. Following Liu et al. (2015) [13], we conducted the same two sets of 172

simulation studies (A and B). For each simulation study, 32 independent RNA-seq 173

datasets were simulated from NB distributions with given mean and dispersion 174

parameters, each dataset contains 10,000 genes, 2 treatment groups, and n replicates 175

per treatment group, where n = 3 or 6. For our proposed method, we generated 5000 176

posterior samples after 3000 iterations burn-in, to calculate the estimated posterior 177

probabilities. Convergence was checked via Gelman-Rubin criteria [27]. The test 178

performances of different methods are evaluated by averaging the 32 datasets. 179

Simulation A 180

We used the maize dataset published by Tausta et al. (2014) [26] to estimate the 181

gene-specific mean for one treatment group and the dispersion parameters, and 182

randomly sampled 10,000 pairs of mean and dispersion parameters out of all 27,819 183

pairs without replacement, which would be used as the true mean expression level for 184

the control group (µg) and the true dispersion parameter (φg) for gene g = 1, . . . , 10000. 185

Given the number of replicates per treatment group, n = 3 or 6, the RNA-seq read 186

count data for the control group were generated from NB(µg, φg) for gene g. Then we 187
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randomly selected 5000 out of the 10,000 genes to be EE, whose count data for the 188

treatment group were also drawn from NB(µg, φg). The remaining 5000 genes were 189

simulated to be DE genes, with fold change (ρg) set to be 4, 8, 0.25 and 0.125. Thus we 190

had 1250 genes for each ρg value, whose count data for the treatment group were drawn 191

from NB(µgρg, φg). 192

Simulation B 193

Similar to Simulation A, we generated 10,000 genes from NB(µg, φg), with fold change
ρg for 5000 DE genes. Instead of setting ρg to be 4, 8, 0.25 or 0.125, we simulated ρg
from a two-component mixture of lognormal distributions,

log(ρg) ∼ 0.5Normal(log(4), 1) + 0.5Normal(−log(4), 1).

Simulation Results for Testing DE Genes 194

In order to avoid the impact on test performance with different normalization 195

procedures, we applied the same normalization steps for all the methods under 196

comparison. Specifically, we set all normalization factors to be 1 for both Simulations A 197

and B. 198

The receiver operating characteristic (ROC) curves that plot the true positive rate 199

(TPR) versus false positive rate (FPR) resulting from Simulations A and B with number 200

of replicates per group n = 3 or 6 are shown in Fig 1. These curves were generated 201

based on either the posterior probabilities or p−values for each method. For each level 202

of FPR, the TPRs were averaged over the 32 simulated datasets. We plotted the curves 203

over the FPR values in the range of 0 and 0.1 because we are most interested in small 204

FPR values. We also calculated the area under the curve (AUC) values as the 205

percentages of 0.1, which is the total area in the range of FPR < 0.1. The average 206

values and standard deviations of the AUC across the 32 simulated datasets are 207

reported in the legends of Fig 1. Fig 1 shows that our iSBA method and the SBA 208

method proposed by Liu et al. (2015) [13] generated the highest ROC curves and 209

largest AUC values among all tests under all simulation settings, indicating that iSBA 210

and SBA methods outperformed other methods in terms of ranking DE genes. 211

Fig 1. ROC curves resulting from Simulations A and B. For each level of FPR,
the TPRs were averaged over the 32 simulated datasets. The percentage reported in the
legend is the average AUC for each method, representing the percentage of 0.1, which is
the total area in the range of FPR < 0.1, and the percentage in each set of parentheses
is the standard deviation of the estimated AUC.

We also checked the false discovery (FD) plot as in Liu et al. (2015) [13], which is 212

the plot of the number of false positives versus the number of top ranked genes selected 213

as DE. Genes were ranked based on either posterior probabilities or p−values for each 214

method. A better performing method would have a lower FD curve. The FD plots for 215

Simulations A and B with n = 3 or 6 are shown in Fig 2. The number of false positives 216

decreased when sample size increased from 3 to 6 for all methods, as expected. Our 217

iSBA method and the SBA method provided the lowest FD curves under all simulation 218

settings, indicating that our iSBA method and the SBA method produced less false 219

positives than others, when we declared the same number of DE genes for all methods. 220

In addition, we evaluated the estimation of FDR based on subsection “Bayesian 221

FDR Control” in Methods Section for our method and SBA method. For other 222

non-Bayesian methods, we applied the Benjamini and Hochberg [23] procedure to adjust 223

p−values for multiple comparisons. FDR plots for Simulations A and B with n = 3 or 6 224
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Fig 2. False discovery curves resulting from Simulations A and B. For each
number of top ranked genes selected as DE, the number of false positives were averaged
across the 32 simulated datasets. Genes were ranked based on either posterior
probabilities or p−values.

are presented in Fig 3. Our iSBA method controlled FDR well, the SBA method 225

performed the second, while other methods provide more conservative results.

Fig 3. Plots of the actual FDR versus the nominal level of FDR resulting
from Simulations A and B. The dashed lines correspond to the Y = X line. A well
performing method would control the FDR below or close to the dashed line.

226

Based on results from these simulations, our iSBA method and the SBA method 227

generated the highest ROC curves and the least false positives, comparing with other 228

popularly applied RNA-seq DE analysis methods. Furthermore, the iSBA method 229

controlled FDR the best, hence provided reliable lists of declared DE genes. All in all, 230

our proposed iSBA method worked the best or among the best under all simulation 231

settings. 232

Simulation Results for Testing: |logFC| ≤ log1.5 233

In addition to the simple hypothesis testing problem introduced in the last subsection, 234

we could also apply our method to do other types of hypothesis testing, for example, 235

testing whether the fold change falls into a certain interval or not. In practice, biologists 236

often want to detect genes whose fold-changes are big enough and biologically 237

meaningful. This subsection shows the results for testing: |logFC| ≤ log1.5 for 238

Simulation B. 239

We applied our iSBA method and the SBA method directly to do this hypothesis 240

testing problem. For other methods including edgeR, voom and limma pipeline, and 241

DESeq, we adopted the two-step procedure described in [11]. More specifically, in the 242

first step, ρg = 1 was tested for each gene, and a list of DE genes was identified while 243

controlling FDR at a given level. In the second step, among those DE genes declared in 244

the first step, genes with large enough fold changes (|logFC| > log1.5) were selected. 245

The ROC curves for testing |logFC| ≤ log1.5 for Simulation B are shown in the 246

upper panel of Fig 4. The iSBA method and the SBA method outperformed all other 247

methods. The lower panel of Fig 4 provides the FDR plots, from which we could notice 248

that our iSBA method controlled FDR well in the range of FDR smaller than 0.1.

Fig 4. Results for testing |logFC| ≤ log1.5 from Simulation B. The upper panel
shows the ROC curves. For each level of FPR, the TPRs were averaged over the 32
simulated datasets. The percentage reported in the legend is the average AUC for each
method, representing the percentage of 0.1, which is the total area in the range of FPR
< 0.1, and the percentage in each set of parentheses is the standard deviation of the
estimated AUC. The lower panel plots the actual FDR versus the nominal level of FDR.
The dashed lines correspond to the Y = X line.

249

Simulation Results for Swapping Treatments 250

As we discussed in the Introduction Section, the semi-parametric Bayesian (SBA) 251

method [13] set one treatment group as reference condition. If the choice of a reference 252

condition is not obvious based on the experimental design, the declared differential 253
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expression status may vary depending on which group is set to be baseline. However, 254

the model we proposed is invariant no matter which group is set to be the reference 255

condition. The proportion of genes remaining the same declared differential expression 256

status between two analyses that swapped the treatment and control groups were 257

calculated when controlling FDR at 0.05, with average values and standard deviation of 258

the percentage across the 32 simulated datasets reported in Table 1. It turned out that 259

our iSBA method had higher overlap and more consistency in declared differential 260

expression status than SBA method when swapping the treatment and control groups, 261

for all simulation settings. 262

Table 1. Proportion of genes remaining the same declared differential
expression status between two analyses that swapped the treatment and
control groups for Simulations A and B, when controlling FDR at 0.05.
The proportions were averaged across the 32 simulated datasets, and the
percentage in each set of parentheses is the standard deviation of the
estimated proportion.

Simulation setting SBA iSBA
Simulation A, n = 3 91.43% (2.21%) 92.43% (0.33%)
Simulation A, n = 6 93.12% (5.55%) 94.87% (0.48%)
Simulation B, n = 3 91.42% (4.80%) 93.78% (0.84%)
Simulation B, n = 6 93.98% (2.23%) 94.83% (0.39%)

Real Data Analysis 263

In this subsection, we analyze a real RNA-seq dataset published by Li et al. (2010). 264

The dataset measures the transcript abundance of two cell types, bundle sheath and 265

mesophyll, for different leaf sections. Each cell type has two biological replicates. The 266

objective of the analysis is to detect genes that are DE between cell types or between 267

different leaf sections. We analyzed leaf section 4 to detect DE genes between the two 268

cell types in this section. 269

After deleting genes that have zero counts for both replicates in either cell type, 270

28,407 out of 33,743 genes were retained for analysis. We assumed NB models for the 271

count data observed for each gene, and performed our proposed iSBA method, together 272

with SBA method and edgeR. We also controlled FDR as described in subsection 273

“Bayesian FDR Control” for SBA and iSBA, and applied the Benjamini and 274

Hochberg [23] procedure for edgeR. 275

The numbers of DE genes detected by different methods while controlling FDR at 276

different levels are shown in Fig 5. For example, when we controlled FDR at 0.05, 6040 277

genes were detected by all three methods. The majority of genes identified by our iSBA 278

method were overlapped with SBA. 2703 genes were detected by both iSBA and SBA, 279

but not by edgeR, which may due to the conservative control of FDR based on our 280

simulation studies. 281

Fig 5. The numbers of DE genes between two cell types for leaf section 4.
The Venn diagram on the left shows the number of overlapping identified DE genes from
our iSBA method, SBA method, and edgeR while controlling FDR at 1%; the Venn
diagram on the right shows the corresponding results while controlling FDR at 5%.

The proportions of genes remaining the same declared differential expression status 282

between two analyses that swapped the two treatment groups when controlling FDR at 283

0.05 for our iSBA method is 93.47%, while the SBA method is 89.28%. 284
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Discussion 285

In this paper, we proposed a Bayesian mixture modeling procedure for DE analysis of 286

RNA-seq count data, and employed the MCMC sampling scheme to generate posterior 287

samples for further inference. Simulation results demonstrate that our method 288

outperformed other commonly used methods, such as edgeR, voom and limma pipeline, 289

and DESeq, in terms of both ranking DE genes and FDR control. 290

A common choice of the concentration parameter M in the DP priors that are 291

widely used in application is M = 1 [12]. We check the simulation results with different 292

M values (M being 0.2, 0.5, 2, 5, 10 or 20), and the results remain almost the same for 293

various values of M . 294

In our proposed method, the DP prior we choose guarantees that our modeling is 295

invariant regardless of which treatment group is set to be the reference condition. 296

According to the simulation results on two analyses that swapped the treatment and 297

control groups, it is worth noticing that even for our iSBA method, the declared 298

differential expression status are still not 100% the same. Part of the reason is due to 299

the randomness of MCMC, if we run another MCMC using different seed, the overlap 300

between the two MCMCs is about 97%. Since we generated 5000 posterior samples to 301

calculate the estimated posterior probabilities after 3000 iterations burn-in, whether the 302

Markov chains are long enough to get accurate results is also a potential problem. We 303

checked the effective sample size for each gene, genes that had the same declared DE 304

status after swapping treatments had effective sample sizes about 500 or larger, but 305

genes that had different declared DE status overlapped had effective sample sizes 306

around only 100. Effective sample size around 400 can be regarded as large enough, so 307

for those genes with low effective sample size, we may need to run longer MCMC. Based 308

on simulation checking, running the Markov chains longer do increase the percentage of 309

overlapping genes, as expected. For example, for simulation A with n = 6, if we doubled 310

the length of chain, the overlap for iSBA increased to 95.28%. However, running longer 311

chains is more time consuming, and it only benefits a small proportion of genes while 312

results for most genes would not change. Therefore, it is a tradeoff between efficiency 313

and accuracy, and we will let the users decide which one is more important for a 314

practical application. 315

As indicated in subsection “Bayesian FDR Control”, the estimated posterior 316

probability v̂g is used as a test statistic and a decision Dg is based on whether v̂g is 317

small enough. And the AMAP test by Si and Liu (2013) [11] is based on a similar test 318

statistic except that the prior models are different. In fact, the MAP test statistic 319

derived in Si and Liu (2013) [11] can be viewed as the posterior probability of being null 320

given the distribution of gene-specific parameters under the null hypothesis and the 321

distribution of these parameters under the alternative hypothesis. Assuming the 322

distributions of the gene-specific parameters (fold changes and other parameters) follow 323

approximately the prior distribution we use, our estimated posterior probability using 324

MCMC is an AMAP test statistic. 325
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